Logic, Languages, and Rules for Web Data
Extraction and Reasoning over Data

Georg Gottlob!, Christoph Koch?, and Andreas Pieris?®)

! University of Oxford, Oxford, UK
georg.gottlob@cs.ox.ac.uk
2 Fcole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
christoph.koch@epfl.ch
3 University of Edinburgh, Edinburgh, Scotland
apieris@inf.ed.ac.uk

Abstract. This paper gives a short overview of specific logical
approaches to data extraction, data management, and reasoning about
data. In particular, we survey theoretical results and formalisms that
have been obtained and used in the context of the Lixto Project at TU
Wien, the DTADEM project at the University of Oxford, and the VADA
project, which is currently being carried out jointly by the universities
of Edinburgh, Manchester, and Oxford. We start with a formal app-
roach to web data extraction rooted in monadic second order logic and
monadic Datalog, which gave rise to the Lixto data extraction system.
We then present some complexity results for monadic Datalog over trees
and for XPath query evaluation. We further argue that for value creation
and for ontological reasoning over data, we need existential quantifiers
(or Skolem terms) in rule heads, and introduce the Datalog® family. We
give an overview of important members of this family and discuss related
complexity issues.

1 Introduction

“The web is the largest database” is a sentence one nowadays can hear quite fre-
quently. However, this statement is not really true. The web, including the deep
web, is certainly the largest data repository, but not a database. In a database,
data is homogeneously formatted, and can be retrieved efficiently and uniformly
via query languages. Web data, even when it is about the same type of items
(say, used cars or any other consumer good) appears in a different format on
many different websites. There is, moreover, no uniform query or retrieval mech-
anism. In order to be able to query such data, we thus have to extract it from the
different web sources, recast it into a single format, and, if appropriate, store it
in a single database. This process is called web data extraction, and the programs
that extract data from the web are called wrappers.

The wrapping problem is often seen as a software and web-engineering task,
but has also been addressed by a substantial amount of systems-oriented research
work, see e.g. TSIMMIS [55], FLORID [46], DEByE [44], W4F [56], XWrap [45],
© Springer International Publishing AG 2017

F. Drewes et al. (Eds.): LATA 2017, LNCS 10168, pp. 27-47, 2017.
DOI: 10.1007/978-3-319-53733-7_2

28 G. Gottlob et al.

Lixto [4,6,29] and Diadem [22], some of which led to commercial spin-outs. More-
over, in [27], a logical theory of data extraction has been developed that has led
people to consider monadic Datalog as a logical language for data extraction,
which has, in turn, been the basis of a more practical logical language imple-
mented in the Lixto system. In Sect. 2, which is a slightly shortened exposition
of material from [29] (which in turn summarizes [27]), we will give a short survey
of the logical approach to web data extraction.

Web documents in HTML are essentially labeled trees, where many labels
correspond to formatting instructions for data presentation (such as <table>,
<td>, or <headerl>, and so on) and where the actual data items reside at
the leaf level. Thus, rather than imposing a logical structure on the data, the
labels in HTML take care of the display format and make sure that a web page
displayed in a browser meets the eye of the beholder. However, XML, a well-
known language quite similar to HTML, allows one to impose a tree-shaped
logical structure on data. From a conceptual point of view, this generalizes the
“flat” relational data format. Special query language such as XPath?, XQuery?,
and XSLT* have been designed for XML databases. With some minor additions,
monadic Datalog can be used to simulate the core fragment of XPath [26], which
indicates that core XPath is not more expressive than monadic Datalog. This
observation gave rise to complexity studies of XPath evaluation whose basic
results will be summarized in Sect. 3.

Once data is extracted, one usually wants to combine it with other extracted
data and corporate data from local databases. In addition, some cleaning, rea-
soning and further provisioning tasks have to be performed. All this together is
called data wrangling [23]. Apparently, languages for data wrangling purposes
should be able to perform complex data transformation, data exchange, data
integration and ontological reasoning tasks. However, Datalog, let alone monadic
Datalog, is not powerful enough for performing such tasks. In Sect. 4, which is
based on the longer survey [10], we argue that the crucial limitation of Datalog
is the fact that is not able to infer the existence of new objects, which are not
already in the extensional database. We then proceed to introduce Datalog®, a
family of logical languages that extend Datalog with key modeling features such
as existential quantifiers in rule heads, which allow to infer the existence of new
objects. We give an overview of important members of this family and discuss
related complexity issues.

2 Logical Foundations of Web Data Extraction

2.1 Desiderata for Wrapping Languages

To allow for a foundational study of wrapping languages, we first need to estab-
lish criteria that allow us to compare such languages. In [27], four desiderata

! https://www.w3.org/TR/1998/REC-xml-19980210.
2 http://www.w3c.org/TR/xpath/.

3 https://www.w3.org/XML/Query/.

4 http://www.w3.org/TR/xslt.

https://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3c.org/TR/xpath/
https://www.w3.org/XML/Query/
http://www.w3.org/TR/xslt

Logic, Languages, and Rules for Web Data Extraction 29

were proposed that a good wrapping language should satisfy. In particular, such
a language should

(i) have a solid and well-understood theoretical foundation,
(ii) provide a good trade-off between complexity and the number of practical
wrappers that can be expressed,
(iii) be easy to use as a wrapper programming language, and
(iv) be suitable for incorporation into visual tools.

The core notion that we base our wrapping approach on is that of an infor-
mation extraction function, which takes a labeled unranked tree (representing a
Web document) and returns a subset of its nodes. A wrapper is a program which
implements one or several such functions, and thereby assigns unary predicates
to document tree nodes. Based on these predicate assignments and the structure
of the input tree, a new data tree can be computed as the result of the informa-
tion extraction process in a natural way, along the lines of the input tree, but
using the new labels and omitting nodes that have not been relabeled (by some
form of tree minor computation).

Given a set of information extraction functions, one natural way to wrap an
input tree t is to compute a new label for each node n (or filter out n) as a
function of the predicates assigned using the information extraction functions.
The output tree is computed by connecting the resulting labeled nodes using the
(transitive closure of) the edge relation of ¢, preserving the document order of ¢.
In other words, the output tree contains a node if a predicate corresponding to
an information extraction function was computed for it, and contains an edge
from node v to node w if there is a directed path from v to w in the input
tree, both v and w were assigned information extraction predicates, and there
is no node on the path from v to w (other than v and w) that was assigned
information extraction predicates. We do not formalize this operation here; the
natural way of doing this is obvious.

That way, we can take a tree, re-label its nodes, and declare some of them
as irrelevant, but we cannot significantly transform its original structure. This
coincides with the intuition that a wrapper may change the presentation of
relevant information, its packaging or data model (which does not apply in the
case of Web wrapping), but does not handle substantial data transformation
tasks. We believe that this captures the essence of wrapping.

We assume unary queries in monadic second-order logic (MSO) over trees as
the expressiveness yardstick for information extraction functions. MSO over trees
is well-understood theory-wise [15,18,20,58] (see also [59]) and is quite expres-
sive. In fact, it is considered by many as the language of choice for defining
expressive node-selecting queries on trees (see e.g. [27,43,53,54]; [57] acknowl-
edges the role of MSO but argues for even stronger languages). In our experience,
when considering a wrapping system that lacks this expressive power, it is usu-
ally quite easy to find real-life wrapping problems that cannot be handled (see
also the related discussion on MSO expressiveness and node-selecting queries
in [43]).

30 G. Gottlob et al.

1

ﬁrstchi‘ly

n1)

xl‘extsibling
Te N
3
2 n3 ﬁrstchiy \\n‘extsibling
/\4 Ny Ne
Uz ns
nextsibling

Nns

(@) (b)

Fig.1. (a) An unranked tree and (b) its representation using the binary relations
“firstchild” (/) and “nextsibling” (\).

In this section, we discuss monadic Datalog over trees, a simple form of the
logic-based language Datalog, as a wrapper programming language. Monadic
Datalog satisfies desiderata (i) to (iv) raised above. Monadic Datalog is the
logical core of Elog [5], which is the internal language of the Lixto system. Elog
extends monadic Datalog by features for handling the most common tasks of
web navigation and visual wrapper-definition. Elog it strictly more expressive
than MSO. For a detailed description of Elog, which we will not further discuss
here, see [5]. For a formal study of Elog and a comparison to other wrapping
languages, see [27,28].

A monadic Datalog program can compute a set of unary queries (“infor-
mation extraction functions”) at once. Each intensional predicate of a program
selects a subset of dom and can be considered to define one information extrac-
tion function. However, in general, not all intensional predicates define informa-
tion extraction functions. Some have to be declared as auxiliary.

2.2 Tree Structures

Trees are defined in the normal way and have at least one node. We assume
that the children of each node are in some fixed order. Each node has a label
taken from a finite nonempty set of symbols X, the alphabet®. We consider
only unranked finite trees, which correspond closely to parsed HTML or XML
documents. In an unranked tree, each node may have an arbitrary number of
children. An unranked ordered tree can be considered as a structure

tur = (dom, root, leaf, (label,)qe s, firstchild, nextsibling, lastsibling)

where “dom” is the set of nodes in the tree, “root”, “leaf”, “lastsibling”, and
the “label,” relations are unary, while “firstchild” and “nextsibling” are binary.

5 In this simple model, unrestricted sets of tags as well as string and attribute values
are assumed to be encoded as lists of character symbols modeled as subtrees in our
document tree.

Logic, Languages, and Rules for Web Data Extraction 31

All relations are defined according to their intuitive meanings. “root” con-
tains exactly one node, the root node. “leaf” consists of the set of all leaves.
“firstchild(ny, n2)” is true iff ng is the leftmost child of ny; “nextsibling(ny,ns)”
is true iff, for some 4, n; and ns are the i-th and (i 4+ 1)-th children of a com-
mon parent node, respectively, counting from the left (see also Fig. 1). label,(n)
is true iff n is labeled @ in the tree. Finally, “lastsibling” contains the set of
rightmost children of nodes. (The root node is not a last sibling, as it has no
parent.) Whenever the structure ¢ may not be clear from the context, we state it
as a subscript of the relation names (as e.g. in domy, root, ...). By default, we
will always assume trees to be represented using the schema (signature) outlined
above, and will refer to them as 7.

The document order relation < is a natural total ordering of dom used in
several XML-related standards. It is defined as the order in which the opening
tags of document tree nodes are first reached when reading an HTML or XML
document (as a flat text file) from left to right.

2.3 Monadic Datalog

We assume the function-free logic programming syntax and semantics of the
Datalog language and refer to [1] for a detailed survey of Datalog. Monadic Dat-
alog [14,27] is obtained from full Datalog by requiring all intensional predicates
to be unary. By unary query, we denote a function that assigns a predicate to
some elements of dom (or, in other words, selects a subset of dom). For monadic
Datalog, one obtains a unary query by distinguishing one intensional predicate
as the query predicate. By signature, we denote the (finite) set of all extensional
predicates (with fixed arities) available to a Datalog program. By default, we
use the signature 7, for unranked trees.%

Ezxample 1. The monadic Datalog program over 7,

Italic(z) « label;(x) (1)
Ttalic(x) « Italic(xg), firstchild(zo, x) (2)
Ttalic(x) « Italic(xp), nextsibling(xg,) (3)

computes, given an unranked tree (representing an HTML parse tree), all nodes
whose contents are displayed in italic font (i.e., for which an ancestor node in the
parse tree corresponds to a well-formed piece of HTML of the form (i) ... (/%)
and is thus labeled “i”). The program uses the intentional predicate, Italic, as
the query predicate.

Monadic second-order logic (MSO) extends first-order logic by quantification
over set variables, i.e., variables ranging over sets of nodes, which coexist with

5 Note that our tree structures contain some redundancy (e.g., a leaf is a node z such
that —(Jy)firstchild(x, y)), by which (monadic) Datalog becomes as expressive as its
semipositive generalization. Semipositive Datalog allows to use the complements of
extensional relations in rule bodies.

32 G. Gottlob et al.

first-order quantification of variables ranging over single nodes. A unary MSO
query is defined by an MSO formula ¢ with one free first-order variable. Given
a tree t, it evaluates to the set of nodes {z € dom | t F ¢(z)}. The following
holds for arbitrary finite structures:

Proposition 2 (Folklore). FEach monadic Datalog query is MSO-definable.

Here, our main measure of query evaluation cost is combined complexity, i.e.
where both the database and the query (or program) are considered variable.
Later, we will also be interested in data complezity, where the query (or program)
is fixed and only the database is considered variable.

Proposition 3. (see e.g. [27]) Monadic Datalog (over arbitrary finite struc-
tures) is NP-complete w.r.t. combined complexity.

2.4 Monadic Datalog over Trees

By restricting our structures to trees, monadic Datalog acquires a number of
additional nice properties. First,

Theorem 4 [27]. Owver Ty, monadic Datalog has O(|P|-|dom|) combined com-
plexity (where |P| is the size of the program and |dom| the size of the tree).

This follows from the fact that all binary relations in 7, have bidirectional
functional dependencies; for instance, each node has at most one first child and is
the first child of at most one other node. Thus, given a program P, an equivalent
ground program can be computed in time O(|P|-|dom|), while ground programs
can be evaluated in linear time [52].

A unary query over trees is MSO-definable exactly if it is definable in monadic
Datalog.

Theorem 5 [27]. Each unary MSO-definable query over . is definable in
monadic Datalog over T,

(The other direction follows from Proposition 2.) Judging from our experience
with the Lixto system, real-world wrappers written in monadic Datalog are small.
Thus, in practice, we do not trade the complexity compared to MSO (for which
query evaluation is known to be PSPACE-complete) for considerably expanded
program sizes.

Each monadic Datalog program over trees can be efficiently rewritten into an
equivalent program using only very restricted syntax. This motivates a normal
form for monadic Datalog over trees.

Definition 6. A monadic Datalog program P over 7, is in Tree-Marking Nor-
mal Form (TMNF) if each rule of P is of one of the following three forms:

(1) p(z) < po(z),
(2) p(z) < po(zo), B(wo,z).
(3) p(x) < po(z), p1(z).

Logic, Languages, and Rules for Web Data Extraction 33

where the unary predicates pg and p; are either intensional or of 7,, and B is
either R or R™!, where R is a binary predicate from 7. a

In the next result, the signature for unranked trees may extend 7, to include
the “child” relation — likely to be the most common form of navigation in trees.

Theorem 7 [27]. For each monadic Datalog program P over Ty, U {child},
there is an equivalent TMNF program over T, which can be computed in time

O(IPl)-

From the above discussion, we conclude that monadic Datalog has the expres-
sive power of our yardstick MSO (on trees), can be evaluated efficiently, and is a
good (easy to use) wrapper programming language. Indeed, with respect to the
desiderata listed in Subsect. 2.1, we point out that:

1. The existence of the normal form TMNF demonstrates that rules in monadic
Datalog never have to be long or intricate.

2. The monotone semantics makes the wrapper programming task quite mod-
ular and intuitive. Differently from an automaton definition that usually has
to be understood entirely to be certain of its correctness, adding a rule to a
monadic Datalog program usually does not change its meaning completely,
but adds to the functionality.

3. Wrappers defined in monadic Datalog are implemented as queries, whose
definitions can be local and only need to consider as much context as required
by the query conditions. This distinguishes them from tree automata, which,
even in flavors able to define monadic queries, always recognise a language
of trees and conceptually traverse the entire input tree. This makes tree
automata more brittle in real-world wrapping scenarios, and causes them
to require a greater effort from the programmer, much of which is directed
towards accepting a large enough tree language, rather than the essence of
the wrapping task at hand.

Thus, monadic Datalog over trees as a framework for Web information extrac-
tion satisfies the first three of our desiderata stated in Subsect.2.1: efficient
evaluation, appropriate expressiveness, and suitability as a practical wrapper
programming language. Only the fourth desideratum — the visual specification
of wrappers — is not addressed here; we refer the interested reader to [6,29],
where it is clearly explained that monadic Datalog paradigm is ideally suited for
representing wrappers generated by a visual wrapper definition process using
successive restriction and generalization steps.

3 The Complexity of XPath Query Evaluation

We have seen in Theorem 4 that monadic Datalog over trees defined by unary
relations and the binary relations “firstchild”, “nextsibling”, and “lastsibling”
can be solved in time linear in the size of the program and linear in the size

34 G. Gottlob et al.

of the tree. Relations such as “child” play an important role in various query
languages on trees, such as XPath (and thus, XQuery and XSLT); there, they
are called azes.

There are two main modes of navigation in trees, horizontal and vertical.
For horizontal navigation, one can distinguish between navigating among sibling
nodes and among nodes — intuitively — further left or right in the tree (the “fol-
lowing” axis in XPath). The most natural axis relations are thus Child, Child",
Child" , Nextsibling, Neatsibling®, Nextsibling”, and Following, where

Following(x,y) := 321, 2o Child*(z1,x) A Neatsibling™ (21, z2) A Child* (22,y).

Note that if we consider complexity rather than expressiveness, we do not need
to deal with relations such as Firstchild in addition; we may assume a unary
predicate Firstsibling such that

Firstchild(x,y) < Child(z,y) N Firstsibling(y).

A natural question is to ask for the complexity of monadic Datalog programs
over these axes, or, to start with a more basic problem, conjunctive queries
(which can be seen as Datalog programs containing only a single nonrecursive
rule). Note that conjunctive queries over trees also have natural applications in
computational linguistics, term rewriting, and data integration [32].

In the case that all individual rule-bodies are acyclic (conjunctive queries),
it is known from [27] that monadic Datalog over arbitrary axes can be evaluated
in linear time. However, in data extraction, as well as in many other practical
contexts, programs with cyclic rule bodies naturally arise.

As already observed in Proposition 3, while full Datalog is EXPTIME-
complete (see, e.g., [16]), monadic Datalog over arbitrary finite structures
is in NP (actually, NP-complete). For a lower bound on trees, it is
known [49] that already Boolean conjunctive queries over structures of the form
((P;);, child, child*) are NP-hard w.r.t. combined complexity.

A detailed study of the tractability frontier of conjunctive queries over trees
is presented in [32]. As observed, the subset-maximal polynomial cases of axis
sets are

— {child™, child*},
— {child, nextsibling, nextsibling ™, nextsibling*}, and
— {following}.

That is, for each class of conjunctive queries over a subset of one of these three
sets and over unary relations, the query evaluation problem is polynomial (with
respect to combined complexity). We have the dichotomy that for all other cases
of conjunctive queries using our axis relations (e.g. Child and Child"), the prob-
lem is NP-complete. Obviously, the complexity of monadic Datalog over a given
set of axes is always the same as that of conjunctive queries over the same axes.

The special case that queries are acyclic is also worth studying, since the
probably most important node-selecting query language on trees, XPath, is nat-
urally tree-shaped. All XPath engines available in 2002 took exponential time in
the worst case to process XPath [30]. However,

Logic, Languages, and Rules for Web Data Extraction 35

Theorem 8 [30]. XPath 1 is in PTIME w.r.t. combined complexity.

This result is based on a dynamic programming algorithm which, in an
improved form [30], yielded the first XPath engine guaranteed to run in polyno-
mial time.

Most people use only the most common features of XPath, so it is worthwhile
to study restrictive fragments of this language. In [30], the Core XPath has been
introduced, the navigational fragment of XPath, which includes both horizontal
and vertical tree navigation with axes, node tests, and boolean combinations
of condition predicates. As shown there, Core XPath can be evaluated in time
linear in the size of the database and linear in the size of the query. However,

Theorem 9 [31]. Core XPath is P-hard w.r.t. combined complexity.

This property — shared by XPath, of which Core XPath is a strict fragment
— renders it highly unlikely that query evaluation is massively parallelizable (=
in the complexity class NC, c.f. [40]) or that algorithms exist that take less than
a polynomial amount of space for query processing. Interestingly, if we remove
negation in condition predicates, the complexity of Core XPath is reduced to
LOGCFL, a parallel complexity class in NCs [31].

Theorem 10 [31]. Positive Core XPath is LOGCFL-complete w.r.t. combined
complezity.

This generalizes to a very large fragment of full XPath (called pXPath),
from which besides negation only few very minor features have to be removed
to obtain that

Theorem 11 [31]. pXPath is LOGCFL-complete w.r.t. combined complezity.

Further results on the complexity of various fragments of XPath 1 can be
found in [31]. Positive Core XPath queries correspond to acyclic positive queries
over axis relations. Interestingly, each conjunctive query over axis relations can
be mapped to an equivalent acyclic positive query, however there are no poly-
nomial translations for doing this [32]. Thus,

Corollary 12. For ever conjunctive query over trees, there is an equivalent pos-
itive Core XPath query.

Of course, when talking about conjunctive queries over trees, we assume that
all binary relations in the signature are relations from our set of axes.

Finally, Core XPath queries can be mapped to monadic Datalog in linear
time. The slightly curious fact here is that this remains true in the presence
of negation in Core XPath (for which no analogous language feature exists in
Datalog.)

Theorem 13 [21]. Each Core XPath query can be translated into an equivalent
TMNF query in linear time.

36 G. Gottlob et al.

4 Datalog®: A Family of Logical Languages

It is generally agreed that Datalog is a powerful language with several different
applications. We have already discussed that the monadic fragment of Datalog
gives rise to a good wrapping language that can be used for web data extraction
purposes. Moreover, Datalog has been used as an inference engine for knowledge
processing within several software tools, and has gained popularity in the context
of, e.g., source code querying and program analysis, and modeling distributed
systems.

Although Datalog is a powerful rule-based formalism, it is not able to infer
the existence of new objects that are not already in the extensional database.
For a number of applications, however, it would be desirable that a Datalog
extension could be able to express the existence of certain values that are not
necessarily from the domain of the extensional database. This can be achieved
by allowing existentially quantified variables in rule heads. Let us give a couple
of brief examples of such applications.

Data Exchange. When data needs to be transposed or copied from one rela-
tional database to another one, the problem of heterogeneous schemas often
arises. Imagine, for example, company ACME stores data about their employ-
ees in a relation EmpACME with schema (Emp#, Name, Address, Salary), while
the FOO corporation does not store employees’ addresses, but only phone
numbers, keeping their employee data in a relation EmpFOO having schema
(Emp#, Name, Phone, Salary). Imagine ACME is acquired by FOO and the
ACME employee data ought to be transferred into the FOO database, although
the phone numbers of the ACME employees are not (currently) known. This
could be achieved by a rule of the form:

EmpACME(e, n,a,s) — Ip EmpFOO(e,n, p,),

where phone numbers are simply existentially quantified. In practice, each phone
number is stored by a different (labeled) null value, representing a globally exis-
tentially quantified variable (i.e., a kind of Skolem constant). Advanced data
management systems such as Clio [51] have been developed, that effectively man-
age data-exchange mappings, handle existential nulls, and allow one to query
relations with nulls. In database theory, a rule of the above form is actually
called a tuple-generating dependency (TGD), while in the KR community is
known as existential rule; henceforth, we adopt the term TGD. In addition to
TGDs, equality-generating dependencies (EGDs) are often used. They cover the
well-known key constraints and functional dependencies that have been studied
for a long time [1]. For example, we may impose that every ACME employee has
only one phone number stored. This may be expressed as a Datalog rule with
an equality in the head:

EmpFOO(e, n, p, s), EmpFOO(e,n’,p’,s") - p=17p'.

The data exchange literature insists on finite target relations because it is
assumed that these relations are actually stored. It is thus important in this

Logic, Languages, and Rules for Web Data Extraction 37

context to restrict our syntax to make sure that only a finite number of different
null values will be invented.

Ontology Querying. Description logics (DLs) [3] are used to formalize so-called
ontological knowledge about relationships between objects, entities, and classes
in a certain application domain. For example, we could express that every per-
son has exactly one father who, moreover, is himself a person, by the following
DL clauses, where Person is a set of objects whose initial value is specified in
the form of an extensional relation, called concept, and where HasFather is a
binary relation, a so-called role in DL terminology: (i) Person C JHasFather,
(i) FHasFather™ C Person, (i) (funct HasFather). In an appropriate extension
of Datalog, the same can be expressed as:

Person(x) — Jy HasFather(z, y),
HasFather(z,y) — Person(y),
HasFather(z,y), HasFather(z,y') — y = v/

Note that here the relation Person, which is supplied in the input with an ini-
tial value, is actually modified. Therefore, we no longer require (as in standard
Datalog) that extensional relation symbols cannot occur in rule heads.

DLs usually rely on classical first-order (FO) semantics, and so arbitrary
models (finite or infinite) are considered. In the above example, models with
infinite chains of ancestors are perfectly legal. Rather than “materializing” such
models, i.e., computing and storing them, we are interested in reasoning and
query answering. For example, whenever the initial value of Person is nonempty,
then the Boolean conjunctive query

JxIy3z (HasFather(z, y) A HasFather(y, 2))
will evaluate to true, while the query
Jxdy (HasFather(z, y) A HasFather(y, x))

will evaluate to false, because it is false in some models.

To sum up, as we have briefly tried to sketch, some applications as the
ones discussed above could possibly profit from appropriate forms of Datalog
extended by the possibility of using rules with existential quantifiers in their
heads (TGDs), and by several additional features (such as, for example, equal-
ity, negation, disjunction, etc.).

Unfortunately, already for sets X of TGDs alone, most basic reasoning and
query answering problems are undecidable. In particular, checking whether a
Boolean conjunctive query evaluates to true w.r.t. a database D and a set X
of TGDs is undecidable [7]. Worse than that, undecidability holds even in case
both X' and ¢ are fized, and only D is given as input [8]. It is thus important to
single out large classes of formalisms for rule sets X' that

(i) are based on Datalog, and thus enable a modular rule-based style of knowl-
edge representation,

38 G. Gottlob et al.

(ii) are syntactical fragments of first-order logic so that answering a Boolean
query g under Y for an input database D is equivalent to the classical
entailment check D A X |= ¢,

(iii) are expressive enough for being useful in real applications in the above
mentioned areas,

(iv) have decidable query answering, and

(v) have good query answering complexity properties in case X and ¢ are fixed.
This type of complexity is called data complerity, and is an important
measure, because we can realistically assume that the extensional database
D is the only really large object in the input.

In what follows we report on languages that fulfill these criteria. We dubbed
the family of such languages Datalog®, because, as already explained, they add
features to Datalog, and on the other hand make some syntactic restrictions in
order to fulfill desiderata (iv) and (v). In the rest of the paper, we focus on the
key feature of existential quantification, or, in other words, on languages that
are based on TGDs.

4.1 Acyclicity

Recall that for data exchange purposes, it is important to ensure that the target
instance is finite since it is actually stored. However, executing an arbitrary set
of TGDs on an input database, in general, we are forced to build an infinite
instance due to the presence of the existentially quantified variables. Consider,
for example, the set X' of TGDs:

Person(z) — JyHasFather(z,y) HasFather(z,y) — Person(y),

which states that each person has a father who is also a person. Assuming now
that the input database is D = {Person(Bob)}, stating that Bob is a person,
after executing X' on D we obtain an infinite instance. Indeed, from the first TGD
we conclude that the atom HasFather(Bob, z1) holds, where z; is a (labeled) null
value, while from the second TGD we obtain that Person(z;) holds. But then
we can infer that also the atoms HasFather(z1, z2) and Person(z3) hold, where
zo is a fresh labeled null value, and it is apparent that this inference process
is infinite. The inference algorithm that we have just described is known in the
literature as the chase procedure (or simply chase) [1].

It is clear that a TGD-based language is suitable for data exchange purposes
if, in addition to the desiderata (i)—(v) discussed above, ensures the termina-
tion of the chase. Several languages with this property have been proposed; see,
e.g., [17,19,39,48]. The general idea underlying all these languages is to pose an
acyclicity condition on a graph that encodes how terms are propagated during
the execution of the chase procedure. The two most basic formalisms in this
family of languages are the classes of acyclic (a.k.a. non-recursive) and weakly-
acyclic sets of TGDs.

Logic, Languages, and Rules for Web Data Extraction 39

Acyclic Sets of TGDs. The definition of this class relies on the notion of the
predicate (dependency) graph, which encodes how predicates depend to each
other. More precisely, the predicate graph of a set X' of TGDs is a directed graph
G = (V,E), where V consists of all the relation symbols in X, and E is defined
as follows: for each ¢ € X, for each relation R in the body of o, and for each
relation P in the head of 0,” (R, P) € E; no other edges occur in E. We say that
X is acyclic if G is acyclic.

It is not difficult to see that the chase always terminates under acyclic sets
of TGDs. This immediately implies the decidability of our main reasoning task,
that is, query answering. Given a Boolean conjunctive query ¢, to decide whether
a database D and an acyclic set X of TGDs entails ¢, we simply need to compute
the chase instance C w.r.t. D and Y, and then check whether C satisfies q. We
know that:

Theorem 14 [47]. Query answering under acyclic sets of TGDs is in AC
w.r.t. data complezity, and NEXPTIME-complete w.r.t. combined complexity.®

Notice that to explicitly compute the chase under acyclic sets of TGDs takes
polynomial time in the size of the database. Thus, to obtain the ACy upper
bound w.r.t. the data complexity, we need a more refined approach. This is done
by unfolding the given set of TGDs (using a resolution-based procedure [34]) in
order to construct a (finite) union of conjunctive queries, which is then evaluated
over the input database. This allows us to conclude the ACy upper bound stated
in the above theorem.

Weakly-Acyclic Sets of TGDs. 1t is clear that acyclic sets of TGDs do not cap-
ture plain Datalog. Nevertheless, an acyclicity-based class exists, called weakly-
acyclic sets of TGDs, that captures both acyclic sets of TGDs and Datalog.
This formalism has been proposed as the main language for data exchange pur-
poses [19]. Weak-acyclicity relies on a slightly more involved graph notion, called
position (dependency) graph, which encodes how terms are propagated from one
position to another during the chase. Instead of giving the rather long definition,
let us explain the key idea via a simple example.

R[1]-—""*R[2]
A1 m2]

Fig. 2. Position graph.

" For a TGD of the form b — h, b is called the body, while h is called the head.
8 Here, the data complexity is calculated by fixing the set of TGDs and the query,
while in the combined complexity we assume that everything is part of the input.

40 G. Gottlob et al.

Example 15. Consider the set X consisting of the TGDs
R(z,y) —» FzR(x,2) R(z,y) = P(z,y).

The position graph of X' is shown in Fig. 2. We have an edge from R[1] to itself
since in the first TGD the variable z is propagated from the first position of the
relation R in the body to the first position of the relation R in the head. Now,
observe that at the same time, during the execution of the chase, a null value
will be generated at the second position of R; this is encoded by the dashed
edge, called special, from R[1] to R[2]. The other two (normal) edges are present
due to the second TGD.

A normal edge (7, 7’) keeps track of the fact that a term may propagate
from 7 to «’ during the chase. A special edge (m,7") keeps track of the fact
that propagation of a value from 7 to 7’ also creates a new value at position 7”’.
Thus, if there is a cycle in the dependency graph that goes via a special edge,
then it is likely that the generation of a null value at certain position will cause
the generation of some other null value at the same position, and thus the chase
is infinite. A set X' of TGDs is weakly-acyclic if there is no cycle in its position
graph that involves a special edge. We know that:

Theorem 16 [12,47]. Query answering under weakly-acyclic sets of TGDs 1is
PTIME-complete w.r.t. data complexity, and 2EXPTIME-complete w.r.t. com-
bined complexity.

The upper bounds are shown by simply constructing the chase instance C,
and then evaluate the input query over C. Notice that the PTIME-hardness is
immediately inherited from the fact that weakly-acyclic sets of TGDs capture
plain Datalog.

4.2 Guardedness

Although (weakly-)acyclic sets of TGDs are good languages for data exchange,
they are not suitable for modeling ontological knowledge. Even the very simple
knowledge that each person has a father who is also a person goes beyond weakly-
acyclic sets of TGDs. Thus, we need classes of TGDs that do not guarantee the
termination of the chase, but still query answering is decidable. In other words,
we need languages that allow us to develop methods for reasoning about infinite
models without explicitly building them.

Guarded TGDs. A prime example of such a formalism is the class of guarded
TGDs, inspired by the guarded-fragment of first-order logic. A TGD is called
guarded it has an atom in its body that contains all the body-variables [8].
The reason why we can answer queries under guarded TGDs, even if the chase
procedure is infinite, is because the chase instance is tree-like, or, in more formal
terms, has bounded tree-width. We know that:

Logic, Languages, and Rules for Web Data Extraction 41

Theorem 17 [8]. Query answering under guarded TGDs is PTIME-complete
w.r.t. data complexity, and 2EXPTIME-complete w.r.t. combined complezity.

A core fragment of guarded TGDs, which, despite its simplicity, captures
features of the most widespread tractable description logics such as DL-Lite,
is the class of linear TGDs. A TGD is called linear if it has only one atom in
its body [9]. As expected, this allows us to show that the complexity of query
answering is lower:

Theorem 18 [9,41]. Query answering under linear TGDs is in ACy w.r.t. data
complezity, and PSPACE-complete w.r.t. combined complezity.

Interestingly, under some fairly weak assumptions, queries to be evaluated
under linear TGDs (or corresponding DLs) can be translated into polynomially-
sized Datalog programs, or even polynomially-sized first-order formulas to be
evaluated directly over input databases. This is discussed in detail in [25,33,38].

Weakly-Guarded Sets of TGDs. As for acyclic sets of TGDs, we can define
a weak version of guarded TGDs, called weakly-guarded, that captures both
guarded TGDs and plain Datalog [8]. The key idea is to relax guardedness in
such a way that a variable x in the body can be unguarded as long as, during
the construction of the chase, x is unified only by constants that already appear
in the input database. This seemingly mild relaxation gives rise to a highly
expressive language. We know that:

Theorem 19 [8]. Query answering under weakly-guarded sets of TGDs
1s EXPTIME-complete w.r.t. data complexity, and 2FEXPTIME-complete
w.r.t. combined complexity.

It is interesting, and somehow surprising, that query answering under this
class of TGDs is provably intractable even w.r.t. the data complexity. What is
even more interesting is the fact that by allowing negation of a very mild form, in
particular, stratified negation, weakly-guarded sets of TGDs are powerful enough
to capture every database property that can be checked in exponential time, even
without assuming an order in the input database. In other words, every Boolean
query @ that can be evaluated in exponential time in data complexity, it can be
expressed as a pair (X, Ans), where X is a weakly-guarded set of TGDs and Ans
a 0-ary relation, such that the following holds: D satisfies @ iff D and X entails
the atomic query Ans, for every database D.

Theorem 20 [37]. Weakly-guarded sets of TGDs with stratified negation capture
EXPTIME, even without assuming ordered databases.
4.3 Stickiness

Although guardedness is a well-accepted decidability paradigm, with desirable
model-theoretic and complexity properties, it is not powerful enough for cap-

42 G. Gottlob et al.

R(z,y), Ay,z) — Fw T(z,y,w) R(z,y), Ry,z) — Fw T(z,y,w)

T(z,y,2) — Jw S(y,w) Nz,y,2) — Jw S(x,w)
Lt I

@
(b)

R(z,y), P(y,2) = Fw T{x,y,w)
Mz,y,2) — Jw S(z,w)
Fig. 3. Stickiness and marking.

turing knowledge that is inherently non-tree-like. Consider, for example, the
following TGDs:

Elephant(x) — Jy HasAncestor(z, y), Elephant(y),
Mouse(z) — Jy HasAncestor(z, y), Mouse(y),
Elephant(x), Mouse(y) — BiggerThan(z, y),

which essentially state that elephants are bigger than mice. It is clear that the
first two TGDs are guarded (in fact, linear). However, the third TGD, although
it looks simple and harmless, destroys the tree-likeness of the chase instance.
Indeed, due to the first two TGDs, the chase will invent infinitely many null
values that represent elephants and mice; let E and M be the sets of null values
that represent elephants and mice, respectively. Then, the third TGD, will force
the chase to compute the cartesian product of E and M, and store it in the
binary relation BiggerThan. Therefore, the extension of BiggerThan in the chase
instance C stores an infinite bipartite graph, which in turn implies that the tree-
width of C is infinite. This immediately implies that the above set of TGDs
cannot be rewritten as a set of guarded TGDs.

Sticky Sets of TGDs. The class of sticky sets of TGDs, introduced in [12], is
a formalism that allows us to capture non-tree-like knowledge as the one cap-
tured by the above example. The key property of stickiness can be described
as follows: during the chase, terms that are unified with variables that appear
more than once in the body of a TGD (i.e., join variables) are always propagated
(or “stick”) to the inferred atoms. This is illustrated in Fig.3(a); the first set
of TGDs is sticky, while the second is not. The formal definition is based on
an inductive marking procedure that marks the variables that may violate the
semantic property of the chase described above. Roughly, during the base step
of this procedure, a variable that appears in the body of a TGD ¢ but not in the
head-atom of ¢ is marked. Then, the marking is inductively propagated from
head to body as shown in Fig.3(b). Finally, a finite set of TGDs X is sticky if
no TGD in X contains two occurrences of a marked variable. We know that:

Logic, Languages, and Rules for Web Data Extraction 43

Theorem 21 [12]. Query answering under sticky sets of TGDs is in AC
w.r.t. data complexity, and EXPTIME-complete w.r.t. combined complexity.

Weakly-Sticky Sets of TGDs. As one might expect, a weak version of stickiness,
which captures both sticky sets of TGDs and plain Datalog, can be defined.
The principle under this more expressive language is the same as for weakly-
acyclic and weakly-guarded sets of TGDs. Intuitively, we can relax the stickiness
condition in such a way that variables that can be unified with finitely many
null values during the construction of the chase are not taken into account. It is
known that:

Theorem 22 [12]. Query answering under weakly-sticky sets of TGDs is
PTIME- complete w.r.t. data complezity, and 2EXPTIME-complete w.r.t. com-
bined complexity.

4.4 Further Applications

As already discussed at the beginning of the section, data exchange and onto-
logical reasoning, are applications that could possibly profit from Datalog® lan-
guages that extend Datalog with existential quantifiers in rule heads. Let us con-
clude by briefly describing other applications that could profit from languages
as the ones discussed above.

RDF and Semantic Web. Various ‘“‘classical” query languages for RDF and the
semantic Web are discussed in [24]. One of the distinctive features of Semantic
Web data is the existence of vocabularies with predefined semantics: the RDF
Schema (RDFS)? and the Ontology Web Language (OWL)'°, which can be used
to derive logical conclusions from RDF graphs. Thus, it would be desirable to
have an RDF query language equipped with reasoning capabilities to deal with
these vocabularies. Besides, it has also been recognised that navigational capa-
bilities are of fundamental importance for data models with an explicit graph
structure such as RDF, and, more generally, it is also agreed that a general form
of recursion is a central feature for a graph query language. Thus, it would also be
desirable to have an RDF query language with such functionalities. We strongly
believe that Datalog® languages are well-suited for this purpose. In fact, steps
towards this direction have been already made in the recent works [2,36].

Conceptual Modeling. It has been observed that graphical conceptual modeling
formalisms, and in particular UML and ER diagrams, can be faithfully trans-
lated into TGDs and EGDs. In fact, core fragments of the above formalisms can
be captured via guarded TGDs (with some additional features such as equal-
ity) [11,35]. This is quite beneficial since it provides logical semantics to the
above formalism, which in turn allows us to formally study relevant problems
such as consistency, i.e., whether a given diagram admits at least one model.

9 http://www.w3.org/TR/rdf-schema.
10 http://www.w3.org/TR/owl-features,.

http://www.w3.org/TR/rdf-schema
http://www.w3.org/TR/owl-features/

44 G. Gottlob et al.

Object-Oriented Deductive Databases. It has been shown that formalisms intro-
duced for object-oriented databases can be embedded into Datalog®, which in
turn allows us to exploit existing query answering algorithms. For example, F-
Logic Lite, introduced in [13], is a small but expressive subset of F-Logic [42]
that can be captured by weakly-guarded sets of TGDs [8].

Ontology-Based Multidimensional Contexts. Data quality assessment and data
cleaning are context dependent activities, and thus, context models for the assess-
ment of the quality of a database have been proposed. A context takes the form of
a possibly virtual database or a data integration system into which the database
under assessment is mapped, for additional analysis, processing, and quality
data extraction. The work [50] extends contexts with dimensions, and hence,
multidimensional data quality assessment becomes possible. At the core of mul-
tidimensional contexts we have ontologies that are modeled using Datalog™®, and,
in particular, weakly-sticky sets of TGDs.

Acknowledgements. This work has been supported by the EPSRC Programme
Grant EP/M025268/ “VADA: Value Added Data Systems — Principles and Archi-
tecture”.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Arenas, M., Gottlob, G., Pieris, A.: Expressive languages for querying the semantic
web. In: PODS, pp. 14-26 (2014)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press, Cambridge (2003)

4. Baumgartner, R., Flesca, S., Gottlob, G.: Declarative information extraction, web
crawling, and recursive wrapping with Lizto. In: Eiter, T., Faber, W., Truszczynski,
M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 21-41. Springer, Heidelberg
(2001). doi:10.1007/3-540-45402-0_2

5. Baumgartner, R., Flesca, S., Gottlob, G.: The elog web extraction language. In:
Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp.
548-560. Springer, Heidelberg (2001). doi:10.1007/3-540-45653-8_38

6. Baumgartner, R., Flesca, S., Gottlob, G.: Visual web information extraction with
lixto. In: VLDB, pp. 119-128 (2001)

7. Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even,
S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73-85. Springer, Heidelberg
(1981). doi:10.1007/3-540-10843-2_7

8. Cali, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under
expressive relational constraints. J. Artif. Intell. Res. 48, 115-174 (2013)

9. Cali, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for
tractable query answering over ontologies. J. Web Sem. 14, 57-83 (2012)

10. Cali, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: a fam-
ily of logical knowledge representation and query languages for new applications.
In: LICS, pp. 228-242 (2010)

http://dx.doi.org/10.1007/3-540-45402-0_2
http://dx.doi.org/10.1007/3-540-45653-8_38
http://dx.doi.org/10.1007/3-540-10843-2_7

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Logic, Languages, and Rules for Web Data Extraction 45

Cali, A., Gottlob, G., Pieris, A.: Ontological query answering under expressive
entity-relationship schemata. Inf. Syst. 37(4), 320-335 (2012)

Cali, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: the
query answering problem. Artif. Intell. 193, 87-128 (2012)

Cali, A., Kifer, M.: Containment of conjunctive object meta-queries. In: VLDB,
pp. 942-952 (2006)

Cosmadakis, S.S., Gaifman, H., Kanellakis, P.C., Vardi, M.Y.: Decidable opti-
mization problems for database logic programs (preliminary report). In: STOC,
pp. 477-490 (1988)

Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: van Leeuwen,
J. (ed.) Handbook of Theoretical Computer Science, vol. 2, chap. 5, pp. 193-242.
Elsevier Science Publishers B.V. (1990)

Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374-425 (2001)

Deutsch, A., Tannen, V.: Reformulation of XML queries and constraints. In: Cal-
vanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp.
225-241. Springer, Heidelberg (2003). doi:10.1007/3-540-36285-1_15

Doner, J.: Tree acceptors and some of their applications. J. Comput. Syst. Sci.
4(5), 406-451 (1970)

Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theor. Comput. Sci. 336(1), 89-124 (2005)

Flum, J., Frick, M., Grohe, M.: Query evaluation via tree-decompositions. In: Buss-
che, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 22-38. Springer, Hei-
delberg (2001). doi:10.1007/3-540-44503-X_2

Frick, M., Grohe, M., Koch, C.: Query evaluation on compressed trees. In: LICS,
pp- 22-25 (2003)

Furche, T., Gottlob, G., Grasso, G., Guo, X., Orsi, G., Schallhart, C., Wang, C.:
DIADEM: thousands of websites to a single database. PVLDB 7(14), 1845-1856
(2014)

Furche, T., Gottlob, G., Libkin, L., Orsi, G., Paton, N.W.: Data wrangling for big
data: challenges and opportunities. In: EDBT, pp. 473-478 (2016)

Furche, T., Linse, B., Bry, F., Plexousakis, D., Gottlob, G.: RDF querying: lan-
guage constructs and evaluation methods compared. In: Barahona, P., Bry, F.,
Franconi, E., Henze, N., Sattler, U. (eds.) Reasoning Web 2006. LNCS, vol. 4126,
pp. 1-52. Springer, Heidelberg (2006). doi:10.1007/11837787_1

Gottlob, G., Kikot, S., Kontchakov, R., Podolskii, V.V., Schwentick, T.,
Zakharyaschev, M.: The price of query rewriting in ontology-based data access.
Artif. Intell. 213, 42-59 (2014)

Gottlob, G., Koch, C.: Monadic queries over tree-structured data. In: LICS, pp.
189-202 (2002)

Gottlob, G., Koch, C.: Monadic datalog and the expressive power of languages for
web information extraction. J. ACM 51(1), 74-113 (2004)

Gottlob, G., Koch, C.: A formal comparison of visual web wrapper generators.
In: Wiedermann, J., Tel, G., Pokorny, J., Bielikovd, M., Stuller, J. (eds.) SOF-
SEM 2006. LNCS, vol. 3831, pp. 30-48. Springer, Heidelberg (2006). doi:10.1007/
11611257_3

Gottlob, G., Koch, C., Baumgartner, R., Herzog, M., Flesca, S.: The Lixto data
extraction project: back and forth between theory and practice. In: PODS, pp.
1-12 (2004)

Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath
queries. In: VLDB, pp. 95-106 (2002)

http://dx.doi.org/10.1007/3-540-36285-1_15
http://dx.doi.org/10.1007/3-540-44503-X_2
http://dx.doi.org/10.1007/11837787_1
http://dx.doi.org/10.1007/11611257_3
http://dx.doi.org/10.1007/11611257_3

46

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

G. Gottlob et al.

Gottlob, G., Koch, C., Pichler, R.: The complexity of XPath query evaluation. In:
PODS, pp. 179-190 (2003)

Gottlob, G., Koch, C., Schulz, K.U.: Conjunctive queries over trees. In: PODS, pp.
189-200 (2004)

Gottlob, G., Manna, M., Pieris, A.: Polynomial rewritings for linear existential
rules. In: IJCAI, pp. 2992-2998 (2015)

Gottlob, G., Orsi, G., Pieris, A.: Query rewriting and optimization for ontological
databases. ACM Trans. Database Syst. 39(3), 25:1-25:46 (2014)

Gottlob, G., Orsi, G., Pieris, A.: Consistency checking of re-engineered UML class
diagrams via Datalog+/-. In: RuleML, pp. 35-53 (2015)

Gottlob, G., Pieris, A.: Beyond SPARQL under OWL 2 QL entailment regime:
rules to the rescue. In: IJCAI, pp. 2999-3007 (2015)

Gottlob, G., Rudolph, S., Simkus, M.: Expressiveness of guarded existential rule
languages. In: PODS, pp. 27-38 (2014)

Gottlob, G., Schwentick, T.: Rewriting ontological queries into small nonrecursive
datalog programs. In: KR (2012)

Grau, B.C., Horrocks, I., Krotzsch, M., Kupke, C., Magka, D., Motik, B., Wang,
Z.: Acyclicity conditions and their application to query answering in description
logics. In: KR (2012)

Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation: P-
Completeness Theory. Oxford University Press, Oxford (1995)

Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under func-
tional and inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167-189 (1984)
Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. J. ACM 42, 741-843 (1995)

Koch, C.: Efficient processing of expressive node-selecting queries on XML data in
secondary storage: a tree automata-based approach. In: VLDB, pp. 249-260 (2003)
Laender, A.H.F., Ribeiro-Neto, B.A., da Silva, A.S.: Debye - data extraction by
example. Data Knowl. Eng. 40(2), 121-154 (2002)

Liu, L., Pu, C., Han, W.: XWRAP: An XML-enabled wrapper construction system
for web information sources. In: ICDE, pp. 611-621 (2000)

Ludascher, B., Himmeroder, R., Lausen, G., May, W., Schlepphorst, C.: Managing
semistructured data with FLORID: a deductive object-oriented perspective. Inf.
Syst. 23(8), 589-613 (1998)

Lukasiewicz, T., Martinez, M.V., Pieris, A., Simari, G.I.: From classical to consis-
tent query answering under existential rules. In: AAAI, pp. 1546-1552 (2015)
Marnette, B.: Generalized schema-mappings: from termination to tractability. In:
PODS, pp. 13-22 (2009)

Meuss, H., Schulz, K.U., Bry, F.: Towards aggregated answers for semistructured
data. In: Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 346-360.
Springer, Heidelberg (2001). doi:10.1007/3-540-44503-X_22

Milani, M., Bertossi, L.: Ontology-based multidimensional contexts with appli-
cations to quality data specification and extraction. In: Bassiliades, N., Gottlob,
G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp.
277-293. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21542-6_18

Miller, R.J., Herndndez, M.A., Haas, L.M., Yan, L., Ho, C.T.H., Fagin, R., Popa,
L.: The clio project: managing heterogeneity. SIGMOD Rec. 30(1), 78-83 (2001)
Minoux, M.: LTUR: a simplified linear-time unit resolution algorithm for horn
formulae and computer implementation. Inf. Process. Lett. 29(1), 1-12 (1988)
Neven, F., den Bussche, J.V.: Expressiveness of structured document query lan-
guages based on attribute grammars. J. ACM 49(1), 56-100 (2002)

http://dx.doi.org/10.1007/3-540-44503-X_22
http://dx.doi.org/10.1007/978-3-319-21542-6_18

54.

55.

56.

57.

58.

59.

Logic, Languages, and Rules for Web Data Extraction 47

Neven, F., Schwentick, T.: Query automata over finite trees. Theor. Comput. Sci.
275(1-2), 633-674 (2002)

Papakonstantinou, Y., Gupta, A., Garcia-Molina, H., Ullman, J.: A query trans-
lation scheme for rapid implementation of wrappers. In: Ling, T.W., Mendelzon,
A.O., Vieille, L. (eds.) DOOD 1995. LNCS, vol. 1013, pp. 161-186. Springer, Hei-
delberg (1995). doi:10.1007/3-540-60608-4_40

Sahuguet, A., Azavant, F.: Building intelligent web applications using lightweight
wrappers. Data Knowl. Eng. 36(3), 283-316 (2001)

Seidl, H., Schwentick, T., Muscholl, A.: Numerical document queries. In: PODS,
pp. 155-166 (2003)

Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an applica-
tion to a decision problem of second-order logic. Math. Syst. Theory 2(1), 57-81
(1968)

Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, vol. 3, pp. 389-455. Springer, Heidelberg
(1997). Chapter 7

http://dx.doi.org/10.1007/3-540-60608-4_40

2 Springer
http://www.springer.com/978-3-319-53732-0

Language and Automata Theory and Applications
11th International Conference, LATA 2017, Umes,
Sweden, March 6-9, 2017, Proceedings

Drewes, F.; Martin-vide, C.; Truthe, B. (Eds.)
2017, XX, 462 p. 59 illus., Softcover

ISBN: 978-3-319-53732-0

	Logic, Languages, and Rules for Web Data Extraction and Reasoning over Data
	1 Introduction
	2 Logical Foundations of Web Data Extraction
	2.1 Desiderata for Wrapping Languages
	2.2 Tree Structures
	2.3 Monadic Datalog
	2.4 Monadic Datalog over Trees

	3 The Complexity of XPath Query Evaluation
	4 Datalog: A Family of Logical Languages
	4.1 Acyclicity
	4.2 Guardedness
	4.3 Stickiness
	4.4 Further Applications

	References

