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Abstract Benchmarking methods, such as DEA (Data Envelopment Analysis), are
used to compare a set of entities regarding their efficiency in a given process. The
structure of the DEA method does not take random disturbances into consideration
when estimating the efficiency of each entity. In most scenarios, this characteristic
does not reflect the reality of the problem, since practically the entire process is
subject to external disturbances. Using regression methods, it is possible to generate
confidence intervals for DEA-estimated efficiency, considering the model’s inputs
and outputs as independent variables. With this, the conclusions and subsequent
actions based on the returned results are more robust, and begin to contemplate, in a
certain manner, random disturbances suffered by the companies.
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1 Introduction

Benchmarking is a method used to compare the performance (according to a given
metric) of a certain entity, as schools or hospitals, using a reference or benchmark.
It is widely used to measure the efficiency of a set of firms or DMUs
(Decision-Making Units), as they are generally known in the literature. Given a set
of firms with multiple inputs and outputs, a benchmarking method allows to
measure the relative performance of the firms through the generation of a curve
(frontier) of efficient firms which are obtained by the combination of the providing
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firms. The performance can be measured in terms of the entity productivity or its
cost efficiency of inputs to produce outputs.

As observed by Molinero and Woracker [1], benchmarking techniques are
especially interesting for organizations that work with inputs or outputs that cannot
be monetized. An example of application in this situation can be found in Lorenzett
et al. [2], comparing the efficiency of a set of operational units from a network of
not-for-profit secondary level professional schools. In this particular example
the inputs considered where the total investment and total money transfer of
the industry to the school unit. As outputs, the overall performance, the
self-sustentation percentual, the client satisfaction index, the product quality index
and the quality of management index were considered.

The two main techniques used in benchmarking are the DEA [1] and SFA
(Stochastic Frontier Analysis) [3]. The first uses a nonparametric and deterministic
structure and the second uses a parametric and stochastic structure. When choosing
between a parametric or nonparametric model, one should consider that nonpara-
metric models are more flexible, given that they adapt to the patterns of the data
instead of a predefined one. On the other hand, if the chosen model structure is well
suited to the underlying nature of the data, the parametric model is expected to give
better results. Regarding random effects in the process, stochastic models deal with
the errors that are naturally expected in any dataset, either result of measure-related
problems or of factors that cannot be measured. One can, thus, test the need to
include the error term in the model, and if it is not significant, can opt for a
deterministic model.

DEA is based on the solution of linear programming problem to compute the
production frontier under which the companies work. This linear problem considers
the efficiency as ratio of the outputs produced by the firm and the inputs used in the
process. A deficiency of this method is that it does not take random noises into
consideration when computing the frontier—consequently, estimates are interpreted
deterministically. It is expected that most processes executed by the evaluated
companies suffer random disturbances, and not taking this effect into consideration
can compromise the efficiency of one or more DMUs assessed in the model.

One way of considering random fluctuations in DEA model results is to estimate
confidence intervals for the computed efficiencies. In general, this is accomplished
by means of a method known as bootstrapping, which consist of resampling the
data with replacement to assess the distribution of a given set of estimators. As
presented by Bogetoft and Otto [4], there are several alternative approaches to
define this procedure. One form of calculating the confidence intervals described by
Souza et al. [5], which can be applied to a DEA model with a single product, uses a
regression model for this product as a response variable to estimate a confidence
interval for the efficiencies. As observed by the author themselves, the literature for
multiple product cases is not clear.

The scope of the present study is to build confidence intervals for efficiencies
based on regression models trained, considering efficiency a dependent variable,
inputs and outputs as independent variables and using DEA-estimated efficiencies
as ground-truth to train the regressions. Based on the predicted models, confidence
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intervals will be estimated for the efficiency of every DMU and compared with the
results of those produced using the bootstrapping method.

2 Methods

Since efficiency can be considered in the interval [0, 1], to estimate confidence
intervals it is possible to use the beta regression model proposed by Cribari-Neto
and Zeileis [6] or a combination of beta regression models, as described by Griin
et al. [7].

Another option is the normal linear regression models. They are adequate for this
purpose, as Bogetoft and Otto [4] points out, since they assume that the set of real
numbers is the domain of the dependent variable. The Tobit model is an alternative
model that presumes normally distributed disturbances, as described in Amemiya
[8], and allows variables with lower or upper limits to be modeled in its real
domain.

However, these techniques are essentially parametric, in contrast to the DEA
method, making it difficult to define an adequate model for the relation between
efficiency, inputs and outputs. Therefore, we adopted here nonparametric regression
models, for which there is no need to define the relationship between the inde-
pendent and dependent variables. The estimation methods for this type of regres-
sion and other subjects, such as selecting the band matrix, are discussed in Fox [9].

In this work, we built and estimated DEA models using a Variable Return to
Scale (VRS) efficiency frontier (also known as BCC model), as defined by Banker,
Charnes, and Cooper [10]. We will not present in this paper the linear programming
problem associated to DEA, used to compute DMU efficiency. Bogetoft [4] pro-
vided the needed theoretical foundation, using the free R Benchmarking package'
to apply the methodology.

We followed the studies presented by Nadaraya [11] to estimate the nonpara-
metric regressions used to model the DMUs. If ef; is the calculated efficiency for the
i-th DMU and Z; the vector resulting from the concatenation of inputs X; and
outputs Y; related to the i-th DMU, then the proposed regression model is described
as

efi=g(Z) +ei;, (1)

where ¢; follows a distribution with E(g;|Z;) =0 and, thus, E(ef;|Z;) = g(Z;). Unlike
parametric regression models, such as the Normal multivariate or beta models, no
assumption about g(Z;) is needed to estimate the model, making this approach more
flexible. Normal multivariate regression would assume g(Z;) =Xp, where X is a
matrix—usually nonrandom—containing the observations of the prediction

"https://cran.r-project.org/web/packages/Benchmarking/index.html.
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variables, and P is a weight vector. Furthermore, it would be assumed that €; follows
a normal, independent, and homoscedastic distribution. In this case, it is possible to
estimate models robust to violation of the residual assumptions, although the
relation between the response variable and the predictive variables must be
described parametrically.

As a regression model for g(Z;), we used the nonparametric estimator known as
Nadaraya-Watson, which is defined by

3 Kilz=3)ef
§h(2)=n—’ 2)
; (Z ZJ)

for any kernel Kj(x), with size n of the estimation sample, a nonrandom z vector and
the i bandwidth used for estimation.

The kernel function must assume real nonnegative values and be an integrable
symmetric function near zero. Furthermore, to ensure the estimated functions are
probability distributions, the integral in R must be equal to one. The kernel pro-
posed by Epanechnikov [12], named after its author, presents the best performance
when the evaluated criteria is the average squared error [13]. However, we adopted
in the current work the Gaussian kernel, as it is widely used since its estimations are
only insignificantly less accurate compared to the Epanechnikov kernel, as proven
by Wand and Jones [14], and features convenient mathematical properties.

The Gaussian kernel is defined as

K(u)= —=e™", 3)

and receives this name because it is based on normal distribution. As for the
multivariate case, it is common to accept the product of the marginal kernels in
Eq. 2.

The & defines the weight given to each observation for the regression estimate at
point z, according to its proximity to z. By choosing a small band, only points
closest to z will have any impact on the estimate, while at the other extreme, when
using a large band, all observations will have an impact on the estimate. Small
values for h are associated with more accurate estimates, while larger values lead to
less variable estimates. The band should consider a trade-off between these two
equally important characteristics.

This effect can be seen in Fig. 1, which shows the estimate for simulated data
density originating from a bimodal normal distribution with an averages —2 and 2.
It is clear that the higher band value was unable to properly capture the two true
distribution averages, and the lower band value leads to the conclusion that there is
more variability in the data distribution than there actually is.
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Fig. 1 Comparison of results .
using different bands. The
dotted line represents an
estimate with a 0.05 band; the
dashed line, a 1.5 band; and
the solid line, a 0.6807 band.
Notice that a small value for
h leads to a overfit on the data
and a high value for 4 leads to
a underfit on the data

Estimated Density

Ideally, the bands used should, when n — o0, satisty A, — 0 and nh, — co. That
is, when the sample size increases, the band must tend to make increasingly local
estimates, while increasing the number of observations used to estimate each
window.

Several best band selection methods were summarized by Turlach et al. [15],
who also present a series of studies on which method is the best. However, their
conclusion was that none of the studies reviewed was definitive, and that some of
the methods will inevitably have better results in different situations.

The estimates presented in the present work use the band selection method
introduced by Li and Racine [16], for generalized multiplicative kernels imple-
mented in the R language inside the NP package,? by Hayfield and Racine [17].

The confidence interval for gj,(z) was generated by a bootstrapping procedure.
Proposed by Efron [18] based on the jackknife method, bootstrapping is a resam-
pling method that generates new samples taken from the original sample, and
statistics of interest are computed from these samples. Based on these results,
inferences can be made regarding the distribution of these statistics. The concept
behind this method is that the bootstrap samples are to the original sample what the
original sample is to the population. Since it allows statistical distribution inference
without the need for many assumptions, it is a widely used method, especially when
the involved algebra becomes too complex, making it hard to identify the theo-
retical distribution.

3 Data Sets

To evaluate the proposed method, random data sets were created to compute a DEA
model and later estimate a nonparametric regression model. Two inputs and four
outputs (based on the inputs) were simulated.

Zhttps://www.cran.r-project.org/web/packages/np/index.html.
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Table 1 Simulation 1st round 2nd round
parameter values B, 190 100

B, 1.5 1.5

B3 L !

By %0 70

Bs 10 40

B 16 50

B, 0.01 0.1

Bs 15 2

The inputs were simulated as uniform distributions, with the following
parametrization:

x; ~ U[10; 500]
xp ~ UJ[15; 300]

and the outputs with the following equations:

yi=PB;* In(x1) + B, *x2
y2=P5*x1 + By * In(xp)
y3=Ps* In(x1) + B * In(x2)
ya=2 + By * In(xy),

where f;, i = 1, ..., 8 are nonrandom values predefined for each simulation round.

Variables were simulated for 500 DMUs and, to simulate inefficiencies of each
DMU, the outputs were multiplied by random reduction factors selected according
to a uniform distribution between 0.3 and 1.

The values chosen for §; were defined according to Table 1.

Once the data sets were simulated, the methods and models described in the
previous section were applied to each one of them.

4 Results

DEA models can be defined either as input-oriented, if the main goal is to reduce
inputs while keeping outputs producing unaltered, or as output-oriented, if the main
goal is to maximize the output while keeping the inputs unaltered an input-oriented
DEA model with a VRS frontier was applied to the simulation rounds, without
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Tgble 2 Summary of Interval Quantity Percentage
estimated measured DMU
officiencies 0.1 <=ef<02 4 0.8
02 <=ef<03 9 1.8
03 <=ef<04 23 4.6
04 <=ef <0.5 37 74
0.5 <=ef<0.6 49 9.8
0.6 <=ef < 0.7 59 11.8
0.7 <=ef < 0.8 59 11.8
0.8 <=ef <09 51 10.2
09 <=ef<1 63 12.6
ef =1 146 29.2
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Fig. 2 Relation of N.P. model versus observed values. The solid line represents a straight line
with intercept at the origin and an angular coefficient of one. Ideally, the values should be arranged
randomly around the straight line. A slight tendency was observed in the lower and higher values,
but was not considered detrimental to the model as a whole

slacks,” using the R Benchmarking package. Efficiencies for all DMU were com-
puted based on each estimated model.

Table 2 is a summary of the DMU profiles for the first simulation round, as
estimated by the DEA model. The quantity and percentage of total DMUs for the
entire efficiency interval are also presented. Efficiency values of one were not
considered for model estimation. These cases will receive different treatment from
the rest.

Figure 2 presents the scatterplot between the estimated values for the efficiency
of each DMU using the regression model, and the observed values, computed by
the DEA model, together with the correlation between the variables. A strong
correlation between the variables can be observed, indicating that the model’s
accuracy is satisfactory.

3Slacks are conditions that can be included to the linear problem to consider output increase in an
input-oriented model or input decrease in an output-oriented model.
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With these results in hand, one hundred bootstrap samples were generated,
according to the following algorithm:

1. Repeat 100 times:

1.1. Sample, with replacement, the observations used for model estimation, with
the size of the sample equal to that used to estimate the original model.

1.2. Estimate the best band for the data set generated in step 1.1.

1.3. Using the band estimated in step 1.2, compute the estimated efficiency for
each point of the original sample.

It was verified that after one hundred rounds, the bootstrap efficiency distribu-
tion, estimated by means of the bootstrap sample, did not suffer significant changes,
indicating that the number of samples was sufficient for estimator convergence.
Figure 3 shows the results achieved by the bootstrap procedure described above.
The upper and lower limits were calculated using the 97.5th and 2.5th percentile,
respectively, of the generated bootstrap samples.

The idea underlying this procedure is that the result of each DMU is part random
and part deterministic, but the efficiency frontier is fixed.

Figure 4 shows the smoothened confidence limits, using the HoltWinters
method for time series, without the seasonal component from decomposition, since
in the context of the analysis, there is no point in including it. More details on the
smoothening method can be checked out in Morettin and Toloi [19]. Smoothening
the interval limits should provide more robust results, since part of the variance is
absorbed in the process, and make the graphic presentation more readable.

The estimated bias calculated by the bootstrap samples was very close to zero,
indicating that the estimates for the generated samples are consistent.

In order to establish a comparison criteria, the bootstrap procedure with bias
correction described by Bogetoft and Otto [4] for estimating confidence intervals
was also applied to the samples, assuming an input-oriented model with VRS
frontier, as in the previous procedure. The R Benchmarking package was used to
compute the confidence intervals.
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Figure 5 shows the density estimated in the bootstrap process for the efficiency
bias of the DMUs simulated in the first round. Since DEA is positively biased for
VRS frontier, in other words, the estimated values for the efficiency of each DMU
always overestimate the real value of the parameter, the bias is strictly positive [20].
This happens because the PL built based on the data finds the smallest frontier
containing all the observations.

Results of the confidence intervals are displayed in Fig. 6. The black line is the
computed efficiency, with no bias correction, for each DMU in the first simulation
round, with the values sorted in ascending order.

Efficiencies with bias correction presented incoherent results with negative
values and were therefore discarded by the study. The method used in this bootstrap
process is based on the concept that computed efficiency is always superior to
theoretical efficiency; therefore, the confidence intervals are always lower than the
returned values.

As in the previous procedure, HoltWinters smoothening was applied to the
confidence interval limits. However, for this case, smoothening was applied only to
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the lower limit, since the upper limits presented no significant variance. Figure 7
displays the returned results.

It is interesting to observe that the lower limit of the DMU confidence interval
with an efficiency equal to one is lower than the limit of those presenting an
efficiency in the [0.7, 1] interval. It would be expected that the limits would follow
the value observed for the efficiencies estimated in the original base.

5 Final Considerations

The achieved results show that the two methods studied present conceptual dif-
ferences. The usual methods, as presented by Bogetoft and Otto [4], are based on
the principle that the computed efficiencies are always higher than the real ones,
since the frontier computed by the DEA method is the smallest possible. Thus, the
objective is to try to define, using a smoothened resampling process, larger frontiers
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and generate, for these frontiers, the confidence interval for the efficiencies of each
DMU. This way, the information contained in the data can be extrapolated.

The proposed procedure, which uses a nonparametric regression model is based
on the idea that each DMU is affected not only by management efficiency, but by
random fluctuations as well, and could therefore present better or worse perfor-
mance than what is displayed. Such random fluctuations are separated from the
deterministic part by the nonparametric model, allowing confidence intervals to be
generated with the information contained in the data collected originally.

Therefore, it makes no sense to compare the two procedures quantitatively. The
choice as to how to build the confidence interval depends on the context of the
problem, and the object underlying the analysis. Following the first approach, the
intervals are always inferior to the efficiencies originally computed for the DMUs,
while the second approach returns intervals that contain the original efficiency.

Furthermore, it is important to point out that the processing time of the first
approach is considerably lower than that of the second approach, because of the
heavy computational effort required to estimate optimal bands for the nonpara-
metric regression model.
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