Chapter 2
Cultural Epigenetics: On the Missing
Heritability of Complex Diseases

Written in collaboration with Dr. D.N. Wallace.

Summary We extend a cognitive paradigm for gene expression based on the
asymptotic limit theorems of information theory to the epigenetic epidemiology of
complex developmental disorders in humans. In particular, we recognize the funda-
mental role culture plays in human biology, another heritage mechanism parallel to,
and interacting with, the more familiar genetic and epigenetic systems. We do this
via a model through which culture acts as another tunable epigenetic catalyst that
both directs developmental trajectories, and becomes convoluted with individual
ontology, via a mutually interacting crosstalk mediated by a social interaction that
is itself culturally driven. We call for the incorporation of embedding culture as
an essential component of the epigenetic regulation of human development and its
dysfunctions. The cultural and epigenetic systems of heritage may well provide the
“missing” heritability of complex diseases now under so much intense discussion.

2.1 Introduction

Mental Disorders and Culture

We begin with a discussion of human mental disorders, that, while increasingly
recognized as quintessentially developmental in nature, are still not well understood.
The classic scientific task will then be to infer the general from the particular,
extending focus on the central role of culture in human mental dysfunction to a
vastly larger spectrum of developmental pathologies. This is a task that requires
cutting-edge mathematical methods for its formal expression.

The understanding of mental disorders is in considerable disarray. Official clas-
sifications of mental illness such as the Diagnostic and Statistical Manual of Mental
Disorders - fourth edition, (DSM-1V 1994, and now its replacement as “DSM-V”’),
the standard descriptive nosology in the USA, have even been characterized as
“prescientific” by P. Gilbert (2001) and others. Johnson-Laird et al. (2006) claim
that current knowledge about psychological illnesses is comparable to the medical
understanding of epidemics in the early nineteenth century. Physicians realized then
that cholera, for example, was a specific disease, which killed about a third of the
people whom it infected. What they disagreed about was the cause, the pathology,
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and the communication of the disease. Similarly, according to Johnson-Laird et al.,
most medical professionals these days realize that psychological illnesses occur
(cf. DSMIV), but they disagree about their cause and pathology. Notwithstanding
DSMLIV, Johnson-Laird et al. doubt whether any satisfactory a priori definition of
psychological illness can exist because it is a matter for theory to elucidate.

Atmanspacher (2006) argues that formal theory of high-level cognitive process
is itself at a point similar to that of physics 400 years ago, in that the basic entities,
and the relations between them, have yet to be delineated.

More generally, simple arguments from genetic determinism regarding mental
disorders fail, in part because of a draconian population bottleneck that, early in
our species’ history, resulted in an overall genetic diversity less than that observed
within and between contemporary chimpanzee subgroups.

Manolio et al. (2009) describe this conundrum more generally in terms of
“finding the missing heritability of complex diseases.” They observe, for example,
that at least 40 loci have been associated with human height, a classic complex
trait with an estimated heritability of about 80%, yet they explain only about 5%
of phenotype variance despite studies of tens of thousands of people. This result,
they find, is typical across a broad range of supposedly heritable diseases, and call
for extending beyond current genome-wide association approaches to illuminate the
genetics of complex diseases and enhance its potential to enable effective disease
prevention or treatment.

Arguments from psychosocial stress fare better (e.g., Brown et al. 1973; Dohren-
wend and Dohrenwend 1974; Eaton 1978), particularly for depression (e.g., Risch
et al. 2009), but are affected by the apparently complex and contingent develop-
mental paths determining the onset of schizophrenia, dementias, psychoses, and so
forth, some of which may be triggered in utero by exposure to infection, low birth
weight, or other functional teratogens.

P. Gilbert (2001) suggests an extended evolutionary perspective, in which
evolved mechanisms like the “flight-or-fight” response are inappropriately excited
or suppressed, resulting in such conditions as anxiety or post-traumatic stress
disorders. Nesse (2000) suggests that depression may represent the dysfunction
of an evolutionary adaptation which downregulates foraging activity in the face of
unattainable goals.

Kleinman and Good, however, (1985, p. 492) outline something of the cross
cultural subtleties affecting the study of depression that seem to argue against any
simple evolutionary or genetic interpretation. They state that, when culture is treated
as a constant, as is common when studies are conducted in our own society, it
is relatively easy to view depression as a biological disorder, triggered by social
stressors in the presence of ineffective support, and reflected in a set of symptoms
or complaints that map back onto the biological substrate of the disorder. However,
they continue, when culture is treated as a significant variable, for example, when
the researcher seriously confronts the world of meaning and experience of members
of non-Western societies, many of our assumptions about the nature of emotions
and illness are cast in sharp relief.
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Dramatic differences are found across cultures in the social organization, per-
sonal experience, and consequences of such emotions as sadness, grief, and anger,
of behaviors such as withdrawal or aggression, and of psychological characteristics
such as passivity and helplessness or the resort to altered states of consciousness.
They are organized differently as psychological realities, communicated in a wide
range of idioms, related to quite varied local contexts of power relations, and
are interpreted, evaluated, and responded to as fundamentally different meaningful
realities. Depressive illness and dysphoria are thus not only interpreted differently
in non-Western societies and across cultures; they are constituted as fundamentally
different forms of social reality.

Since the publication of that landmark study, a number of comprehensive
overviews have been published that support its conclusions, for example, Bebbing-
ton (1993), Jenkins et al. (1990), Journal of Clinical Psychiatry (Supplement 13),
and Manson (1995). As Marsella (2003) writes, it is now clear that cultural varia-
tions exist in the areas of meaning, perceived causes, onset patterns, epidemiology,
symptom expression, course, and outcome, variations having important implications
for understanding clinical activities including conceptualization, assessment, and
therapy.

Kleinman and Cohen (1997) argue forcefully that several myths have become
central to psychiatry. The first is that the forms of mental illness everywhere
display similar degrees of prevalence. The second is an excessive adherence to a
principle known as the pathogenic/pathoplastic dichotomy, which holds that biology
is responsible for the underlying structure of a malaise, whereas cultural beliefs
shape the specific ways in which a person experiences it. The third myth maintains
that various unusual culture-specific disorders whose biological bases are uncertain
occur only in exotic places outside the West. In an effort to base psychiatry in “hard”
science and thus raise its status to that of other medical disciplines, psychiatrists
have narrowly focused on the biological underpinnings of mental disorders while
discounting the importance of such “soft” variables as culture and socioeconomic
status.

Heine (2001) describes an explicit cultural psychology that views the person
as containing a set of biological potentials interacting with particular situational
contexts that constrain and afford the expression of various constellations of traits
and patterns of behavior. He says that, unlike much of personality psychology,
cultural psychology focuses on the constraints and affordances inherent to the
cultural environment that give shape to those biological potentials. Human nature,
from this perspective, is seen as emerging from participation in cultural worlds, and
of adapting oneself to the imperatives of cultural directives, meaning that our nature
is ultimately that of a cultural being.

Heine describes how cultural psychology does not view culture as a superficial
wrapping of the self, or as a framework within which selves interact, but as
something that is intrinsic to the self, so that without culture there is no self,
only a biological entity deprived of its potential. Individual selves, from Heine’s
perspective, are inextricably grounded in a configuration of consensual understand-
ings and behavioral customs particular to a given cultural and historical context, so
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that understanding the self requires an understanding of the culture that sustains it.
Heine argues, then, that the process of becoming a self is contingent on individuals
interacting with, and seizing meanings from, the cultural environment.

Heine warns that the extreme nature of American individualism means that
a psychology based on the late twentieth century American research not only
stands the risk of developing models that are particular to that culture, but also of
developing an understanding of the self that is peculiar in the context of the world’s
cultures.

Indeed, as Norenzayan and Heine (2005) point out, for the better part of a
century, a considerable controversy has raged within anthropology regarding the
degree to which psychological and other human universals do, in fact, actually exist
independent of the particularities of culture.

Many other observers have made similar points over the years (e.g., Arnett 2008;
Henrich et al. 2010; Markus and Kitayama 1991; Matsuda and Nisbett 2006; Nisbett
et al. 2001; Wallace 2007).

As Durham (1991) and Richerson and Boyd (2004) explore at some length,
humans are endowed with two distinct but interacting heritage systems: genes
and culture. Durham (1991), for example, writes that genes and culture constitute
two distinct but interacting systems of information inheritance within human
populations and information of both kinds has influence, actual or potential, over
behaviors, which creates a real and unambiguous symmetry between genes and
phenotypes on the one hand, and culture and phenotypes on the other. Genes and
culture, in his view, are best represented as two parallel lines or tracks of hereditary
influence on phenotypes.

Both genes and culture can be envisioned as generalized languages in that they
have recognizable “grammar” and ‘“syntax,” in the sense of Wallace (2005) and
Wallace and Wallace (2008, 2009).

More recent work has identified epigenetic heritage mechanisms involving such
processes as environmentally induced gene methylation, that can have strong
influence across several generations (e.g., Jablonka and Lamb 1995, 1998; Jablonka
2004; Wallace and Wallace 2009), and are the subject of intense current research, a
matter to which we will return below.

There are, it seems, two powerful heritage mechanisms in addition to the genetic
where one may perhaps find the “missing heritability of complex diseases” that
Manolio et al. seek.

Here we will expand recent explorations of a cognitive paradigm for gene expres-
sion (Wallace and Wallace 2008, 2009) that incorporates the effects of surrounding
epigenetic regulatory machinery as a kind of catalyst to include the effects of the
embedding information source of human culture on human ontology. The essential
feature is that a cognitive process, including gene expression, can instantiate a dual
information source that can interact with the generalized language of culture in
which, for example, social interplay and the interpretation of socioeconomic and
environmental stressors involve complicated matters of symbolism and its grammar
and syntax. These information sources interact by a crosstalk that, over the life
course, determines human ontology and its manifold dysfunctions.
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2.2 A Cognitive Paradigm for Gene Expression

Recapitulating something of the previous chapter, a cognitive paradigm for gene
expression is under active study, a model in which contextual factors determine
the behavior of what Cohen characterizes as a “reactive system,” not at all a
deterministic—or even simple stochastic—mechanical process (e.g., Cohen 2006;
Cohen and Harel 2007; Wallace and Wallace 2008, 2009). The various formal
approaches are, however, all in the spirit of Maturana and Varela (1980, 1992) who
understood the central role that cognitive process must play across a vast array of
biological phenomena.

O’Nuallain (2008) puts gene expression directly in the realm of complex
linguistic behavior, for which context imposes meaning. He claims that the analogy
between gene expression and language production is useful both as a fruitful
research paradigm and also, given the relative lack of success of natural language
processing (nlp) by computer, as a cautionary tale for molecular biology. A rela-
tively simple model of cognitive process as an information source permits use of
Dretske’s (1994) insight that any cognitive phenomenon must be constrained by
the limit theorems of information theory, in the same sense that sums of stochastic
variables are constrained by the Central Limit Theorem. This perspective permits
a new formal approach to gene expression and its dysfunctions, in particular
suggesting new and powerful statistical tools for data analysis that could contribute
to exploring both ontology and its pathologies. Wallace and Wallace (1998, 2009)
apply the perspective, respectively, to infectious and chronic disease. Here we
extend the mathematical foundations of that work to examine the topological struc-
tures of development and developmental disorder, in the context of an embedding
information source representing the compelling varieties of human culture.

This approach is consistent with the broad context of epigenetics and epigenetic
epidemiology. Jablonka and Lamb (1995, 1998), for example, argue that informa-
tion can be transmitted from one generation to the next in ways other than through
the base sequence of DNA. It can be transmitted through cultural and behavioral
means in higher animals, and by epigenetic means in cell lineages. All of these
transmission systems allow the inheritance of environmentally induced variation.
Such Epigenetic Inheritance Systems are the memory systems that enable somatic
cells of different phenotypes but identical genotypes to transmit their phenotypes to
their descendants, even when the stimuli that originally induced these phenotypes
are no longer present.

This epigenetic perspective has received much empirical confirmation (e.g.,
Backdahl et al. 2009; Turner 2000; Jaenisch and Bird 2003; Jablonka 2004).

Foley et al. (2009) argue that epimutation is estimated to be 100 times more
frequent than genetic mutation and may occur randomly or in response to the
environment. Periods of rapid cell division and epigenetic remodeling are likely to
be most sensitive to stochastic or environmentally mediated epimutation. Disruption
of epigenetic profile is a feature of most cancers and is speculated to play a role in
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the etiology of other complex diseases including asthma allergy, obesity, type 2
diabetes, coronary heart disease, autism spectrum disorders and bipolar disorders,
and schizophrenia.

Similarly, Scherrer and Jost (2007a,b) explicitly invoke information theory
in their extension of the definition of the gene to include the local epigenetic
machinery, a construct they term the “genon.” Their point is that coding information
is not simply contained in the coded sequence, but is, in their terms, provided by the
genon that accompanies it on the expression pathway and controls in which peptide
it will end up. In their view the information that counts is not about the identity of
a nucleotide or an amino acid derived from it, but about the relative frequency of
the transcription and generation of a particular type of coding sequence that then
contributes to the determination of the types and numbers of functional products
derived from the DNA coding region under consideration.

Again, the proper formal tools for understanding phenomena that “provide”
information—that are information sources—are the Rate Distortion Theorem and
its zero error limit, the Shannon—-McMillan Theorem.

2.3 Models of Development

The currently popular spinglass model of development (e.g., Ciliberti et al. 2007a,b)
assumes that N transcriptional regulators are represented by their expression
patterns

S(1) = [$1(). ... Sy ()] 2.1)

at some time ¢ during a developmental or cell-biological process and in one cell
or domain of an embryo. The transcriptional regulators influence each other’s
expression through cross-regulatory and autoregulatory interactions described by
a matrix w = (wj;). For nonzero elements, if w; > 0 the interaction is activating,
if w; < 0 it is repressing. w represents, in this model, the regulatory genotype
of the system, while the expression state S(7) is the phenotype. These regulatory
interactions change the expression of the network S(¢) as time progresses according
to a difference equation

N
Sit+ AN =0 | Y wS;(1) (2.2)

J=1

where At is a constant and o a sigmoidal function whose value lies in the interval
(=1, 1). In the spinglass limit ¢ is the sign function, taking only the values £1.
The regulatory networks of interest here are those whose expression state begins
from a prespecified initial state S(0) at time ¢+ = 0 and converges to a prespecified
stable equilibrium state So.. Such networks are termed viable and must necessarily
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be a very small fraction of the total possible number of networks, since most do not
begin and end on the specified states. This “simple” observation is not at all simple
in our reformulation, although other results become far more accessible, as we can
then invoke the asymptotic limit theorems of information theory.

The spinglass approach to development is formally similar to spinglass neural
network models of learning by selection, e.g., as proposed by Toulouse et al. (1986)
nearly a generation ago. Much subsequent work, summarized by Dehaene and
Naccache (2001), suggests that such models are simply not sufficient to the task of
understanding high-level cognitive function, and these have been largely supplanted
by complicated “global workspace” concepts whose mathematical characterization
is highly nontrivial (Atmanspacher 2006).

It is possible to shift the perspective on development by invoking a cognitive
paradigm for gene expression, following the example of the Atlan/Cohen model of
immune cognition.

Atlan and Cohen (1998), in the context of a study of the immune system, argue
that the essence of cognition is the comparison of a perceived signal with an internal
(learned or inherited) picture of the world, and then, upon that comparison, the
choice of a single response from a larger repertoire of possible responses.

Such choice inherently involves information and information transmission since
it always generates a reduction in uncertainty, as explained by Ash (1990, p. 21).

More formally, a pattern of incoming input—Tlike the S(#) above—is mixed in
a systematic algorithmic manner with a pattern of internal ongoing activity—like
the (w;;) above—to create a path of combined signals x = (ap,ai,...,ay,...)—
analogous to the sequence of S(z + At) above, with, say, n = t/At. Each g thus
represents some functional composition of internal and external signals.

For a cognitive process, this path is supposed to be fed into a “highly nonlinear
decision oscillator,” s, a sudden threshold machine whose canonical model could
well be taken as the famous integrate-and-fire neuron (e.g., Hoppensteadt and
Izhikevich 1997, Proposition 8.12). h(x), otherwise seen as a “black box,” thus
generates an output that is an element of one of two disjoint sets By and B; of
possible system responses. Let us define the sets By as

Bo = {bo,...,bk}
By = {bit1,...,bu} (2.3)

Assume a graded response, supposing that if 4(x) € By, the pattern is not
recognized, and if i(x) € Bj, the pattern has been recognized, and some action
bj,k + 1 < j < mtakes place.

Rather than focusing on the properties of h, we shift the perspective: The
principal objects of formal interest become paths x triggering pattern recognition-
and-response. That is, given a fixed initial state ay, examine all possible subsequent
paths x beginning with ay and leading to the event i(x) € By. Thus h(ay, ..., q;) €
By forall 0 < j < m, but h(ay, ...,a,) € B).
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Several points are central to the shift in perspective we are making:

1. It is very important to understand that the fundamental core of the argument
does not regard the exact internal details of the inferred (but perhaps not easily
observable) function /(x), but rather in the “grammar” and “syntax” of the strings
X = ay, ay, ... leading to action of that function, and which are more likely to be
observable.

2. For each positive integer n, let N(n) be the number of high probability grammat-
ical and syntactical paths of length n which begin with some particular @y and
lead to the condition A(x) € Bj. Call such paths “meaningful,” assuming, not
unreasonably, that N(n) will be considerably less than the number of all possible
paths of length n leading from ay to the condition A(x) € Bj.

3. While the combining algorithm, the form of the “nonlinear oscillator” A, and
the details of grammar and syntax are all unspecified in this model, the critical
assumption that permits inference of the necessary conditions constrained by the
asymptotic limit theorems of information theory is that the finite limit

H= lim VO]

n—00 n

(2.4)

both exists and is independent of the path x.

Define such a pattern recognition-and-response cognitive process as ergodic.
Not all cognitive processes are likely to be ergodic in this sense, implying that H,
if it indeed exists at all, is path dependent, although extension to nearly ergodic
processes seems possible (Wallace and Fullilove 2008).

Invoking the spirit of the Shannon—McMillan Theorem, as choice involves an
inherent reduction in uncertainty, it is then possible to define an adiabatically,
piecewise stationary, ergodic (APSE) information source X associated with
stochastic variates X; having joint and conditional probabilities P(ao, ...,a,) and
P(aylay, . . ., a,—1) such that appropriate conditional and joint Shannon uncertainties
satisfy the classic relations

i log[N(n)]
m ———-

n—>00 n

lim H(X,|Xo, ... Xp1)
n—o0

H[X] =

H(Xy,...,X,
lim HXo. . ... Xn) 2.5)
n—00 n-+1

This information source is defined as dual to the underlying ergodic cognitive
process.

Adiabatic means that the source has been parameterized according to some
scheme, and that, over a certain range, along a particular piece, as the parameters
vary, the source remains as close to stationary and ergodic as needed for information
theory’s central theorems to apply. Stationary means that the system’s probabilities
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do not change in time, and ergodic, roughly, that the cross-sectional means
approximate long-time averages. Between pieces it is necessary to invoke various
kinds of phase transition formalisms, as described more fully in Wallace (2005) or
Wallace and Wallace (2008).

In the developmental vernacular of Ciliberti et al., we now examine paths
in phenotype space that begin at some Sy and converge n = t/At — oo to
some other So,. Suppose the system is conceived at Sy, and & represents (for
example) reproduction when phenotype S is reached. Thus A(x) can have two
values, i.e., By not able to reproduce, and Bj, mature enough to reproduce. Then
X = (So, /PRI ) P ) until h(x) = B,.

Structure is now subsumed within the sequential grammar and syntax of the dual
information source rather than within the cross-sectional internals of (w;;)-space, a
simplifying shift in perspective.

This transformation carries considerable computational burdens, as well as, and
perhaps in consequence of, providing deep mathematical insight.

First, the fact that viable networks comprise a tiny fraction of all those possible
emerges easily from the spinglass formulation simply because of the “mechanical”
limit that the number of paths from Sy to S, will always be far smaller than the
total number of possible paths, most of which simply do not end on the target
configuration.

From the information source perspective, which inherently subsumes a far larger
set of dynamical structures than possible in a spinglass model—not simply those
of symbolic dynamics—the result is what Khinchin (1957) characterizes as the
““E-property” of a stationary, ergodic information source. This property allows, in
the limit of infinitely long output, the classification of output strings into two sets:

1. a very large collection of gibberish which does not conform to underlying
(sequential) rules of grammar and syntax, in a large sense, and which has near-
zero probability, and

2. a relatively small “meaningful” set, in conformity with underlying structural
rules, having very high probability.

The essential content of the Shannon—-McMillan Theorem is that, if N(n) is the
number of meaningful strings of length n, then the uncertainty of an information
source X can be defined as

H[X] = lim log[N(n)]/n

that can be expressed in terms of joint and conditional probabilities. Proving these
results for general stationary, ergodic information sources require considerable
mathematical machinery (e.g., Khinchin 1957; Cover and Thomas 2006; Dembo
and Zeitouni 1998).

Second, according to Ash (1990), information source uncertainty has an impor-
tant heuristic interpretation in that we may regard a portion of text in a particular
language as being produced by an information source. A large uncertainty means,
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by the Shannon—-McMillan Theorem, a large number of “meaningful” sequences.
Thus given two languages with uncertainties H; and H», respectively, if H; > H»,
then in the absence of noise it is easier to communicate in the first language; more
can be said in the same amount of time. On the other hand, it will be easier to
reconstruct a scrambled portion of text in the second language, since fewer of the
possible sequences of length n are meaningful.

Third, information source uncertainty is homologous with free energy density in
a physical system, a matter having implications across a broad class of dynamical
behaviors.

The free energy density of a physical system having volume V and partition
function Z(K) derived from the system’s Hamiltonian—the energy function—at
inverse temperature K is (e.g., Landau and Lifshitz 2007)

1 log[Z(K, V
FIK] = lim — L 082K V)]
Voo K Vv

log[Z(K, V)]
m —_—
V—00 vV

(2.6)

where Z = Z~V/K,
The partition function for a physical system is the normalizing sum in an equation
having the form

exp[—Ei/kT]
Zj exp[—E;/kT]

where E; is the energy of state 7, k a constant, and 7T the system temperature.

Feynman (2000), following the classic approach by Bennett (1988), who exam-
ined idealized machines using information to do work, concludes that the informa-
tion contained in a message is most simply measured by the free energy needed to
erase it.

Thus, according to this argument, source uncertainty is homologous to free
energy density as defined above, i.e., from the similarity with the relation
H = lim, o, log[N(n)]/n.

Ash’s perspective then has an important corollary: If, for a biological system,
H, > H,, source 1 will require more metabolic free energy than source 2.

PIE] = 2.7)

2.4 Tunable Epigenetic Catalysis

Incorporating the influence of embedding contexts—generalized epigenetic
effects—is most elegantly done by invoking the Joint Asymptotic Equipartition
Theorem (JAEPT) (Cover and Thomas 2006). For example, given an embedding
epigenetic information source, say Y, that affects development, then the dual
cognitive source uncertainty H[X] is replaced by a joint uncertainty H(X,Y).
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The objects of interest then become the jointly typical dual sequences 7" = (x*, y"),
where x is associated with cognitive gene expression and y with the embedding
epigenetic regulatory context. Restricting consideration of x and y to those
sequences that are in fact jointly typical allows use of the information transmitted
from Y to X as the splitting criterion.

From the information theory “chain rule” (Cover and Thomas 2006),

H(X,Y) = HX) + H(Y|X) < HX) + H(Y)

Equality occurs only for stochastically independent processes.

Interpreting the homology between information and free energy rather broadly,
the embedding context, in effect lowers an analog to the relative activation energy
of a particular developmental channel, at the expense of raising the total free energy
needed, since the system must now support two information sources instead of one,
i.e., that regulated, and that providing the regulation.

Thus the effect of epigenetic regulation is to change the probability of devel-
opmental pathways, while requiring more total energy for development. Hence the
epigenetic information source Y acts as a tunable catalyst, a kind of second order
cognitive enzyme, to enable and direct developmental pathways. This result permits
hierarchical models similar to those of higher order cognitive neural function that
incorporate contexts in a natural way (e.g., Wallace and Wallace 2008; Wallace and
Fullilove 2008). The cost of this ability to channel is the metabolic necessity of
supporting two information sources, X and Y, rather than just X itself.

This elaboration allows a spectrum of possible “final” phenotypes, what S.
Gilbert (2001) calls developmental or phenotype plasticity. Thus gene expression
is seen as, in part, responding to environmental or other, internal, developmental
signals.

Including the effects of embedding culture in human ontology is, according to
this formalism, straightforward: Consider culture as another embedding information
source, Z, having source uncertainty H(Z). Then the information chain rule becomes

HX.,Y,Z)<HX)+HY)+ H(Z) (2.8)
and the numbers of “typical” sequences of length n are then approximately
exp[nH(X,Y,Z)] < exp[n(H(X) + H(Y) + H(Z))] (2.9)

where, again, equality occurs only under stochastic independence.

A cultural regulatory apparatus, however, has very considerable free energy
requirements, to grossly understate the matter.

In this model, following explicitly the direction indicated by Boyd, Kleinman,
and their colleagues, culture is seen as an essential component of the catalytic
epigenetic machinery that regulates human ontology, including development of the
human mind. This is not to say that the development in other animals, particularly
those that are highly social, does not undergo analogous regulation by larger-scale
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structures of interaction. For human populations, however, social relations are
themselves very highly regulated through an often strictly formalized cultural
grammar and syntax.

2.5 The Groupoid Free Energy

A formal equivalence class algebra can now be constructed by choosing different
origin and end points Sy, Seo and defining equivalence of two states by the existence
of a high probability meaningful path connecting them with the same origin and end.
Disjoint partition by equivalence class, analogous to orbit equivalence classes
for dynamical systems, defines the vertices of the proposed network of cognitive
dual languages, much enlarged beyond the spinglass example. We thus envision
a network of metanetworks. Each vertex then represents a different equivalence
class of information sources dual to a cognitive process. This is an abstract set of
metanetwork “languages” dual to the cognitive processes of gene expression and
development.

This structure generates a groupoid, in the sense of Weinstein (1996). States a;, a
in a set A are related by the groupoid morphism if and only if there exists a high
probability grammatical path connecting them to the same base and end points, and
tuning across the various possible ways in which that can happen—the different
cognitive languages—parameterizes the set of equivalence relations and creates the
(very large) groupoid. See the Mathematical Appendix for a summary of standard
material on groupoids.

There is a hierarchy in groupoid structures. First, there is structure within the
system having the same base and end points, as in Ciliberti et al. Second, there
is a complicated groupoid structure defined by sets of dual information sources
surrounding the variation of base and end points. We do not need to know what that
structure is in any detail, but can show that its existence has profound implications.

First we examine the simple case, the set of dual information sources associated
with a fixed pair of beginning and end states.

Taking the serial grammar/syntax model above, we find that not all high
probability meaningful paths from Sy to S, are the same. They are structured by
the uncertainty of the associated dual information source, and that has a homological
relation with free energy density.

Let us index possible dual information sources connecting base and end points by
some set A = Uca. Argument by abduction from statistical physics is direct: Given
metabolic energy density available at a rate M, and an allowed (fixed) characteristic
development time 7, let K = 1/xM<t for some appropriate scaling constant «, so that
M is total developmental free energy. Then we take the probability of a particular
H, as determined by a standard expression (e.g., Landau and Lifshitz 2007),

exp[—HgK]
Za eXp[_HOtK]

where the sum may, in fact, be a complicated abstract integral.

P[Hg] = (2.10)
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This is just a version of the fundamental probability relation from statistical
mechanics, as above. The sum in the denominator, the partition function in statistical
physics, is a crucial normalizing factor that allows the definition of P[Hg] as a
probability.

A basic requirement, then, is that the sum/integral always converges. K is the
inverse product of a scaling factor, a metabolic energy density rate term, and a
characteristic (presumed fixed) development time t. The developmental energy
might be raised to some power, e.g., K = 1/(k(Mt)"), suggesting the possibility of
allometric scaling.

Some dual information sources will be “richer”/smarter than others, but, con-
versely, will require more metabolic energy for their completion.

While we might simply impose an equivalence class structure based on equal
levels of energy/source uncertainty, producing a groupoid, we can do more by now
allowing both source and end points to vary, as well as by imposing energy-level
equivalence. This produces a far more highly structured groupoid that we now
investigate.

Equivalence classes define groupoids, by standard mechanisms (e.g., Weinstein
1996; Brown 1987; Golubitsky and Stewart 2006). The basic equivalence classes,
here involving both information source uncertainty level and the variation of Sy and
S, will define transitive groupoids, and higher order systems can be constructed
by the union of transitive groupoids, having larger alphabets that allow more
complicated statements in the sense of Ash above.

Again, given an appropriately scaled, dimensionless, fixed, inverse available
metabolic energy density rate and development time, so that K = 1/kMt, we
propose that the metabolic-energy-constrained probability of an information source
representing equivalence class G;, Hg,, will be given by the classic relation

_ expl-Hg,K]
FlHe] = Y4 exp[—Hg, K]

where, now, we have shifted perspective, and the sum/integral is over all possible
elements of the largest available symmetry groupoid representing the equivalence
class structure. By the arguments of Ash above, compound sources, formed by the
union of underlying transitive groupoids, being more complex, generally having
richer alphabets, as it were, will all have higher free-energy-density-equivalents than
those of the base (transitive) groupoids.

Let Zg = ), exp[—Hg,K]. We now define the Groupoid free energy of the
system, F, at inverse normalized metabolic energy density K, as

FolK] = loglZ[K]] @.11)

again following the standard arguments from statistical physics (again, Landau and
Lifshitz 2007, or Feynman 2000).
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Spontaneous Symmetry Breaking

The groupoid free energy permits introduction important ideas from statistical
physics.

We have expressed the probability of an information source in terms of its
relation to a fixed, scaled, available (inverse) metabolic free energy density, seen
as a kind of equivalent (inverse) system temperature. This gives a statistical
thermodynamic path leading to definition of a “higher” free energy construct—
Fg[K]—to which we now apply Landau’s fundamental heuristic phase transition
argument (Landau and Lifshitz 2007; Skierski et al. 1989; Pettini 2007). See, in
particular, Pettini (2007) for details.

Landau’s insight was that second order phase transitions were usually in the
context of a significant symmetry change in the physical states of a system, with one
phase being far more symmetric than the other. A symmetry is lost in the transition,
a phenomenon called spontaneous symmetry breaking, and symmetry changes are
inherently punctuated. The greatest possible set of symmetries in a physical system
is that of the Hamiltonian describing its energy states. Usually states accessible
at lower temperatures will lack the symmetries available at higher temperatures,
so that the lower temperature phase is less symmetric: The randomization of
higher temperatures—in this case limited by available metabolic free energy
densities—ensures that higher symmetry/energy states—mixed transitive groupoid
structures—will then be accessible to the system. Absent high metabolic free energy
rates and densities, however, only the simplest transitive groupoid structures can
be manifest. A full treatment from this perspective seems to require invocation of
groupoid representations, no small matter (e.g., Buneci 2003; Bos 2007).

Something like Pettini’s (2007) Morse-Theory-based topological hypothesis can
now be invoked, i.e., that changes in underlying groupoid structure are a necessary
(but not sufficient) consequence of phase changes in Fg[K]. Necessity, but not
sufficiency, is important, as it, in theory, allows mixed groupoid symmetries, leading
to comorbidity in “condensation” dysfunctions.

Using this formulation, the mechanisms of epigenetic catalysis are accomplished
by allowing the set B; above to span a distribution of possible “final” states Sec.
Then the groupoid arguments merely expand to permit traverse of both initial states
and possible final sets, recognizing that there can now be a possible overlap in
the latter, and the epigenetic effects are realized through the joint uncertainties
H(Xg,.Z), so that the epigenetic information source Z serves to direct as well the
possible final states of Xg,. Again, Scherrer and Jost (2007a,b) use information
theory arguments to suggest something similar.
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The Groupoid Atlas

The groupoid free energy inherently defines a groupoid atlas in the sense of Bak
et al. (2006). Following closely Glazebrook and Wallace (2009a,b), the set of
groupoids G, comprise a groupoid atlas A as follows.

A family of local groupoids (G 4) is defined with respective object sets (X 4)q,
and a coordinate system @ 4 of A equipped with a reflexive relation <. These satisfy
the following conditions:

l. ifo < Bin @4, then (X4)o N (X.4)gp is a union of components of (G 4), that is, if
X € (Xa)e N(Xa)pand g € (G4)g actsas G :x —> y, theny € (X4)o N (Xa)p.

2. If « < B in @4, then there is a groupoid morphism defined between the
restrictions of the local groupoids to intersections

(Gl X)e N (Xa)g = (CA)l(Xa)e N (Xa)ps

and which is the identity morphism on objects.

Thus each of the G, with its associated dual information source Hg, constitutes
a component of an atlas that incorporates the dynamics of an interactive system by
means of the intrinsic groupoid actions.

These are matters currently under very active study (e.g., del Hoyo and Minian
2008).

2.6 ‘“Phase Change” and the Developmental Holonomy
Groupoid in Phenotype Space

There is a more direct way to look at phase transitions in cognitive, and here cul-
turally driven, gene expression, adapting the topological perspectives of homotopy
and holonomy directly within phenotype space.

We begin with ideas of directed homotopy.

In conventional topology one constructs equivalence classes of loops that can be
continuously transformed into one another on a surface. The prospect of interest is
to attempt to collapse such a family of loops to a point while remaining within
the surface. If this cannot be done, there is a hole. Here we are concerned, as
in Fig.2.1, with sets of one-way developmental trajectories, beginning with an
initial phenotype S;, and converging on some final phenotype, here characteristic
(highly dynamic) brain phenotypes labeled, respectively, S, and S,. One might view
them as, respectively, “normal” and “other,” and the developmental pathways as
representing convergence on the two different configurations. The filled triangle
represents the effect of a composite external epigenetic catalyst—including the
effects of culture and culturally structured social interaction—acting at a critical
developmental period represented by the initial phenotype S;.
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Fig. 2.1 Developmental homotopy equivalence classes in phenotype space. The set on one-way
paths from S; to S, represents an equivalence class of developmental trajectories converging on a
particular phenotype, here representing a highly dynamic normal mind structure. In the presence
of a noxious external epigenetic catalyst, developmental trajectories can converge on an abnormal
mind structure, represented by the dynamic phenotype S,

Vi

o

Fig. 2.2 Parallel transport of a tangent vector V; — V; around a loop on a manifold. Only
for a geometrically flat object will the angle between the initial and final vectors be zero. By a
fundamental theorem the path integral around the loop by parallel displacement is the surface
integral of the curvature over the loop

We assume phenotype space to be directly measurable and to have a simple
“natural” metric defining the difference between developmental paths.

Developmental paths continuously transformable into each other without cross-
ing the filled triangle define equivalence classes characteristic of different informa-
tion sources dual to cognitive gene expression, as above.

Given a metric on phenotype space, and given equivalence classes of devel-
opmental trajectories having more than one path each, we can pair one-way
developmental trajectories to make loop structures. In Fig. 2.1 the solid and dotted
lines above and below the filled triangle can be pasted together to make loops
characteristic of the different developmental equivalence classes. Although Fig. 2.1
is represented as topologically flat, there is no inherent reason for the phenotype
manifold itself to be flat. The existence of a metric in phenotype space permits
determining the degree of curvature, using standard methods. Figure 2.2 shows
a loop in phenotype space. Using the metric definition it is possible to parallel
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transport a tangent vector starting at point s around the loop, and to mea-
sure the angle between the initial and final vectors, as indicated. A central
result from elementary metric geometry is that the angle o will be given by
the integral of the curvature tensor of the metric over the interior of the loop
(e.g., Frankel 2006, Sect. 9.6).

The holonomy group is defined as follows (e.g., Helgason 1962):

If 5 is a point on a manifold M having a metric, then the holonomy group of M is
the group of all linear transformations of the tangent space M, obtained by parallel
translation along closed curves starting at s.

For Fig.2.1 the phenotype holonomy groupoid is the disjoint union of the
different holonomy groups corresponding to the different branches separated by
“developmental shadows” induced by epigenetic information sources acting as
developmental catalysts.

The relation between the phenotype groupoid as defined here and the phase
transitions in Fp[K] as defined above is an open question.

2.7 Holonomy on the Manifold of Dual Information Sources

Basic Structure

Glazebrook and Wallace (2009a) examined holonomy groupoid phase transi-
tion arguments for networks of interacting information sources dual to cognitive
phenomena. A more elementary form of this arises directly through extending
holonomy groupoid arguments to a manifold of different information source dual
to cognitive phenomena as follows.

Different cognitive phenomena will have different dual information sources, and
we are interested in the local properties of the system near a particular reference
state. We impose a topology on the system, so that, near a particular “language” A,
dual to an underlying cognitive process, there is an open set U of closely similar
languages A, such that A,A C U. It may be necessary to coarse-grain the system’s
responses to define these information sources. The problem is to proceed in such
a way as to preserve the underlying essential topology, while eliminating *“high
frequency noise.” The formal tools for this can be found elsewhere, e.g., in Chap. 8
of Burago et al. (2001).

Since the information sources dual to the cognitive processes are similar, for all
pairs of languages A Ain U, itis possible to:

1. Create an embedding alphabet which includes all symbols allowed to both of
them.

2. Define an information-theoretic distortion measure in that extended, joint alpha-
bet between any high probability (grammatical and syntactical) paths in A and A,
which we write as d(Ax, Ax) (Cover and Thomas 2006). More detail on distortion
measures is given in the section below on the Rate Distortion Theorem. Note that
these languages do not interact, in this approximation.
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3. Define a metric on U, for example,

I d(Ax, Ax)

A A) = |lim =240
M(A.4) = |lim [, 5 d(Ax, A%)

2.12)

integrating over the sets of high probability paths. Note that the integration in
the denominator is over different paths within A itself, while in the numerator
it is between different paths in A and A. Other metric constructions on U seem
possible, leading to similar results, just as different definitions of distortion lead
to the same end in the Rate Distortion Theorem.

Structures weaker than a conventional metric would be of more general utility,
but the mathematical complications are formidable.

Note that these conditions can be used to define equivalence classes of languages
dual to cognitive processes, where previously we defined equivalence classes of
states that could be linked by high probability, grammatical and syntactical paths
connecting two phenotypes. This led to the characterization of different information
sources. Here we construct an entity, formally a topological manifold, that is an
equivalence class of information sources. This is, provided M is a conventional
metric, a classic differentiable manifold. The set of such equivalence classes
generates the dynamical groupoid, and questions arise regarding mechanisms,
internal or external, which can break that groupoid symmetry.

Since H and M are both scalars, a “covariant” derivative can be defined
directly as

dHjdM = tim T —HA) (2.13)
Aisa M(AA)

where H(A) is the source uncertainty of language A.

The essential point of a “covariant” derivative is that it is independent of coordi-
nate systems, a condition this definition fulfills. As we will show below, this leads
directly to ideas of a derivative along a tangent vector and to ideas of parallel trans-
port leading to deep topological concepts such as holonomy. Introduction of a coor-
dinate system in the definition of M quickly leads to the usual Christoffel symbols
and the familiar geodesic equations (e.g., Wallace and Fullilove 2008, Sect. 8.3).

Suppose the system to be set in some reference configuration Ag.

To obtain the unperturbed dynamics of that state, impose a Legendre transform
using this derivative, defining another scalar, an “entropy” analog, as

S=H— MdH/dM (2.14)

The simplest possible generalized Onsager relation—here seen as an empirical,
fitted, equation like a regression model—is in terms of the gradient of S,
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dM/dt = LdS/dM (2.15)

where ¢ is the time and dS/dM represents an analog to the thermodynamic force in
a chemical system. This is seen as acting on the reference state A.

Again, explicit parameterization of M—that is, imposing a coordinate system—
introduces standard, and quite considerable, notational complications (Burago et al.
2001). Defining a metric for different cognitive dual languages parameterized by
K leads to Riemannian, or even Finsler, geometries, including the usual geodesics
(e.g., Wallace and Fullilove 2008; Glazebrook and Wallace 2009a,b).

The dynamics, as we have presented them so far, have been noiseless. The
simplest generalized Onsager relation in the presence of noise might be rewritten as

dM/dt = LdS/dM + aW(t)

where o is a constant and W(¢) represents white noise. Again, S is seen as a function
of the parameter M. This leads directly to a family of classic stochastic differential
equations of the form

dM; = L(t, M)dt + o (t, M)dB, (2.16)

where L and o are appropriately regular functions of ¢t and M, and dB; represents
the noise structure, characterized by its quadratic variation. In the sense of Emery
(1989), this leads into complicated realms of stochastic differential geometry and
related topics.

The natural generalization is to a system of developmental processes that interact
via mutual information crosstalk, as described by Wallace and Wallace (2009).

“Coevolutionary” Development

The model can be applied to multiple interacting information sources representing
simultaneous gene expression processes. This is, in a broad sense, a “coevolution-
ary” phenomenon in that the development of one process may affect that of others.

Most generally we assume that different cognitive developmental subprocesses
of gene expression characterized by information sources H,, interact through
chemical or other signals and assume that different processes become each other’s
principal environments, a broadly coevolutionary phenomenon.

We write

H, =H,K...K,,...Hj...) 2.17)

where the K represent other relevant parameters and j % m.

The dynamics of such a system is driven by a recursive network of stochastic
differential equations, similar to those used to study many other highly parallel
dynamic structures (e.g., Zhu et al. 2007).
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Letting the K; and H,, all be represented as parameters Q; (with the caveat
that H,, not depend on itself), one can define, according to the generalized
Onsager development of Wallace and Wallace (2009), “entropies” via the Legendre
transforms as

S" = Hy— ) Qi0H,/00:

to obtain a complicated recursive system of phenomenological “Onsager relations”
stochastic differential equations,

do) = Z[Lj,,-(t, .08 /0Q" .. )dt + 0j(t, ... 08" /00" .. )dB!] (2.18)

where, again for notational simplicity only, we have expressed both the H; and the
external K’s in terms of the same symbols Q;.

m ranges over the H,, and we could allow different kinds of “noise” dBﬁ, having
particular forms of quadratic variation that may, in fact, represent a projection of
environmental factors under something like a rate distortion manifold (Glazebrook
and Wallace 2009).

It is important to realize that, for this formulation, one does not necessarily have
the equivalent of “Onsager’s fourth law” of thermodynamics, i.e., the symmetry
relation L;; = L;;. This is because such a symmetry, at base, is a statement
of local time reversal invariance (e.g., de Groot and Mazur 1984, pp. 35-41).
But information sources are notoriously one-way in time, for example, someone
speaking or writing in English is much more likely to utter the five-character string
“the” than its reverse. Or, to put it another way, long palindromes, such as “Able was
I ere I saw Elba,” or “A man, a plan, a canal: Panama,” are quite rare, and always
relatively short, while information theory is based on asymptotic limit theorems
most often involving very long strings of symbols.

As usual, for a system of equations like (2.18), there will be multiple quasi-stable
nonequilibrium steady states, representing a class of generalized resilience modes
accessible via holonomy punctuation.

There are, indeed, many possible patterns:

1. Setting the expectation of Eq. (2.18) equal to zero and solving for stationary
points gives attractor states since the noise terms preclude unstable equilibria.

2. This system may, however, converge to limit cycle or “strange attractors” that
are very highly dynamic.

3. What is converged to in both cases is not a simple state or limit cycle of
states. Rather it is an equivalence class, or set of them, of generalized language
information sources coupled by mutual interaction through crosstalk. Thus
“stability” in this extended model represents particular patterns of ongoing
dynamics rather than some identifiable “state,” although such dynamics may
be indexed by a “stable” set of phenotypes.
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Here we become enmeshed in a system of highly recursive phenomenological
stochastic differential equations, but at a deeper level than the standard stochastic
chemical reaction model (e.g., Zhu et al. 2007), and in a dynamic rather than static
manner: the objects of this system are equivalence classes of information sources
and their crosstalk, rather than simple final states of a chemical system.

We have defined a groupoid for the system based on a particular set of equiv-
alence classes of information sources dual to cognitive processes. That groupoid
parsimoniously characterizes the available dynamical manifolds, and breaking of
the groupoid symmetry by epigenetic crosstalk creates more complex objects of
considerable interest. This leads to the possibility, indeed, the necessity of epigenetic
Deus ex Machina mechanisms—analogous to programming, stochastic resonance,
etc. —to force transitions between the different possible modes within and across
dynamic manifolds. In one model the external “programmer” creates the manifold
structure, and the system hunts within that structure for the “solution” to the problem
according to equivalence classes of paths on the manifold. Noise, as with random
mutation in evolutionary algorithms, precludes simple unstable equilibria, but not
other possible structures.

Equivalence classes of states gave dual information sources. Equivalence classes
of information sources give different characteristic dynamical manifolds. Equiva-
lence classes of one-way developmental paths produce different directed homotopy
topologies characterizing those dynamical manifolds. This introduces the possibility
of having different quasi-stable modes within individual manifolds, and leads
to ideas of holonomy and the holonomy groupoid of the set of quasi-stable
developmental modes.

2.8 Rate Distortion Models

The Rate Distortion Theorem

The interaction between cognitive structures can be restated from a highly formal,
but far more restricted, Rate Distortion Theorem perspective. Suppose a sequence
of signals is generated by an information source dual to a cognitive process, Y
having output y* = yj,y»,.... This is “digitized” in terms of the observed behavior
of the system with which it communicates, say a sequence of observed behaviors
b" = by, by, . ... Often the b; will happen in a characteristic “real time” t. Assume
each b" is then deterministically retranslated back into a reproduction of the original
biological signal,

A

A

Define a distortion measure d(y, y) that compares the original to the retranslated
path. Many such measures are possible. The Hamming distortion, for example, is
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dy.y) =1Ly #3
dy.y)) =0,y=9

For continuous variates the squared error distortion is
- 212
d(y.y) = —=3".

The distortion between paths y" and " is defined as
1 n
j=1

A remarkable fact of the Rate Distortion Theorem is that the basic result is
independent of the exact distortion measure chosen (Cover and Thomas 2006;
Dembo and Zeitouni 1998).

Suppose that with each path y" and b"-path retranslation into the y-language,
denoted 3", there are associated individual, joint, and conditional probability
distributions

("), ("), pO". 3", PO"1Y").

The average distortion is defined as

D=3 p(")dy".5") (2.19)
o

It is possible, using the distributions given above, to define the information
transmitted from the Y to the Y process using the Shannon source uncertainty of
the strings:

I(Y.Y)=H(Y)—HY|Y)=HY) + HY) —H(Y.Y) (2.20)

where H(...,...)is the jointand H(...|...) the conditional uncertainty (Cover and
Thomas 2006; Ash 1990).

If there is no uncertainty in Y given the retranslation Y, then no information is
lost, and the systems are in perfect synchrony.

In general, of course, this will not be true.

The Rate Distortion Function R(D) for a source Y with a distortion measure
d(y,y) is defined as

R(D) = min 1(Y,Y) (2.21)
PO 5 POIPOIH)A(.H) <D
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The minimization is over all conditional distributions p(y|y) for which the joint
distribution p(y,y) = p(y)p(y|y) satisfies the average distortion constraint (i.e.,
average distortion < D).

The Rate Distortion Theorem states that R(D) is the minimum necessary rate of
information transmission which ensures the communication between the modules
does not exceed average distortion D. Thus R(D) defines a minimum necessary
channel capacity. Cover and Thomas (2006) or Dembo and Zeitouni (1998) provide
details. The Rate Distortion Function has been calculated for a number of systems
using Lagrange multiplier and related methods.

There is an absolutely central fact characterizing the Rate Distortion Function:
Cover and Thomas (2006) show that R(D) is necessarily a decreasing convex
function of D for any reasonable definition of distortion.

That is, R(D) is always a reverse J-shaped curve. This will prove crucial for
the overall argument. Indeed, convexity is an exceedingly powerful mathematical
condition, and permits deep inference (e.g., Rockafellar 1970). Ellis (1985, Chap.
VI) applies convexity theory to conventional statistical mechanics.

For a Gaussian channel having noise with zero mean and variance o> under the
squared distortion measure (Cover and Thomas 2006),

R(D) = 1/21og[0*/D],0 < D < o>
R(D) =0,D > o> (2.22)

Recall, now, the relation between information source uncertainty and channel
capacity (e.g., Ash 1990):

HIX]<C (2.23)

where H is the uncertainty of the source X and C the channel capacity, defined
according to the relation (Ash 1990)

C = max [(X|Y) (2.24)
P(X)

where P(X) is chosen so as to maximize the rate of information transmission along
a channel Y.

Finally, recall the analogous definition of the Rate Distortion Function from
Eq. (2.21), again an extremum over a probability distribution.

Rate Distortion Dynamics

R(D) defines the minimum channel capacity necessary for the system to have
average distortion less than or equal to D, placing a limit on information source
uncertainty. Thus, we suggest distortion measures can drive information system
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dynamics. That is, the Rate Distortion Function also has a homological relation
to free energy density, similar to the relation between free energy density and
information source uncertainty.

We are led to propose, as a heuristic, that the dynamics of cognitive modules
interacting in a characteristic “real time” v will be constrained by the system as
described in terms of a parameterized Rate Distortion Function. To do this, take
R as parameterized, not only by the distortion D, but also by some vector of
variates Q = (Qy, . .., Q), for which the first component is the average distortion.
The assumed dynamics are, as in Wallace and Wallace (2008), then driven by
gradients in the rate distortion disorder defined as the Legendre transform of the
Rate Distortion Function

k
Sk = R(Q) — ) _ Q:dR/30; (2.25)

i=1

This leads to the deterministic and stochastic systems of equations analogous to
the Onsager relations of nonequilibrium thermodynamics:

dQ;/dt =y " L;;0Sz/00; (2.26)

and

dQ} = L/(Qi.....Qu.0)dt + ) 0™ (Q..... O 1)dB! (2.27)

where the dB! represent added, often highly structured, stochastic “noise” whose
properties are characterized by the quadratic variation (e.g., Protter 1995).

Even for this simplified structure, it is not clear under what circumstances
“Onsager reciprocal relations” are possible. Since average distortion is a scalar,
however, some systems may indeed display the kind of time reversal invariance
required for those symmetries.

A central focus of this chapter, however, is to generalize these equations in the
face of richer structures, for example, interactions between cognitive modules that
may not be time-reversible, the existence of characteristic time constants within
nested processes, and the influence of an embedding source of free energy.

For a simple Gaussian channel with noise having zero mean and variance o2, an
entropy can be defined as the Legendre transform

Sg(D) = R(D) — DdR(D)/dD = 1/21log(c?/D) + 1/2 (2.28)
The simplest possible Onsager relation becomes

m
dD/dt = —udSg/dD = — 2.29
/ wdSg/ D (2.29)
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where —dSg/dD represents the force of an entropic wind, a kind of internal dissipa-
tion inevitably driving the real time, system of interacting (cognitive) information
sources toward greater distortion.

This has the solution

D= Jui (2.30)

so that the average distortion increases monotonically with time, for this model.

A central observation is that similar results must necessarily apply to any of
the reverse-J-shaped relations that inevitably characterize R(D), since the Rate
Distortion Function is necessarily a convex decreasing function of the average
distortion D, whatever distortion measure is chosen. Again, see Cover and Thomas
(2006) for details.

The explicit implication is that a system of cognitive modules interacting in real
time will inevitably be subject to a relentless entropic force, requiring a constant
free energy expenditure for maintenance of some fixed average distortion in the
communication between them: The distortion in the communication between two
interacting modules will, without free energy input, have time dependence

D = f(¢) 2.31)

with () monotonic increasing in 7.

This necessarily leads to the punctuated failure of the system.

Note that Eq.(2.30) is similar to classical Brownian motion as treated by
Einstein: Let p(x, t)dx be the probability a particle located at the origin at time zero
and undergoing Brownian motion is found at locations x — x + dx at time ¢. Then,
p satisfies the diffusion equation dp(x, )/t = wd*p(x,t)/dx>. Einstein’s solution
is that

1
plx. 1) = NZETT, exp[—x*/4yu1].

It is easy to show that the standard deviation of the particle position increases in
proportion to ,/ji7, just as above.

Some comment is appropriate. Following, e.g., Chung and Williams (1990), a
process B = B;,t € R4 is called a Brownian motion in R iff:

1. for0 <s <t < 00, B — By is a normally distributed random variate with mean
zero and variance |t — s|.
2. forO<ty<t; <-- <t <00,

{Blo;Btj _Bz/-_l,j == 1,,k}

is a set of independent random variates.
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An information source, of course, generates a highly correlated sequence that
grossly violates these simple assumptions. What we have shown is that the distortion
in the communication between interacting cognitive modules, under appropriate
empirical Onsager relations, can behave as if it were undergoing Brownian motion.

This is a simple, but far from trivial, result.

Prandolini and Moody (1995) have, in fact, observed something much like this in
the time base error of recorded signals. Wow and flutter are the instantaneous speed
error between recording and reproduction epochs. The time base error (TBE) in the
reproduced signal is a function of the wow and flutter. They show, empirically, that
the nonperiodic TBE is a fractional Brownian motion. The implication is that the
nonperiodic flutter is fractional Gaussian, and thus what they call a “blind” TBE
system is impractical for the design of a TBE compensation system.

Normalized fractional Brownian motion on (0, t),# € R4 is a continuous time
Gaussian process starting at zero, with mean zero, and having the covariance
function (Beran 1994)

EB (B (s)] = (1/2)[|e*" + |s — |z — s*"].

If H = 1/2 the process is a regular Brownian motion. Otherwise, for H > 1/2,
the increments are positively correlated, and for H < 1/2, negatively correlated.
We will explore this kind of relation in more detail below.

Rate Distortion Coevolutionary Dynamics

A simplified version of Eq.(2.18) can be constructed using the Rate Distortion
Functions for mutual crosstalk between a set of interacting cognitive modules, using
the homology of the Rate Distortion Function itself with free energy, as driven by
the inherent convexity of the Rate Distortion Function R(D). That convexity is, in
fact, why we invoke the Rate Distortion Function.

Given different cognitive processes 1...s, the quantities of special interest thus
become the mutual Rate Distortion Functions R;; characterizing communication
(and the distortion D;;) between them, while the essential parameters remain
the characteristic time constants of each process, 7;,j = 1...s, and an overall,
embedding, available free energy density, F.

Taking the Q* to run over all the relevant parameters and mutual Rate Distortion
Functions (including distortion measures D; ), Eq. (2.14) becomes

S§ =Rij— ) _ 0'0R;/00" (2.32)

k
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Equation (2.18) accordingly becomes

do? = 3 [Lp(r....085/0Q% .. )dt + op(r.... 0S5 /00% .. )dB]]  (2.33)
B=(iy)

and this generalizes the treatment in terms of crosstalk, its distortion, the inherent
time constants of the different cognitive modules, and the overall available free
energy density.

This is a very complicated structure indeed, but its general dynamical behaviors
will obviously be analogous to those described just above. For example, setting
the expectation of Eq.(2.33) to zero gives the “coevolutionary stable states” of a
system of interacting cognitive modules. Again, limit cycles and strange attractors
seem possible as well. And again, what is converged to is a dynamic behavior
pattern, not some fixed “state.” And again, such a system will display highly
punctuated dynamics almost exactly akin to resilience domain shifts in ecosystems
(e.g., Holling 1973, 1992; Gunderson 2000). Indeed, the formalism seems directly
applicable to ecosystem studies.

And again, because these are highly self-dynamic cognitive phenomena and not
simple crystals or other physical objects, it may not often be possible to invoke time
reversal invariance to give Onsager-like reciprocal symmetries to Eq. (2.33).

2.9 Expanding the Mathematical Approach

We have, in the context of a tunable epigenetic catalysis, developed several
phase transition/branching models of cognitive gene expression based on groupoid
structures that may be applied to the development of the human mind and its
dysfunctions, as known to be particularly influenced by embedding culture. The
first used Landau’s spontaneous symmetry breaking to explore phase transitions
in a groupoid free energy Fp[K]. The second examined a holonomy groupoid
in phenotype space generated by disjoint developmental homotopy equivalence
classes, and “loops” constructed by pairing one-way development paths. The third
introduced a metric on a manifold of different information sources dual to cognitive
gene expression, leading to a more conventional picture of parallel transport around
a loop leading to holonomy. The dynamical groupoid of Wallace and Fullilove
(2008, Sect. 3.8) is seen as involving a disjoint union across underlying manifolds
that produces a holonomy groupoid in a natural manner.

There are a number of outstanding mathematical questions.

The first is the relation between the Landau formalism and the structures of
phenotype space S and those of the associated manifold of dual information
sources, the manifold M having metric M. How does epigenetic catalysis in
M-space imposes structure on S-space? How is this related to spontaneous symmetry
breaking?
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What would a stochastic version of the theory, in the sense of Emery (1989), look
like? It is quite possible, using appropriate averages of the stochastic differential
equations that arise naturally, to define parallel transport, holonomy, and the like
for these structures. In particular a stochastic extension of the results of the first
question would seem both fairly direct and interesting from a real-world perspective,
as development is always “noisy.”

The construction of loops from directed homotopy arcs in Fig. 2.1 is complicated
by the necessity of imposing a consistent piecewise patching rule for parallel
translation at the end of each arc, say from S; to S,. This can probably be done
by some standard fiat, but the details will likely be messy.

On another matter, we have imposed metrics on S and M space, making possible a
fairly standard manifold analysis of complex cognitive processes of gene expression
and development. While this is no small thing, the “natural” generalization, given
the ubiquity of groupoids across our formalism, would be to a more complete
groupoid atlas treatment in the spirit of section “The Groupoid Atlas”. The groupoid
atlas permits a weaker structure compared with that of a conventional manifold since
no condition of compatibility between arbitrary overlaps of the patches is necessary.
It is possible that the groupoid atlas will become, to complicated problems in
biological cognitive process, something of what the Riemannian manifold has been
to physics.

With regard to questions of “smoothness,” we are assuming that the cognitive
landscape of gene expression is sufficiently rich that discrete paths can be well
approximated as continuous where necessary, the usual physicist’s hack.

Finally, Sects.2.6 and 2.7 are based on existence of more-or-less conventional
metrics, and this may not be a good approximation to many real systems. Extending
topological phase transition theory to “weaker” topologies, e.g., Finsler geometries
and the like, is not a trivial task.

2.10 Discussion

Culturally structured psychosocial stress, and similar noxious exposures, can write
distorted images of themselves onto human ontology—both child growth, and, if
sufficiently powerful, adult development as well—by a variety of mechanisms,
initiating a punctuated trajectory to characteristic forms of comorbid mind/body
dysfunction. This occurs in a manner recognizably analogous to resilience domain
shifts affecting stressed ecosystems (e.g., Wallace 2008; Holling 1973; Gunderson
2000). Consequently, like ecosystem restoration, reversal or palliation may often be
exceedingly difficult once a generalized domain shift has taken place. Thus a public
health approach to the prevention of mental disorders may be paramount: rather
than seeking to understand why half a population does not respond to the LD50 of a
teratogenic environmental exposure, one seeks policies and social reforms that limit
the exposure.
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Both sociocultural and epigenetic environmental influences—Ilike gene
methylation—are heritable, in addition to genetic mechanisms. The missing
heritability of complex diseases that Manolio et al. (2009) seek to find in more
and better gene studies is most likely dispersed within the “dark matter” of these
two other systems of heritage that together constitute the larger, and likely highly
synergistic, regulatory machinery for gene expression. More and more purely
genetic studies would, under such circumstances, be akin to using increasingly
powerful microscopes to look for cosmic membranes of strewn galaxies.

A crucial matter is the conversion of the probability models we present here
into statistical tools suitable for analyzing real data, and hence actually testing the
theoretical models we present here. Some work in this direction has been done
in Sect. 2.8, but the problem involves not just programming such models for use,
but identifying appropriate real-world problems, assembling available data sets,
transforming the data as needed for the models, and actually applying the statistical
models. Indeed, the environmental health literature contains numerous examples of
developmental deviations due to either chemical exposures or interaction between
chemical and socioeconomic exposures, and these could serve as sources of data for
direct analysis (e.g., Needleman et al. 1996; Fullilove 2004; Dietrich et al. 2001;
Miranda et al. 2007; Glass et al. 2009; Jacobson and Jacobson (2002); Shankardass
et al. 2009; Clougherty et al. 2007; Ben-Jonathan et al. 2009; Karp et al. 2005;
Sarlio-Lahteenkorva and Lahelma 2001; Wallace and Wallace 2005; Wallace et al.
2003). Thus, quite a number of data sets exist in the environmental health and
socioeconomic epidemiological literature that could be subjected to meta-analysis
and other review for model verification and fitting. Our topological models, when
converted to statistical tools for data analysis, hold great potential for understanding
developmental trajectories and interfering factors (teratogens) through the life
course. Sets of cross cultural variants of these data focusing specifically on mental
disorders would be needed to address the particular concerns of this chapter.

Nonetheless, what we have done is of no small interest for understanding the
ontology of the human mind and its pathologies. West-Eberhard (2003, 2005) argues
that any new input, whether it comes from the genome, like a mutation, or from
the external environment, like a temperature change, a pathogen, or a parental
opinion, has a developmental effect only if the preexisting phenotype is responsive
to it. A new input causes a reorganization of the phenotype, or “developmental
recombination.” In developmental recombination, phenotypic traits are expressed in
new or distinctive combinations during ontogeny, or undergo correlated quantitative
change in dimensions. Developmental recombination can result in evolutionary
divergence at all levels of organization.

According to West-Eberhard, individual development can be visualized as a
series of branching pathways. Each branch point is a developmental decision, or
switch point, governed by some regulatory apparatus, and each switch point defines
a modular trait. Developmental recombination implies the origin or deletion of a
branch and a new or lost modular trait. The novel regulatory response and the novel
trait originate simultaneously. Their origins are, in fact, inseparable events: There
cannot, West-Eberhard concludes, be a change in the phenotype, a novel phenotypic
state, without an altered developmental pathway.
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Our analysis provides a new formal picture of this process as it applies to
human development: The normal branching of developmental trajectories, and
the disruptive impacts of teratogenic events of various kinds, can be described
in terms of a growing sequence of holonomy groupoids, each associated with a
set of dual information sources representing patterns of cognitive gene expression
catalyzed by epigenetic information sources that, for humans, must include culture
and culturally modulated social interaction as well as more direct mechanisms like
gene methylation. This is a novel way of looking at human development and its
disorders that may prove to be of some use. The most important innovation of
this work, however, seems to be the natural incorporation of embedding culture
as an essential component of the epigenetic regulation of human ontology, and in
the effects of environment on the expression of a broad spectrum of developmental
disorders: the missing heritability of complex diseases found.
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