
Chapter 1

Multimedia Semantics

In recent years, the production, storage, and sharing of the exponentially increasing

number of multimedia resources became simple, owing to lower hardware costs,

new web standards, and free hosting options on social media and video sharing

portals. However, the contents of multimedia resources are, for the most part,

meaningless to software agents, preventing automated processing, which is very

much desired not only in multimedia retrieval, but also in machine vision. There are

multiple approaches to address this issue, such as the machine-readable annotation

of the depicted concepts, the formal description of scenes, and machine learning

with pretrained classifiers, the latter of which is the primary means of automated

structured multimedia annotation.

1.1 Rationale

So far, the majority of multimedia semantics research has focused on image

understanding, and to a far lesser extent on audio and video semantics. Since the

term multimedia refers to various combinations of two or more content forms,

including text, audio, image, animation, video, and interactive content, images

alone are not multimedia contents, but can be components of multimedia contents.

Yet, the literature often uses the term multimedia to techniques and tools that are

limited to capturing image semantics.

Inherently, video interpretation is far more complex than image understanding.

Knowledge acquisition in video content analysis involves the extraction of spatial

and temporal information, which can be used for a wide range of applications

including, but not limited to, face recognition, object tracking, dynamic masking,

tamper detection, abandoned luggage detection, automated number plate recogni-

tion, and lane departure warning. Without context and semantics (meaning), how-

ever, even basic tasks are limited or infeasible. For example, an attack cannot be

differentiated from self-defense or training without seeing the preceding events. As
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a consequence, video event identification alone is insufficient for classification.

Automated scene interpretation and video understanding rely on the formal repre-

sentation of human knowledge, which is suitable for automated subtitle generation,

intelligent medical decision support, and so on. While computers can be trained to

recognize features based on signal processing, they cannot interpret sophisticated

visual contents without additional semantics (see Table 1.1).

Table 1.1 Major differences between human understanding and computer interpretation of video

scenes

Humans Computers

Intelligence

Real-time understanding is straightforward in

most cases, although movies with a complex

plot may need to be watched again to be fully

understood

Overwhelming amount of information to pro-

cess; algorithms and methods are often insuf-

ficient, making video understanding infeasible

even without time constraints, yet alone in

near-real time or real time

Context is understood from plot, title, events,

genre, etc.

Potential interpretations are extremely con-

fusing; metadata, if available, can be com-

bined with concepts mapped to common sense

knowledge bases or ontologies

Visual content is understood (even without

colors)

Automatically extractable features and their

statistics convey no information about the actual

visual content (nothing is self-explanatory)

Years or decades of life experience and learn-

ing make it possible to recognize virtually

anything

Training from a few hundred or thousand clips

provides a very limited recognition capability

General understanding of how the universe

works (e.g., common sense, naı̈ve physics)

Only tiny, isolated representations of the

world are formalized, therefore unconstrained

video scenes cannot be processed efficiently

Understanding of human behavior enables

prediction

Only fractions of human behavior are

encoded, so software agents cannot expect

upcoming movements

The human mind and eyes are adaptive and

recognize persons or objects moving to or in

darkness, or in noisy or less detailed recordings

(e.g., old VHS video, small-resolution video)

If the noise-signal ratio falls below a thresh-

old, algorithms perform poorly

Spatial information

3D projected to 2D can be interpreted by

stereovision: planes of graphical projection

with multiple vanishing points are understood,

which enables perspective viewing

Most videos have no depth information,

although proprietary and standardized 3D

recording and playback mechanisms are

available; RGB-D and Kinect depth sensors

can provide depth information

3D objects are recognized from most angles Training provides information for particular

viewing angles only—recognition from dif-

ferent viewpoints is problematic; scale-/rota-

tion-invariant features are used for object

tracking in videos

Partially covered objects and persons are rela-

tively easily recognized

Occlusion is problematic

(continued)
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1.2 Feature Extraction and Feature Statistics

for Classification

Multimedia features extracted from media resources can be converted into numer-

ical or symbolic form, which enables the automated processing of core character-

istics. Low-level features, which capture the perceptual saliency of media signals,

include visual features (e.g., color, texture, shape), audio features (e.g., loudness,

pitch, timber), and text features (e.g., speaking rate and pause length calculated by

processing closed captions). Combining the results of video, audio, and subtitle

analysis often provides complementary information. Production and licensing

metadata, when available, can be used for aggregated semantic enrichment of

media resources.

A wide range of well-established algorithms exists for automatically extracting

low-level video features, as, for example, fast color quantization to extract the

dominant colors [1] or Gabor filter banks to extract homogeneous texture descrip-

tors [2]. Some of these features, such as motion vectors, are employed by video

compression algorithms of state-of-the-art video codecs, such as H.264/MPEG-4

AVC and H.265/HEVC, and by video analysis.

The state-of-the-art video classification approaches exploit sparse local keypoint

features, i.e., salient patches that contain rich local information about an image or a

video frame. They apply the bag of visual words (BoVW) model using local

aggregated visual descriptors, typically histogram of oriented gradients (HOG),

histogram of optical flow (HOF), or motion boundary histograms (MBH).

Table 1.1 (continued)

Humans Computers

Temporal information

Continuity; events and happenings are under-

stood even in the case of nonlinear narratives

with extensive flashbacks and flashforwards

(although movies with a very complex plot

might be watched again to be fully understood)

Very few mechanisms for complex event

detection; videos are usually compressed

using lossy compression, therefore only cer-

tain frames can be used; no information can be

obtained on complex events from signal

processing

Information fusion

Seamless/straightforward understanding of

simultaneous multimodal information play-

back (e.g., video with audio and subtitle(s),

hypervideo)

Information fusion is desired, which needs

more research

Audio channel is understood relatively easily

and conveys additional information

Algorithms for detecting distinct noises (e.g.,

gunshot, screaming) are available; complex

audio analysis is a challenge

Subtitles and closed captions can be read by

most humans and convey additional

information

Text-based, timestamped subtitle files can be

processed very efficiently; however, incorpo-

rating the obtained information into higher-

level video understanding is still challenging
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Histograms are based on accumulative statistics that are not affected by small local

changes of the content and are invariant to common transformations, such as signal

scaling or coordinate shift. Well-established algorithms utilizing such descriptors

are efficient in classification, video clip matching, and object recognition, but not

necessarily in video understanding, particularly when it comes to scene interpreta-

tion and knowledge discovery. The bag-of-words model applies a visual vocabulary

generated by grouping similar keypoints into a large number of clusters and

handling each cluster as a visual word. A histogram of visual words can be

constructed by mapping the keypoints back into the vocabulary, which provides

the feature clue for multimedia indexing and classification.

1.3 Machine Learning for Multimedia Understanding

Low-level multimedia descriptors are typically fed into a recognition system

powered by supervised learning, such as SVM classifiers (support vector

machines), which look for an optimal hyperplane to find the most probable inter-

pretation, such as via a Lagrangian optimization problem [3] (see Eq. 1.1):

min
β, β0

L βð Þ ¼ 1

2
βk k2 s:t:yi β

Txi þ β0
� �

⩾1 for 8i ð1:1Þ

where βTxi + β0 represents a hyperplane, β the weight vector of the optimal

hyperplane, β0 the bias of the optimal hyperplane, yi the labels of the training

examples, and xi the training examples. Since there is an infinite number of

potential representations of the optimal hyperplane, there is a convention to choose

the one where βTxi + β0 ¼ 1. Once a classifier is trained on images depicting the

object of interest (positive examples) and on images that do not (negative exam-

ples), it can make decisions regarding the probability of object match in other

images (i.e., object recognition). Complex events of unconstrained real-world

videos can also be efficiently detected and modeled using an intermediate level of

semantic representation using support vector machines [4].

Bayesian networks are suitable for content-based semantic image understanding

by integrating low-level features and high-level semantics [5]. By using a set of

images for training to derive simple statistics for the conditional probabilities,

Bayesian networks usually provide more relevant concepts than discriminant-

based systems, such as neural networks. Papadopoulos et al. proposed a machine

learning approach to image classification, which combines global image classifica-

tion and local, region-based image classification through information fusion [6].

Other machine learning models used for multimedia semantics include hidden

Markov models (HMM), k-nearest neighbor (kNN), Gaussian mixture models

(GMM), logistic regression, and Adaboost.
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1.4 Object Detection and Recognition

The research interest for machine learning applications in object recognition covers

still images, image sequences [7], and videos, in which spatiotemporal data needs to

be taken into account for machine interpretation. There are advanced algorithms for

video content analysis, such as the Viola-Jones and Lienhart-Maydt object detec-

tion algorithms [8, 9], as well as the SIFT [10], SURF [11], and ORB [12] keypoint

detection algorithms. The corresponding descriptors can be used as positive and

negative examples in machine learning, such as support vector machines and

Bayesian networks, for keyframe analysis and, to a lesser extent, video scene

understanding. Beyond the general object detection algorithms, there are algo-

rithms specifically designed for human recognition. Persons can be recognized

by, among others, shape, geometric features such as face [13], and behavioral

patterns such as gait [14].

Based on the detected or recognized objects, machine learning can be utilized

via training, which relies on a set of training samples (training dataset). For
example, by creating a training dataset containing cropped, scaled, and

eye-aligned images about different facial expressions of a person, the face of the

person can be automatically recognized in videos [15]. The training optionally

includes a set of responses corresponding to the samples and/or a mask of missing

measurements. For classification, weight values might be given to the various

classes of a dataset. Weight values given to each training sample can be used

when improving the dataset based on accuracy feedback.

1.5 Spatiotemporal Data Extraction for Video Event

Recognition

Automated video event recognition is amongst the most important goals of many

video-based intelligent systems ranging from video surveillance to content-based

video retrieval. It identifies and localizes video events characterized by spatiotem-

poral visual patterns of happenings over time, including object movements, trajec-

tories, acceleration or deceleration, and behavior with respect to time constrains and

logical flow. The semantics of video events that complement the features extracted

by signal processing can be annotated using markup-based [16], ontology-based

[17], and formal rule-based [18] representation.

The approaches to detect regions of interest (ROIs) fall into two categories. The
generalized approaches are based on visual attention models that determine

the likelihood of a human fixing his or her gaze on a particular position, such as

the horizon, in a video sequence. Visual attention models are usually based on the

features perceived by human vision, such as color, orientation, movement direction,

and disparity, which can be combined into a saliency map to indicate the probability

of pixel drawing attention [19]. Feature extraction can be extended with motion
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detection and face detection to obtain more advanced visual attention models

[20]. Since the positions at which the persons are looking are determined by the

task [21], detection accuracy can be improved if the task is considered during

detection. This is one of the main motivations behind the application-based
approaches, which predict the region of interest a priori for a particular application
(e.g., human faces in a video conferencing application).

Human action plays an important part in complex video event understanding,

where an action is a sequence of movements generated by a person during the

performance of a task. Action recognition approaches differ in terms of spatial and

temporal decomposition, action segmentation and recognition from continuous

video streams, and handling variations of camera viewpoint. Conventional 2D

video scenes often do not convey enough information for human action recognition
(HAR). When motion is perpendicular to the camera plane, the 3D structure of the

scene is needed, which is typically obtained using depth sensors. The information

obtained from depth sensors is suitable for human body model representation and

skeleton tracking using masked joint trajectories through action template learning

[22]. Human action recognition can also be performed using depth motion maps

(DMMs), which are formed by projecting the depth frames of depth video

sequences onto three orthogonal Cartesian planes and considering the difference

between two consecutive projected maps under each projection view throughout the

depth video sequence [23]. Real-time human action recognition is then utilized by a

collaborative representation classifier with a distance-weighted Tikhonov matrix.

Beyond RDB-D depth cameras and Kinect depth sensors, inertial sensors are

also applied in human action recognition [24]. The information fusion of the input

obtained from RGB video cameras, depth cameras, and inertial sensors can exploit

the benefits of the different representations of 3D action data [25].

In contrast to the static background of news videos, real-world actions often

occur in crowded environments, where the motion of multiple objects distracts the

segmentation of a particular action. One way to handle crowd flows is to consider

them as collections of local spatiotemporal motion patterns in the scene, whose

variation in space and time can be modeled with a set of statistical models [26].

1.6 Conceptualization of Multimedia Contents

While images and audio files might contain embedded machine-readable metadata,

such as the geo-coordinates in JPEG image files [27] or the performer in MP3 audio

files, video files seldom have anything beyond generic technical metadata, such as

resolution and length, that do not convey information about the actual content.

Because of the lack of content descriptors, the meaning of video scenes cannot be

interpreted by automated software agents. Search engines still rely heavily on

textual descriptors, tags, and labels for multimedia indexing and retrieval, because

text-based data is still the most robust content form, which can be automatically

processed using natural language processing.
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The application of well-established image processing algorithms is limited in

automated video processing, because videos are far more complex than images.

Although there are common challenges in image and video processing, such as

occlusion, background clutter, pose and lighting changes, and in-class variation,

videos have unique characteristics. In contrast to images, videos convey spatiotem-

poral information, are inherently ambiguous, usually have an audio channel, are

often huge in size, and are open to multiple interpretations. Moreover, the com-

pression algorithm used in a video file determines which frames can be used,

making a careful selection necessary to prevent processing frames depicting a

transition (e.g., face washed out from motion blur). On top of these challenges,

video surveillance applications and robotic vision require real-time processing,

which is challenging due to the computing complexity and enormous amount of

data involved.

One of the approaches to address some of the aforementioned issues is to use

Semantic Web standards to create ontologies, which provide a formal conceptual-

ization of the intended semantics of a knowledge domain or common sense human

knowledge, i.e., an abstract, simplified view of the world represented for a partic-

ular purpose.

The logical formalism behind web ontologies provides robust modeling capa-

bilities with formal model-theoretic semantics. These semantics are defined as a

model theory representing an analogue or a part of the world being modeled, where

objects of the world are modeled as elements of a set, and the relationships between

the objects as sets of tuples. To accommodate the various needs of applications,

different sets of mathematical constructors can be implemented for concrete usage

scenarios while establishing the desired level of expressivity, manageability, and

computational complexity. The formal foundation of ontologies provides precise

definition of relationships between logical statements, which describes the intended

behavior of ontology-based systems in a machine-readable form. The logical

underpinning of web ontologies is useful not only for the formal definition of

concepts, but also for maintaining ontology consistency and integrating multiple

ontologies. This data description formalism does not make the unique name
assumption (UNA), i.e., two concepts with different names might be considered

equivalent in some inferred statements. In addition, any true statement is also

known to be true, i.e., if a fact is not known, the negation of the fact cannot be

implied automatically (closed world assumption, CWA).
Web ontologies hold sets of machine-interpretable statements, upon which

logical consequences can be inferred automatically (as opposed to modeling lan-

guages such as the Unified Modeling Language (UML)), which enables complex

high-level scene interpretation tasks, such as recognizing situations and temporal

events rather than just objects [28]. The most common inference1 tasks have been
implemented in the form of efficient decision procedures that, depending on the

1Deriving logical conclusions from premises known or assumed to be true.
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complexity of the formalism, can even guarantee that they will return a Boolean

true or false value for the decision problem in a predetermined timeframe, i.e., they

will not loop indefinitely.

Ontology engineers have covered many different knowledge domains for mul-

timedia content, thereby enabling the efficient representation, indexing, retrieval,

and processing of, among others, medical videos, surveillance videos, soccer

videos, and tennis videos. Nevertheless, the semantic enrichment of multimedia

resources, which provides efficient querying potential, often requires human cog-

nition and knowledge, making automated annotation inaccurate or infeasible.

Considering the millions of multimedia files available online, manual annotation

is basically infeasible, even though several social media portals support collabora-
tive annotation, through which annotations of multimedia resources are dynami-

cally created and curated by multiple individuals [29]. Manual annotation has many

drawbacks, clearly indicated by the misspelt, opinion-based, vague, polysemous or

synonymous, and often inappropriately labeled categories on video sharing portals

such as YouTube.

By implementing SemanticWeb standards according to best practices, the depicted

concepts, properties, and relationships can be described with high-level semantics,

individually identified on the Internet and interlinked with millions of related

concepts and resources in a machine-interpretable manner. To minimize the long

web addresses in knowledge representation, the namespace mechanism is frequently

used to abbreviate domains and directories, and reveal the meaning of tags and

attributes by pointing to an external vocabulary that describes the concepts of the

corresponding knowledge domain in a machine-processable format. For example, a

movie ontology definesmovie features and the relationship between these features in a

machine-processable format, so that software agents can “understand” their meanings

(e.g., title, director, running time) in a dataset or on a web page by pointing to the

ontology file.

Interlinking the depicted concepts with related concept definitions puts the

depicted concepts into context, improves concept detection accuracy, eliminates

ambiguity, and refines semantic relationships. Among other benefits, organized

data support a wide range of tasks and can be processed very efficiently.

1.7 Concept Mapping

Computational models are used to map the multimedia features to concept defini-

tions, which can eventually be exploited by hypervideo applications, search

engines, and intelligent applications. Semantic concept detection relies on multi-

media data for training typically obtained though low-level feature extraction and

feature-based model learning. The efficiency of concept detection is largely deter-

mined by the availability of multimedia training samples for the knowledge domain

8 1 Multimedia Semantics



most relevant to the depicted concepts. Because of the time-consuming nature of

manual annotation, the number of labeled samples is often insufficient, which is

partly addressed by semi-supervised learning algorithms, such as co-training [30].

While learning multimedia semantics can be formulated as supervised machine

learning, not every machine learning algorithm is suitable due to the limited number

of positive examples for each concept, incoherent negative examples, and the large

share of overly generic examples. Oversampling can address some of these issues

by replicating positive training examples, albeit it increases training data size and

the time requirement of training. Another approach, undersampling, ignores some

of the negative examples; however, this might result in losing some useful exam-

ples. To combine the benefits of the two approaches while minimizing their

drawbacks, negative data can be first partitioned, then classifiers created based on

positive examples and negative example groups [31].

The definition of semantics for the concepts depicted in a region of interest,

keyframe, shot, video clip, or video, along with their properties and relationships, is

provided by vocabularies and ontologies. Well-established common sense knowl-

edge bases and ontologies that can be used for describing the concepts depicted in

videos includeWordNet2 andOpenCyc.3 General-purpose upper ontologies, such as
DOLCE4 and SUMO,5 are also used in multimedia descriptions. Depending on the

knowledge domain, correlations of concepts might be useful for improving the

conceptualization of multimedia contents [32]. For example, a beach scene is far

more likely to depict surfs, sand castles, and palm trees than a traffic scene, and so

collections of concepts that often occur together provide additional information and

context for scene interpretation. One of the most well-known ontologies to provide

such predefined semantic relationships and co-occurrence patterns, although not

without flaws, is the Large-Scale Concept Ontology for Multimedia (LSCOM)
[33]. Class hierarchies of ontologies further improve scene interpretation. For

example, the subclass-superclass relationships between concepts of an animal

ontology make it machine-interpretable that a koala is a mammal, therefore both

concepts are correct for the concept mapping of a depicted koala, only the first one

is more specific than the second one. Moreover, multimedia concepts are usually

not isolated, and multiple concepts can be associated with any given image or video

clip, many of which are frequently correlated. For example, a koala is very likely to

be depicted together with a eucalyptus tree, but more than unlikely with a space

shuttle. In ontology-based scene interpretation, the a priori and asserted knowledge

about a knowledge domain can be complemented by rule-based, inferred

statements [34].

2http://wordnet-rdf.princeton.edu/ontology
3https://sourceforge.net/projects/texai/files/open-cyc-rdf/1.1/
4http://www.loa.istc.cnr.it/old/ontologies/DLP3971.zip
5http://www.adampease.org/OP/
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1.8 Implementation Potential: From Search Engines

to Hypervideo Applications

The machine-interpretable descriptions created using Semantic Web standards

provide universal access to multimedia data for humans and computers alike. The

unique identifiers used by these descriptions enable the separation of the description

from the multimedia content, which is very beneficial in multimedia retrieval,

because small text files are significantly easier to transfer and process than the

actual multimedia files and encourage data reuse instead of duplicating data. The

formal concept definitions eliminate ambiguity in these descriptors, and their

interlinking makes them very efficient in finding related concepts. Furthermore,

huge multimedia files have to be downloaded only if they seem to be truly relevant

or interesting to the user. These descriptors can be distributed in powerful purpose-

built databases and embedded directly in the website markup as lightweight anno-

tations to reach the widest audience possible, providing data for state-of-the-art

search engine optimization.

Semantics enable advanced applications that exploit formal knowledge repre-

sentation. Such computer software can provide fully customized interfaces to

service subscribers, automatically identify suspicious activity in surveillance

videos, classify Hollywood movies, generate age rating for movies, and identify

previously unknown risk factors for diseases from medical videos.

The semantically enriched multimedia contents can be searched using multime-

dia search terms, somewhat similar to searching text files. For example, users can

find music that actually sounds similar (have similar frequencies, wavelengths,

instruments, etc.) to the music they like. Videos can be searched for certain clips or

a particular kind of movement. Hypervideo applications can play videos while

displaying information about their content, position the playback to a particular part

of a video based on semantics, and so on.

1.9 Summary

This chapter listed the main challenges of machine interpretation of images and

video scenes. It highlighted the limitations of low-level feature-based classification,

object recognition, and multimedia understanding. The utilization of the conceptu-

alization of multimedia contents in search engines for content-based multimedia

retrieval and hypervideo applications was also discussed.
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