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Abstract Completely random measures (CRMs) form a key ingredient of a wealth
of stochastic models, in particular in Bayesian Nonparametrics for defining prior
distributions. CRMs can be represented as infinite series of weighted random point
masses. A constructive representation due to Ferguson and Klass provides the jumps
of the series in decreasing order. This feature is of primary interest when it comes
to sampling since it minimizes the truncation error for a fixed truncation level of the
series. In this paper we focus on a general class of CRMs, namely the superposed
gamma process, which suitably transformed has already been successfully imple-
mented in Bayesian Nonparametrics, and quantify the quality of the approximation
in two ways. First, we derive a bound in probability for the truncation error. Second,
following [1], we study a moment-matching criterion which consists in evaluating a
measure of discrepancy between actual moments of the CRM and moments based
on the simulation output. To this end, we show that the moments of this class of
processes can be obtained analytically.

Keywords Bayesian Nonparametrics · Completely random measures · Ferguson
and Klass algorithm ·Moment-matching ·Normalized randommeasures · Posterior
sampling · Superposed gamma process

1 Introduction

Completely random measures (CRMs), also known as independent increment
processes, have blossomed in the last decades in modern stochastic modeling and
inference as a basic building block of countless popular models. A prominent usage
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of CRMs is within Bayesian nonparametric statistics (see [15, 18]). For instance, the
popular Dirichlet process [9] can be obtained as normalization or exponentiation of
suitable CRMs (see [10]). Survival analysis, [2, 17], random sparse networks, [6],
biology [20, 28], are only a few of the various modern applications tackled with
CRMs.

Implementation of CRM-based models usually requires to simulate the CRMs
trajectories. As infinite dimensional objects, they need to be truncated, leading to
an approximation error. The representation due to Ferguson and Klass [11] (see
also [30]) is arguably one of the most useful ones in that it displays the weights
in decreasing order. This implies that the approximation error is minimized over
the whole sample space for a given truncation level. This appealing feature was
exploited in many works, including [3, 4, 7, 8, 13, 22–26] to cite just a few in
Bayesian Nonparametrics. The quality of the approximation, hardly addressed by
those previous works, is the focus of this paper.

Many classical methods in statistics and econometrics use moments, such as,
for instance, the method of simulated moments [21] and the general method of
moments [12]. In this paper, we follow another research line and show howmoments
of the CRMs can be used in order to assess the quality of the approximation due
to the truncation [1]. It is based on the observation that moments of CRMs are
simple to compute, hence one can quantify the quality of the approximation by
evaluating a measure of discrepancy between the actual moments of the CRM at
issue and the moments computed based on the sampled realizations of the CRM.
The truncation level is then selected so that the measure of discrepancy does not
exceed a given threshold, say 5%. In Arbel and Prünster [1] the methodology is
illustrated on two classes of CRMs, namely the generalized gamma process and the
stable-beta process. In the present paper we focus on another broad class called the
superposed gammaprocess (see [19, 27]).More specifically, after a brief presentation
of CRMs and of the Ferguson and Klass algorithm in Sect. 2, we derive a bound in
probability on the truncation error in Sect. 3.1 and then show the applicability of the
moment-matching criterion by deriving analytically the moments of the superposed
gamma process in Sect. 3.2.

2 Sampling Completely Random Measures

2.1 Completely Random Measures

A CRM μ̃ on X is a random measure which spreads out mass independently in
the space. More precisely, the random variables μ̃(A1), . . . , μ̃(An) are mutually
independent for any disjoint sets A1, . . . , An .

Kingman [16] showed that the onlyway to spread outmass in a completely random
fashion (without deterministic components) is by randomly scattering point masses
in the space. In other words, CRMs select (almost surely) discrete measures and
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hence can be represented as
μ̃ =

∑

i≥1

JiδZi (1)

where the jumps Ji and locations Zi are random. Both jumps and locations are
controlled by the so-called Lévy intensity which characterizes the CRM. It is a
measure on R+ × X which can be written as ν(dv, dx) = ρ(dv)α(dx) for so-called
homogeneous CRM, which are considered here and correspond to the case of jumps
independent of the locations. The function ρ controls the intensity of the jumps. The
measure α, if the CRM is (almost surely) finite, which is assumed throughout, splits
up in α = aP0 where a > 0 is called the total mass parameter and the probability
distribution P0 tunes the locations.

Ever-popular CRMs include the generalized gamma process introduced by Brix
[5] and the stable-beta process, or three-parameter beta process, defined by Teh and
Gorur [29] as an extension of the beta process [14]. Here we consider another large
class of completely randommeasures called superposed gamma process, introduced
by Regazzini et al. [27]. It is identified by the jump intensity

ρ(dv) = 1 − e−ηv

1 − e−v

e−v

v
dv, η > 0. (2)

As noted by Lijoi et al. [19], one usually restricts attention to the case of positive inte-
ger η. Under this assumption, the superposed gamma processtakes the form of a gen-
uine superposition of independent gamma processes with increasing integer-valued
scale parameter, with jump intensity ρ(dv) = 1

v

(
e−v + e−2v + . . . + e−ηv

)
dv/v.

The specification of integer values for η has also the advantage to lead to analyt-
ical computation of the moments. Note that the special case η = 1 reduces to the
gamma process, which gives rise to the Dirichlet process by normalization. Alterna-
tively, the normalization of the superposed gamma processfor unspecified η provides
the so-called generalized Dirichlet process [19].

2.2 Ferguson and Klass Algorithm

Ferguson and Klass [11] devise a constructive representation of a CRM which
produces the jumps in decreasing order. This corresponds to the (almost surely
unique) ordering of the sum elements in (1) where J1 > J2 > · · · . Indeed, the
jumps are obtained as ξi = N (Ji ), where N (v) = ν([v,∞),X) is a decreasing func-
tion, and ξ1, ξ2, . . . are jump times of a standard Poisson process (PP) of unit rate:

ξ1, ξ2 − ξ1, . . .
i.i.d.∼ Exp(1). Figure1 illustrates the function N ( · ) which takes the

following form in the superposed gamma process case
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Fig. 1 Left illustration of Ferguson and Klass representation through the inversion of the jumps
times ξ1, . . . , ξ5 for a homogeneous Poisson process on R+ to the jumps J1, . . . , J5 of a CRM.
Right tail of the Lévy measure N ( · ) of the superposed gamma processwith η ∈ {1, . . . , 10}, η = 1
for the lowest curve, η = 10 for the highest curve

N (v) = aEη(v), where Eη(v) =
η∑

k=1

E1(kv) and E1(v) =
∫ ∞

v

u−1e−udu, (3)

and where the function E1 denotes the exponential integral function.
Since it is impossible to sample an infinite number of jumps, approximate sim-

ulation of μ̃ is in order. This becomes a question of determining the number M of
jumps to sample leading to the truncation μ̃M and truncation error TM as follow

μ̃M =
M∑

i=1

JiδZi , TM =
∞∑

i=M+1

Ji . (4)

The Ferguson andKlass representation has the key advantage of generating the jumps
in decreasing order implicitly minimizing such an approximation error. However, a
precise evaluation of TM , for example in expectation, is a daunting task due to the non
independence of the jumps in the Ferguson and Klass representation. The algorithm
is summarized in Algorithm1.

Then, the natural path to determining the truncation level M would be the evalu-
ation of the Ferguson and Klass tail sum

∞∑

i=M+1

N−1(ξi ). (5)

Brix ([5], TheoremA.1) provided an upper bound in probablity for (5) in the gener-
alized gamma case. In Proposition1 of Sect. 3 we derive also an upper bound for the
tail sum of the superposed gamma process. However, both bounds are far from sharp
and therefore of little practical use as highlighted in Sect. 3. This motivates the idea
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of looking for a different route and our proposal consists in the moment-matching
technique detailed in the next section.

From Fig. 1 it is apparent that increasing η leads to larger jumps which in turn
leads to the need of a higher truncation level in order to match a given precision level.
This is not surprising given the CRM at hand can be thought of as a superposition of
η gamma CMRs. Such an intuition is made precise in the next section.

Algorithm 1 Ferguson & Klass algorithm
1: sample ξi ∼ PP for i = 1, . . . , M
2: define Ji = N−1(ξi ) for i = 1, . . . , M
3: sample Zi ∼ P0 for i = 1, . . . , M
4: approximate μ̃ by

∑M
i=1 Ji δZi

3 Truncation Error of the Superposed Gamma Process

3.1 Bound in Probability

We provide an evaluation in probability of the truncation error TM in (4).

Proposition 1 Let (ξ j ) j≥1 be the jump times for a homogeneous Poisson process on
R

+ with unit intensity. Then for any ε ∈ (0, 1), the tail sum of the superposed gamma
process (4) satisfies

P

(
TM ≤ tεM

)
≥ 1 − ε, for tεM = C

(η!)1/η e
1− M

C , where C = 2eaη

ε
.

Proof Theproof follows along the same lines as the proof ofTheoremA.1. byBrix [5]
for the generalized gammaprocess and Proposition4 byArbel and Prünster [1] for the
stable-beta process. Let q j denote the ε2M− j quantile, for j = M + 1, M + 2, . . .,
of a gamma distribution with mean and variance equal to j . Then

P

( ∞∑

j=M+1

N−1(ξ j ) ≤
∞∑

j=M+1

N−1(q j )

)
≥ 1 − ε.

Denote t̃εM = ∑∞
j=M+1 N

−1(q j ) = ∑∞
j=M+1 E

−1
η (q j/a), and let us upper bound

E−1
η . By using E1(u) ≤ 1 − log(u), one gets

Eη(u) =
η∑

l=1

E1(lu) ≤ η −
η∑

l=1

log(lu) = η − log
(
η!uη

)
,
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which can be inverted to obtain

E−1
η (x) ≤ 1

(η!)1/η e
1− x

η .

Additionally, since the quantiles satisfy q j ≥ ε
2e j , we can conclude that

t̃εM ≤ 1

(η!)1/η
∞∑

j=M+1

e1−
q j
aη ≤ 1

(η!)1/η
∞∑

j=M+1

e1−
ε j

2eaη ≤ 2eaη

ε(η!)1/η e
1− εM

2eaη . ��

Remark It is interesting to note that the bound tεM for the superposed gammaprocess is
equal to its counterpart for the beta processwith concentration parameter c set to η, all
else things being equal (total mass parameter a and threshold ε). See Proposition4
in [1]. This finding provides a nice connection between both processes otherwise
seemingly unrelated.

The bound tεM obtained in Proposition1 is exponentially decreasingwithM , which
is reminiscent of the results obtained by Brix [5] and Arbel and Prünster [1], respec-
tively, for the generalized gamma process and the stable-beta process with no stable
component. As already pointed out by these authors, the bound tεM is very conserva-
tive due to a crude lower bound on the quantiles q j (notation of the proof). The left
panel of Fig. 2 displays this bound tεM , while the right panel illustrates the truncation
level M (in log-scale) required in order to guarantee with 95% probability an upper
bound on TM of tmax ∈ {1, 10, 100}, for varying values of η. Inspection of the plots
demonstrates the rapid increase with η of the number of jumps needed in order to
assess a given bound in probability.

As suggested by a Referee, a possible strategy for improving the result in Propo-
sition1 is to rely on concentration of measure techniques. This will be the object of
future investigations. A numerical strategy to improve the approximation consists in

M
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Fig. 2 Left variation of M 	→ tεM for η ∈ {1, 2, 5, 10}. Right variation of the threshold function
η 	→ M needed to match an error bound of tmax ∈ {1, 10, 100} with η ∈ {1, . . . , 20}, log scale on
y-axis
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directly calculating the quantiles q j (instead of resorting to the lower bound), thus
loosing the closed form expression of the bound.

3.2 Moment-Matching Criterion

We first concisely recall the moment-matching methodology introduced by Arbel
and Prünster [1] and then tailor it to the superposed gamma process. We assess the
quality of approximation of the Ferguson &Klass algorithm by comparing the actual
distribution of the random total mass μ̃(X) = ∑∞

i=1 Ji with its empirical distribution
(obtained by the sampled trajectories). Motivated by the fact that the first moments
carry much information about a distribution, the comparison is made by comparing
theoretical and empirical moments of μ̃(X). As measure of discrepancy, we use the
mean squared error between theoretical and empirical moments. We refer to [1] for
illustrations of this moment-matching criterion on the generalized gamma process
and the stable-beta process.

In order to apply this methodology also to the superposed gamma process, we
need to derive its theoretical moments. The n-th (raw) moment of the random total
mass is defined as

mn = E
[
μ̃n(X)

]
.

For general homogeneous CRMs, it takes on the form (see, e.g., Proposition1 in [1])

mn =
∑

(∗)

( n
k1 ···kn)

n∏

i=1

(
κi/ i !

)ki
, (6)

where the sum (∗) is over all n-tuples of nonnegative integers (k1, . . . , kn) satisfying
the constraint k1 + 2k2 + · · · + nkn = n and where κi is the i th cumulant defined by

κi = a
∫ ∞

0
viρ(dv).

In the case of the superposed gamma process, simple algebra leads to the following
expression for the cumulants

κi = a(i − 1)!ζη(i) (7)

which are in terms of the incomplete Euler–Riemann zeta function ζη(i) = ∑η

l=1
1
li .

Hence the moment-matching methodology introduced by Arbel and Prünster [1] can
be readily applied by resorting (6) and (7).
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