
An Interval Logic
for Stream-Processing Functions:
A Convolution-Based Construction

Brijesh Dongol(B)

Department of Computer Science, Brunel University, London, UK
Brijesh.Dongol@brunel.ac.uk

Abstract. We develop an interval-based logic for reasoning about sys-
tems consisting of components specified using stream-processing func-
tions, which map streams of inputs to streams of outputs. The construc-
tion is algebraic and builds on a theory of convolution from formal power
series. Using these algebraic foundations, we uniformly (and systemat-
ically) define operators for time- and space-based (de)composition. We
also show that Banach’s fixed point theory can be incorporated into the
framework, building on an existing theory of partially ordered monoids,
which enables a feedback operator to be defined algebraically.

1 Introduction

Many systems (e.g., hybrid systems) require logics that are capable of reasoning
about both discrete and continuous behaviours; scalability in reasoning methods
for such systems has long been an open challenge. Especially difficult is a logic
that enables reasoning about time- and space-based properties, including feed-
back, to be (de-)composed in a uniform manner. From a uniformity perspective,
one way forward is the development of logics and reasoning frameworks from
algebraic foundations [12].

In this paper, we build on our previous work on convolution [8], which is
a concept taken from formal power series [2,9]. Essentially, convolution defines
multiplication for functions of type QM = M → Q , where M is a partial monoid
(see Sect. 3) and Q is a quantale (see Sect. 5). For any x ∈ M , the convolution
of f , g ∈ QM is given by

(f · g) x =
∑

x=y◦z
f y � g z .

That is, multiplication · at the level of the functions f and g is defined as the
sum of all possible decompositions of the argument x into components y and z ,
where x = y ◦ z and each term in the sum is obtained by applying f to y and g
to z , then multiplying the results of the function applications using �.

There are many possible instantiations of M and Q , which allows the algebra
to capture many different models of computation (see [8] for details). As we shall
c© Springer International Publishing AG 2017
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2016, CCIS 694, pp. 20–35, 2017.
DOI: 10.1007/978-3-319-53946-1 2

An Interval Logic for Stream-Processing Functions 21

see, in this paper, the quantale Q that we consider is a boolean quantale, and M
itself has a richer algebraic structure. In particular, we use a monoidal structure
M consisting of three different multiplication operators: one for (de)composing
time, and two for different types of functional (de)composition. We show that
by lifting each of these multiplications using convolution results in a tri-quantale
over QM .

From these algebraic foundations, we construct a new logic for a compu-
tation model, suited for reasoning about stream-based systems (e.g., hybrid
systems). The logic combines interval-based reasoning [14,16,19] with stream-
processing functions [3,17], where components are modelled by functions from
streams of inputs to streams of outputs (see Fig. 1). A basic form of this logic has
already been described [8,14], but this existing treatment does not distinguish
between inputs and outputs. As such, the basic form is unable to cope with func-
tional composition and feedback. The extended logic in this paper copes with
both in a straightforward manner, while retaining the generality of the previous
approach [8]. We discuss possible variations of our logic throughout this paper.

This paper is structured as follows. Section 2 introduces our target compu-
tation model of stream-processing functions and Sect. 3 discusses the algebraic
structure, which is used to define pipelined and parallel composition. Section 4
presents a method for reasoning about feedback, adapting Cataldo et al.’s alge-
braic constructions [4]. Section 5 provides further algebraic background (quan-
tales and convolution), which we use in Sect. 6 to develop our full logic, consisting
of both intervals and stream-processing functions. Section 7 describes method for
reasoning about modalities and Sect. 8 concludes and discusses future work.

2 Stream-Processing Functions

We aim to reason about systems that evolve over time. These may be modelled
by streams, which are total functions of type T → X , where X denotes the
(potentially infinite) set of values and (T ,≤) is a linearly ordered set, denoting
times. It is well known that T can be instantiated to, for instance, Z to reason
about discrete systems and R to reason about hybrid systems [4,5,10].

Systems may take more than one input stream and produce multiple output
streams. If Xi ⊆ X is a set of values, we let XT ,m denote XT

1 ×XT
2 ×· · ·×XT

m .
Thus, each x ∈ XT ,m is an m-tuple and each xi is a stream over type Xi . An
(m,n)-ary stream-processing function with m input and n output streams is a
function f : XT ,m → Y T ,n . Note that streams (and hence stream-processing
functions) do not contain variables; stream-processing functions simply take an
m-tuple of input values and transform them into an n-tuple of output values.

Although a stream-processing function (of type XT) defines values over all
time in T , reasoning typically only takes place after initialisation. For conve-
nience, we assume 0 ∈ T and that stream-processing functions are initialised at
time 0.

One of the benefits of using stream-processing functions (which naturally
distinguish between input/output streams) is that they simplify reasoning about

22 B. Dongol

yn

. . . f
x2

x1

xm

. . .

y1
y2

Fig. 1. (m,n)-ary stream-processing function

feedback. In order to ensure feedback is well defined, we require that the streams
are κ-causal, with some delay κ. A stream-processing function is causal iff its
input until time t ≥ 0 completely determines its output until time t , and is κ-
causal iff its input until time t ≥ 0 completely determines its output until time
t + κ (where κ > 0). (Delayed) causality imposes the basic requirement that
a system cannot anticipate the future values of its inputs. These concepts are
formalised below. We use notation f =t g to denote ∀u ∈ T . u ≤ t ⇒ f u = g u,
where, following algebraic conventions, we write f x for function application f (x).

Definition 1. Let f be an (m,n)-ary stream-processing function. We say f is
causal iff

∀x , x ′ ∈ XT ,m , t ∈ T≥0 . (x =t x ′) ⇒ (f x =t f x ′)

and that f is κ-causal with delay κ > 0 iff

∀x , x ′ ∈ XT ,m , t ∈ T≥0 . (x =t x ′) ⇒ (f x =t+κ f x ′).

We will refer to a causal stream-processing function as a behaviour and a κ-causal
stream-processing function as a delayed behaviour.

Example 2. Suppose the temperature of a fridge is given by a stream temp
(whose behaviour is unspecified for now). A controller that turns the motor
on/off to keep the temperature between Kmax and Kmin can be modelled by a
delayed behaviour:

C (temp) = λt : T .

⎧
⎪⎨

⎪⎩

on if temp (t − κ) > Kmax ∧ t ≥ κ

off if temp (t − κ) < Kmin ∨ 0 ≤ t < κ

C temp (t − κ) otherwise

The disjunct 0 ≤ t < κ in the second case defines the initial value of the motor
(upto time κ). �

A possible behaviour of the system from Example 2 is given below.

off
on

Kmin

0

Kmax

t1 t2 t3

C (temp)

temp

An Interval Logic for Stream-Processing Functions 23

The temperature temp fluctuates between Kmax an Kmin . The stream
processing function C takes temp as input and transforms it into some out-
put C (temp) resulting in the values on or off . Note the delay κ between the
value of temp rising above Kmax (e.g., at t1) and the output on, as well as the
value of temp dipping below Kmin (e.g., at t2) and the output off .

3 Composition Algebraically

It is straightforward to see that various composition operators can be defined
for stream-processing functions [3,17], e.g., pipelined composition (see Fig. 2)
as well as parallel composition (see Fig. 3). This section describes an algebraic
construction, where compositions are defined at the level of partial monoids, and
later instantiated to obtain compositions for our computation model of stream-
processing functions. In Sect. 6, we show how our algebraic theory (based on
convolution), can be used to lift these structure to the level of specifications.
First, we recap our algebraic theory.

Partial Monoids and Bi-Monoids. A partial monoid is a structure (M , ◦,D ,E)
such that M is a set (known as the carrier set of the algebra), D ⊆ M × M
the domain of composition, and ◦ : D → M a partial operation of composition.
Composition is associative, x ◦ (y ◦ z) = (x ◦ y) ◦ z , in the sense that if either
side of the equation is defined then so is the other and both sides are equal.
Furthermore, E ⊆ M is a set of (generalised) units, where for each x ∈ M there
exist e, e ′ ∈ E such that e ◦ x = x = x ◦ e ′. We follow the convention of leaving
out the D from the signature of the partial monoids under consideration, where
possible.

Example 3 (Ordered Pairs). Consider the Cartesian product A×A over a set A.
Define

DOP = {(p, q) ∈ (A × A) × (A × A) | π2 p = π1 q}
where πi is the projection onto the ith component of the given tuple. Let EOP =
{(a, a) | a ∈ A}. Define the cartesian fusion product p >> q = (π1 p, π2 q). In
the presence of DOP , the operator >> composes two ordered pairs whenever the
second coordinate of the first one is equal to the first coordinate of the second
one. This turns (A × A, >>,DOP ,EOP) into a partial monoid. �

The definitions of monoids generalise to n operations. For example, for n = 2,
a partial bi-monoid is a structure (M , ◦1, ◦2,E1,E2) such that (M , ◦1,E1) and
(M , ◦2,E2) are partial monoids.

Pipeline and parallel composition. To use this algebraic theory, it is simpler
to view each stream-processing function as sets of input/output pairs, where a
function f : X → Y is represented by a set of pairs {(x , y) : X × Y | x ∈
dom f ∧ y = f x}. The carrier set F for our algebra is defined as follows. Let
Fm,n = XT ,m × Y T ,n be the set of all (m,n)-ary input/output tuples and let

24 B. Dongol

yn

. . . f
x2

x1

xm

g

y1
y2

Fig. 2. Pipelined composition f >> g

F =
⋃

m,n:N Fm,n be the set of all input/output tuples. Also let id be the identity
function.

Pipeline composition takes all output messages from the first component and
uses them as inputs to the second (see Fig. 2).

Lemma 4 (Pipeline composition). (F , >>, id) is a partial monoid with
definedness relation DOP .

a1

. . . f
x2

x1

xm

. . .

g

y1
y2

yn

bl

b2

b1

ak

a2

Fig. 3. Parallel composition f ⊗ g

y

f

g

c1 c2

x1 y1

x2 y2

x

Fig. 4. Duplicating/combining inputs/
outputs

Parallel composition (see Fig. 3) of stream-processing functions simply con-
structs a new tuple, combining the first and second arguments to the multipli-
cation. The proof of this lemma is straightforward. We use notation x � y to
denote concatenation for tuples x and y and 〈 〉 to denote the empty tuple.

Lemma 5 (Parallel composition). (F ,⊗, {(〈 〉, 〈 〉)}) is a (total) monoid,
where multiplication is defined by ((x , y) ⊗ (a, b)) = (x � a, y � b).

The following corollary combines these two results.

Corollary 6. (F , >>,⊗, id, {(〈 〉, 〈 〉)}) is a partial bi-monoid.

Note that because we view stream-processing functions as tuples of inputs to
tuples of outputs, f (x1, x2) may not have the same meaning as f (x2, x1), i.e., the
parallel composition operator is not necessarily commutative. Commutativity
can be regained by using streams of type T → V → X , mapping variable names

An Interval Logic for Stream-Processing Functions 25

V to values X . We leave the study of the (more complicated) stream processing
functions that result from these as a topic of future study.

Clearly, it should be possible for two components operating in parallel to
share inputs, or produce an output that combines the outputs of the two com-
ponents. Such situations can be easily modelled by defining for instance, a dupli-
cator that splits some shared input stream into two disjoint outputs. Similarly,
outputs can be combined by a stream-processing function that collates, com-
bines and processes outputs from several parallel sources. An example is given
in Fig. 4, which defines the component c1 >> (f ⊗ g) >> c2.

4 Feedback

The streams under consideration are over a linear order T . For such models,
the use of Banach’s theory to ensure the existence of a unique fixed point is
well known [4,17]. This includes constructive fixed-point theorems that enable
calculation of this unique fixed point [4]. We recap Cataldo et al.’s main result
(and the background needed to understand this result); then apply it to our
setting of (m,n)-ary stream-processing functions.

Feedback algebraically. Following Cataldo et al., the generalisation of Banach’s
fixed-point theory is given in terms of a pomonoid (as in partially ordered
monoid), which is a structure (Γ,�,⊕,⊥) such that (Γ,⊕,⊥) is a monoid and
(Γ,�) is a partial order with minimum element ⊥. Given a set X and a pomonoid
(Γ,�,⊕,⊥), we define a petric (as in pomonoid metric) to be any d : X ×X → Γ
such that for all x , y , z ∈ X :

1. d x y = ⊥ iff x = y ,
2. d x y = d y x , and
3. d x z � d x y ⊕ d y z

For example, any metric is a petric over the pomonoid (R≥0,≤,+, 0).
An infinite sequence G = (γ0, γ1, . . .) ∈ Γω is decaying iff for all γ ∈ Γ\{⊥}

there exists an n ∈ N such that for all k ≥ n, γk � γ, i.e., for any non-zero value
γ, there is a point in G where the elements from that point onwards are below
γ. An infinite sequence Xs = (x0, x1, . . .) ∈ X ω is Cauchy iff for all γ ∈ Γ\{⊥},
there exists an n ∈ N such that for all k ,m ≥ n, (d xk xm) � γ. We say that
Xs converges to x ∈ X iff the sequence ((d x0 x), (d x1 x), . . .) ∈ Γω is decaying.
The set X is Cauchy complete iff for all Cauchy sequences (x0, x1, . . .) ∈ X ω,
there exists a unique x ∈ X such that the sequence (x0, x1, . . .) converges to x .

These definitions are used to define a scheme for constructing the fixed point
of a function f : X → X , given by the following recursion, where i ≥ 0:

f 0 x = x f i+1 x = f (f i x)

26 B. Dongol

We say f is a strict contraction iff ∀x , y ∈ X . x �= y ⇒ d (f x) (f y) � d x y
for some petric d . For a discrete time domain, a strict contraction is enough to
ensure a fixed-point is reached. Given x , y ∈ X and n ∈ N, let

Bn x y =
{⊕k

i=n d (f i x) (f i y) | k ∈ N ∧ k ≥ n
}

A strict contraction f is a decaying contraction iff for all x , y ∈ X , there exists
a decaying sequence (γ0, γ1, ...) ∈ Γω where γn is an upper bound for Bn x y .

Theorem 7 ([4]). If X is Cauchy complete with respect to petric d, and if
f : X → X is a decaying contraction, then f has a unique fixed point fix (f) ∈ X .
Moreover, for any x ∈ X , the sequence ((f 0 x), (f 1 x), ...) converges to fix (f).

Feedback for stream-processing functions. We now define feedback for stream-
processing functions, which feeds k outputs of an (m + k ,n + k)-ary delayed
behaviour back to k inputs (see Fig. 5). Notation π[i,j](x1, x2, . . . , xn) denotes
the projection π[i,j](xi , xi+1, . . . , xj) for 1 ≤ i ≤ j ≤ n.

Definition 8. Let f : XT ,m × ZT ,k → Y T ,n × ZT ,k be an (m + k ,n + k)-ary
stream-processing function. Then μk f is a (m,n)-ary stream-processing function
such that the value (y1, . . . , yn) of (μk f)(x1, . . . , xm) is given by

(y1, . . . , yn , z1, . . . , zk) = f (x1, . . . , xm , z1, . . . , zk)

where (z1, . . . , zk) is the solution of the equation

(z1, . . . , zk) = π[n+1,n+k] f (x1, . . . , xm , z1, . . . , zk). (1)

. . .

. . .
x2

x1

xm

. . .

y1
y2

yn

f

. . .

z1
z2

zk

Fig. 5. Feedback composition µk f

The theorem below follows immediately via an application of Cataldo et al’s
result for eventually decaying contractions. We elide the definition of eventually
decaying, simply noting that every decaying contraction is eventually decaying.

An Interval Logic for Stream-Processing Functions 27

Theorem 9. If f : X → X is κ-causal, then f is a decaying contraction and
has a unique fixed point.

Corollary 10. If f : XT ,m×ZT ,k → Y T ,n×ZT ,k is κ-causal, then π[n+1,n+k] f
is a decaying contraction and has a unique fixed point.

Example 11. Consider the controller in Example 2 operating in parallel with an
environment (which modifies temp) depending on the value of the motor. We
define

CE (motor) = λt : T . if motor t = on then lower t else raise t

where we assume lower (respectively, raise) is a continuous monotonically
decreasing (increasing) function describing the rate of change of temp. The over-
all system is described by the composition: μ1(C >> CE). This function is well-
defined since its fixed point is uniquely determined. C >> CE is contractive with
delay κ, and hence, Corollary 10 can be applied.

5 Quantales and Power Series

The framework we have defined thus far enables reasoning about and composing
stream-processing functions. We wish to extend this into a reasoning framework,
and to this end, incorporate an interval temporal logic [5,10,16,19], which may be
used to reason about the safety, liveness, and real-time properties that a system
possesses. It turns out that this extension can be constructed using an algebraic
approach, by lifting the notion of a stream-processing function to a behaviour,
which is a predicate over a stream-processing function and an interval.

This section presents the algebraic underpinnings to make the above aims
possible. A quantale is a structure (Q ,≤, ·, 1) such that (Q ,≤) is a complete
lattice, (Q , ·, 1) is a monoid and the distributivity axioms

(
∑

i∈I

xi) · y =
∑

i∈I

(xi · y), x · (
∑

i∈I

yi) =
∑

i∈I

(x · yi)

hold, where
∑

X denotes the supremum of a set X ⊆ Q . We write 0 and U for
the least and the greatest elements of the quantale with respect to ≤. The two
annihilation laws x · 0 = 0 = 0 · x hold in any quantale.

Example 12. The quantale of booleans B = {0, 1} with 0 ≤ 1, binary supremum
or join � and composition as binary infimum or meet x · y = x � y plays an
important role for interval logics. It also satisfies distributivity laws with respect
to join and meet and every element is complemented.

Convolution. The algebraic foundations for this paper is based on power series
from formal languages, which provides mechanisms for lifting properties of the
underlying algebraic structures to the level of functions over these structures.
More formally, a power series is a function f : M → Q from a partial monoid M

28 B. Dongol

into a quantale Q . Operators on f are defined by lifting operators on M and Q
as follows. For f , g : M → Q , an index set I , a family of functions fi : M → Q
and i ∈ I , we define

(
∑

i∈I

fi) x =
∑

i∈I

fi x (f · g) x =
∑

x=y◦z
(f y) � (g z)

Note that the first operation is just pointwise lifting with (f +g) x = f x +g x as
a special case. The composition f · g is called convolution. The variables y and
z underneath the sum are implicitly existentially quantified. A more precise but
less convenient notation is (f ·g) x =

∑{q ∈ Q | ∃y , z . x = y ◦z ∧q = f y �g z}.
The sum is lifted pointwise; (f + g) x = f x + g x arises as a special case. In
addition, we define the O : M → Q and 1 : M → Q by

O x = 0, 1 x = if x ∈ E then 1 else 0.

Hence O is the constant function that returns value 0 and 1 is the subobject
classifier for E . The quantale structure lifts from Q to the function space QM

of power series.

Theorem 13 ([8]). Let (M , ◦,D ,E) be a partial monoid. If (Q ,≤,�, 1) is a
unital quantale, then so is (QS ,≤, ·,1).

The order ≤ on QM is obtained from that on Q by pointwise lifting: f ≤ g iff
f x ≤ g x holds for all x ∈ M .

There are a variety of instantiations for quantale QM . Here, we are mainly
interested in the quantale BM ∼= P M of power series of type M → B into the
quantale of booleans, which is the power set quantale of the partial monoid M .
In this instance, convolution becomes

(p · q) x =
∑

x=y◦z
p y � q z .

Moreover, 1 = E is a boolean-valued function, hence 1 x holds iff x ∈ E . The
boolean algebra structure of B is preserved by the lifting to BM . Hence distrib-
utive laws between join and meet hold and boolean complements of predicates
can be defined.

As with monoids, it is possible to extend quantales with more than one
multiplication operator. For example, a bi-quantale is a structure (Q ,≤, ·1, ·2)
such that (Q ,≤, ·1) and (Q ,≤, ·2) are quantales. A bi-quantale is unital iff both
its multiplications have units.

6 Interval-Stream Specifications

With the necessary algebraic background in place, we develop our interval-based
reasoning framework. The basis for this work is a specification construct that
defines behaviours of system components using interval-stream predicates, which
are predicates over an interval and an (m,n)-ary stream-processing function.

An Interval Logic for Stream-Processing Functions 29

Formally, we assume I (T) = {[a, b] | a, b ∈ T ∧ a ≤ b} denotes the set of all
(closed) intervals over the linear poset (T ,≤). An interval-stream predicate has
type I (T)×F → B, mapping a given interval and stream-processing function to
a boolean. Interval stream predicates can be understood as expressing properties
of a stream-processing function f applied to an interval ϕ. They are similar to
higher-order functions such as maps or folds in functional programming.

Example 14. Consider the specification of a system that controls a motor
depending on the input value of the temp. Suppose we wish to specify that
the motor is on at the end of any interval ϕ in which temp stays above Kmax .
This may be formalised by the interval-stream predicate React , where:

React ϕ (temp,motor) = (∀t : ϕ . temp t > Kmax) ⇒ motor (max ϕ) = on

Now recall the controller C from Example 2. Clearly, React ϕ (temp,C temp)
does not necessarily hold because φ may refer to a time prior to system initiali-
sation, or C may not have enough time to react within φ. However, it is possible
to show that, for any ϕ such that min ϕ ≥ 0 and max ϕ − min ϕ > κ, we have
React ϕ (temp,C temp). �

Combining intervals and stream-processing functions algebraically. We develop
an algebraic construction of interval-stream predicates using our convolution-
based liftings. First, we must understand the algebraic structure of intervals. It
is straightforward to show that intervals form a partial monoid. Let

DCI = {(a, b) ∈ I (T) × I (T) | max a = min b} ECI = {[t , t] | t ∈ T}

be the domain of composition and set of all point intervals, respectively.
Define the interval fusion product a ; b = a ∪ b that composes two intervals
[t1, t2] and [u1, u2] by taking their union [t1, t2] whenever t2 = u1. This turns
(I (T), ;,DCI ,ECI) into a partial monoid.

Note 15. An algebraic treatment of semi-open intervals can also be given [8],
which leads to an alternative interval logic [5] that simplifies reasoning about
discontinuities when discrete values change. However, because such a logic is
more complex, we leave out this variation in this paper, and consider full devel-
opment of such a framework to be future work.

Recall that we have already established that partial stream-processing functions
form a bi-monoid (Corollary 6). Combining this result with the interval monoid
results in a carrier set of type M = I (T) × F and three partial multiplication
operators:

– ; that operates as chop on the intervals;
– >> that operates as pipeline on the stream-processing functions; and
– ⊗ that operates as parallel composition on the stream-processing functions.

30 B. Dongol

This results in a partial tri-monoid (M, ;, >>,⊗,E;,E>>,E⊗), where:

(z1, f) ; (z2, f) = (z1 ; z2, f)
(z , f1) >> (z , f2) = (z , f1 >> f2)
(z , f1) ⊗ (z , f2) = (z , f1 ⊗ f2)

define the three monoidal operations. The chop operates on the interval compo-
nent, leaving the stream-processing function unchanged, while the pipeline and
parallel composition operators are applied to the functional component, leaving
the interval component unchanged.

The definedness relation for the partial relations are given by lifting the
definedness relations to the level of the cross product:

D; = {(x1, f1) × (x2, f2) | (x1, x2) ∈ DCI ∧ f2 = f2}
D>> = {(x1, f1) × (x2, f2) | x1 = x2 ∧ (f1, f2) ∈ DOP}
D⊗ = {(x1, f1) × (x2, f2) | x1 = x2}

The unit sets for the three operators are E; = {(i , f) | i ∈ ECI ∧ f ∈ F},
E>> = {(i , f) | i ∈ I (T) ∧ f ∈ id} and E⊗ = {(i , (〈 〉, 〈 〉)) | i ∈ I (T)}.

Tri-quantales. Our aim is to lift these monoidal operations to the level of the
interval-stream predicates using convolution. First we define the generic theory
over the structure QM1×M2 , where M1 is a monoid, M2 is a bimonoid and Q is
quantale.

Theorem 16 below shows that this lifting gives us a tri-quantale structure in
the generic case when the target algebra is a quantale. Later, we will instantiate
this theorem and obtain our theory of interval predicates. Suppose (M1, ◦1,E1) is
a partial monoid, and (M2, ◦2, ◦3,E2,E3) a partial bi-monoid. Define a structure

Q = (QM1×M2 ,≤, ·1, ·2, ·3,11,12,13)

where the three multiplication operators over QM1×M2 are defined using convo-
lution as follows for p, q ∈ QM1×M2 :

(p ·1 q) (ϕ, f) =
∑

ϕ=ϕ1◦1ϕ2

p (ϕ1, f) ◦ q (ϕ2, f)

(p ·2 q) (ϕ, f) =
∑

f=f1◦2f2

p (ϕ, f1) ◦ q (ϕ, f2)

(p ·3 q) (ϕ, f) =
∑

f=f1◦3f2

p (ϕ, f1) ◦ q (ϕ, f2)

Theorem 16. If (M1, ◦1,E1) is a partial monoid, (M2, ◦2, ◦3,E2,E3) is a partial
bi-monoid and (Q ,≤, ◦) is a unital quantale, then Q is a tri-quantale. Further-
more, if (Q ,≤, ◦) is distributive, then so is Q.

An Interval Logic for Stream-Processing Functions 31

As an example, we verify the unit law for the first multiplication operator.

(11 ·1 q) (ϕ, f)

=
∑

ϕ=ϕ1◦1ϕ2

11 (ϕ1, f) ◦ q (ϕ2, f)

= (
∑

(ϕ=e◦1ϕ)
e∈E1

11 (e, f) ◦ q (ϕ, f)) + (
∑

ϕ=ϕ1◦1ϕ2
ϕ1 �∈E1

11 (ϕ1, f) ◦ q (ϕ2, f))

= (
∑

(ϕ=e◦1ϕ)
e∈E1

� ◦ q (ϕ, f)) + (
∑

ϕ=ϕ1◦1ϕ2
ϕ1 �∈E1

0 ◦ q (ϕ2, f))

= (� ◦ q (ϕ, f)) + 0
= q (ϕ, f).

Power series over M. To apply Theorem 16 to our setting of interval-stream
predicates, we instantiate the monoidal structure to M and the quantale to the
boolean quantale B. Thus we obtain the following corollary.

Corollary 17. (BM,≤, ;, >>,⊗,1;,1>>,1⊗) is a unital distributive tri-quantale.

Although these operators have a similar algebraic structure, they manipulate
their arguments in different ways, which highlights the uniformity and power of
our approach. The predicate p ; q holds for a function f and interval [a, b], if
that interval can be split into two subintervals [a, c] and [c, b] such that p holds
for f and [a, c] and q holds for f and [c, b]. Predicate p >> q holds for a function
f and interval ϕ if f consists of the composition f1 of f2 such that p holds for f1
and ϕ and q holds for f2 and ϕ. Predicate p ⊗ q is similar to p >> q , except f
must be split using ⊗.

. . .

x2

x1 y1
y2

yn
xm

p1

q1

p2

q2. . .

.

Fig. 6. (p1 ; p2) ⊗ (q1 ; q2)

q2

x2

x1 y1
y2

yn
xm

. . .

.

. . .

p1 q1

p2

Fig. 7. (p1 ⊗ p2) ; (q1 ⊗ q2)

The differences are most apparent when we consider interval-stream pred-
icates containing combinations of these operations. For instance, consider the
differences between (p1 ; p2) ⊗ (q1 ; q2) and (p1 ⊗ p2) ; (q1 ⊗ q2), which are
depicted in Figs. 6 and 7, respectively. In Fig. 6, the initial component is first

32 B. Dongol

split into two parallel subcomponents, then, using ;, the intervals in which these
subcomponents operate are split. Note that the two splittings of the intervals
are independent, because the parallel composition guarantees this. On the other
hand, in Fig. 7, the interval split occurs first, and for each of the subintervals,
the parallel composition operator splits the stream functions into two disjoint
subsets.

It is possible to perform a similar exercise using >> in place of ⊗, i.e., consider
the difference between (p1 ; p2) >> (q1 ; q2) and (p1 >> p2) ; (q1 >> q2), as depicted
in Figs. 8 and 9, respectively. In Fig. 8, the initial component is first split using
pipelined composition, which requires that we find a set of outputs of (p1 ; p2)
that can be used as inputs to (q1 ; q2). The intervals arguments to p1 ; p2 and
q1 ; q2 can be split independently. On the other hand, in Fig. 9, the interval split
occurs first, and for each of these subintervals, it must be possible to find a
intermediate set of outputs of pi that can be used as inputs to qi .

. .

x2

x1

yn

p1

q1

p2

q2

. . .

. . .
y2

y1

xm
. . .

Fig. 8. (p1 ; p2) >> (q1 ; q2)

y2

x2

x1

. . .
xm

p1 q1

yn

y1
... ...

q2p2 . . .

Fig. 9. (p1 >> p2) ; (q1 >> q2)

7 Modalities over Interval-Stream Predicates

We have extended a functional specification framework with intervals. Modal
(and temporal) logics for intervals are well studied. In this section, we show
how these existing works can be extended to cope with modal (temporal) rea-
soning over functional specifications. In addition, by exploiting the uniformity
of our (convolution-based) algebraic construction, we develop a novel method
for reasoning over compositions of functional specifications by adapting interval
modalities.

A negation operator ¬ is available for every boolean quantale, which can be
lifted point-wise to the level of our interval-stream tri-quantale BM. The chop
operator can be used to define eventually p (�p) and combined with ¬ to define
(�p) as follows:

�p = � ; p ; � �p = ¬�¬p

Thus (�p) (ϕ, f) holds iff the interval component there is some subinterval of ϕ′

of ϕ such that p (ϕ′, f) holds. In other words, if ϕ = [a, b], then (�p) (ϕ, f) holds

An Interval Logic for Stream-Processing Functions 33

iff p ([a ′, b′], f) where a ≤ a ′ ≤ b′ ≤ b. On the other hand, (�p) (ϕ, f) holds iff
p (ϕ′, f) holds for every subinterval ϕ′ of ϕ.

Note 18. The definition for �p must be modified if infinite intervals are consid-
ered. Namely, the first � within �p must be replaced by an element fin, which
is a predicate that returns � iff the given interval is finite. For an algebraic
treatment, see for example [8,14].

The example below shows how one can use these modalities to develop spec-
ifications as predicates over interval stream-processing functions.

Example 19. Suppose we wish to specify a component f that satisfies the prop-
erty for an input interval ϕ:

“if the input temperature temp is ever above Kmax for k time units, then
the output motor is set to on sometime within ϕ”.

We construct the interval-stream predicate bottom up to demonstrate how the
logic works. First we define a predicate for the first part of the antecedent:

higherϕ (temp,motor) = (max ϕ − min ϕ ≥ k) ∧ (∀t ∈ ϕ . (temp t) > Kmax)

The first conjunct states that the length of ϕ is at least k and the second states
that the value temp within for each time t in ϕ is above Kmax . Note that the
output component motor is ignored on the right hand side of the equation above,
but is present to enable the functions below to be defined using lifting constructs.
We are now able to express the property that the temperature eventually rises
above Kmax using the � operator:

ev higherϕ (temp,motor) = (�higher)ϕ (temp,motor)

Thus ev higherϕ (temp,motor) holds iff there is some subinterval ϕ′ of ϕ such
that higherϕ′ (temp,motor) holds. In particular, � is defined in terms of ;, which
only splits the interval argument. Next, we define an interval-stream predicate
for the consequent:

motor onϕ (temp,motor) = ∃t : ϕ . (motor t) = on

With this, we arrive at an interval-stream predicate that formalises the
requirement above:

Spec = ev higher ⇒ motor on

Returning to our component C from Example 2, it is straightforward to show
Specϕ (temp,C temp) holds for any interval ϕ such that min ϕ ≥ 0.

34 B. Dongol

Modalities over stream-processing functions. The modalities over intervals as
defined above are standard; the difference here is that they are applied to stream-
processing functions. Our algebraic construction highlights the structural sim-
ilarities between chop ; defined for intervals, and pipeline >> and parallel ⊗
composition defined for stream-processing functions, which provides us with an
opportunity to define new modalities over the input/output pairs. In particular,
we define modalities analogous to � as follows:

�>>p = � >> p >> � �>>p = ¬�>>¬p
�⊗p = � ⊗ p ⊗ � �⊗p = ¬�⊗¬p

Thus (�>>p)ϕ f holds iff f is of the form f1 >> f2 >> f3 such that p ϕ f2 holds.
Similarly, (�⊗p)ϕ f holds iff f is of the form f1 ⊗ f2 ⊗ f3 and p ϕ f2 holds. Both
operators �>> and �⊗ are useful for stating the existence of a subcomponent that
satisfies property p over the given interval ϕ. Dually, �>>p iff for any pipelined
decomposition p holds for that decomposition (�⊗ is similar). We leave full
development of such a theory as future work.

8 Conclusion and Future Work

We have algebraically constructed a logic for reasoning about stream-based sys-
tems. Applying these constructions to hybrid systems, we obtain a flexible com-
putation model, in contrast to existing model-theoretic approaches [11,15,18]
that are defined using automata (or similar transition-system-like model), which
are somewhat rigid in their structure. Our constructions unify reasoning when-
ever possible; the theoretical underpinnings are provided by convolution [8],
which enables operators to be lifted to the level of functions. Our work is distin-
guished from other algebras for hybrid systems [7,8,14], which do not distinguish
between inputs and outputs using stream-processing functions.

This work is still in its initial stages, but presents a method for bringing
algebraic reasoning into hybrid systems [8]. Areas such as network theory have
already benefitted from the generality, conciseness and uniformity that algebraic
reasoning enables [1]. Future work will include development of neighbourhood
logics [10,13], Hoare logics [8] and mechanisation [6]. Due to the quantale-like
structure of our algebra, the mathematical foundations are already available,
and hence, these planned future works can be rapidly developed.

Acknowledgements. This research is supported by EPSRC Grant EP/N016661/1.
The author thanks Ian Hayes and Georg Struth for helpful discussions, as well as the
anonymous reviewers for their comments.

References

1. Anderson, C.J., Foster, N., Guha, A., Jeannin, J.-B., Kozen, D., Schlesinger, C.,
Walker, D.: NetKAT: semantic foundations for networks. In: POPL, pp. 113–126.
ACM (2014)

An Interval Logic for Stream-Processing Functions 35

2. Berstel, J., Reutenauer, C.: Les Séries Rationnelles et Leurs Langagues. Masson
(1984)

3. Broy, M.: Refinement of time. Theor. Comput. Sci. 253(1), 3–26 (2001)
4. Cataldo, A., Lee, E., Liu, X., Matsikoudis, E., Zheng, H.: A constructive fixed-

point theorem and the feedback semantics of timed systems. In: Discrete Event
Systems, pp. 27–32, July 2006

5. Dongol, B., Derrick, J.: Interval-based data refinement: a uniform approach to
true concurrency in discrete and real-time systems. Sci. Comput. Program. 111,
214–247 (2015)

6. Dongol, B., Gomes, V.B.F., Struth, G.: A Program Construction and Verifi-
cation Tool for Separation Logic. In: Hinze, R., Voigtländer, J. (eds.) MPC
2015. LNCS, vol. 9129, pp. 137–158. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-19797-5 7

7. Dongol, B., Hayes, I.J., Meinicke, L., Solin, K.: Towards an Algebra for Real-Time
Programs. In: Kahl, W., Griffin, T.G. (eds.) RAMICS 2012. LNCS, vol. 7560, pp.
50–65. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33314-9 4

8. Dongol, B., Hayes, I.J., Struth, G.: Convolution as a unifying concept: applications
in separation logic, interval calculi, and concurrency. ACM Trans. Comput. Log.
17(3), 15 (2016)

9. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata.
Springer, Heidelberg (2009)

10. Goranko, V., Montanari, A., Sciavicco, G.: A road map of interval temporal logics
and duration calculi. J. Appl. Non-Classical Logics 14(1–2), 9–54 (2004)

11. Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996, pp. 278–292.
IEEE Computer Society, Washington, DC (1996)

12. Hoare, T., van Staden, S.: In praise of algebra. Formal Asp. Comput. 24(4–6),
423–431 (2012)

13. Höfner, P., Möller, B.: Algebraic neighbourhood logic. J. Log. Algebr. Program.
76(1), 35–59 (2008)

14. Höfner, P., Möller, B.: An algebra of hybrid systems. J. Log. Algebr. Program.
78(2), 74–97 (2009)

15. Lynch, N., Segala, R., Vaandraager, F.: Hybrid I/O automata. Inf. Comput.
185(1), 105–157 (2003)

16. Moszkowski, B.C.: A complete axiomatization of interval temporal logic with infi-
nite time. In: LICS, pp. 241–252 (2000)

17. Müller, O., Scholz, P.: Functional specification of real-time and hybrid systems. In:
Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 273–285. Springer, Heidelberg
(1997). doi:10.1007/BFb0014732

18. Rönkkö, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theor. Comput. Sci.
290, 937–973 (2003)

19. Zhou, C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time Sys-
tems. Monographs in Theoretical Computer Science. An EATCS Series. Springer,
Heidelberg (2004)

http://dx.doi.org/10.1007/978-3-319-19797-5_7
http://dx.doi.org/10.1007/978-3-319-19797-5_7
http://dx.doi.org/10.1007/978-3-642-33314-9_4
http://dx.doi.org/10.1007/BFb0014732

http://www.springer.com/978-3-319-53945-4

	An Interval Logic for Stream-Processing Functions: A Convolution-Based Construction
	1 Introduction
	2 Stream-Processing Functions
	3 Composition Algebraically
	4 Feedback
	5 Quantales and Power Series
	6 Interval-Stream Specifications
	7 Modalities over Interval-Stream Predicates
	8 Conclusion and Future Work
	References

