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Abstract. Action classification in still images has been a popular
research topic in computer vision. Labelling large scale datasets for action
classification requires tremendous manual work, which is hard to scale up.
Besides, the action categories in such datasets are pre-defined and vocab-
ularies are fixed. However humans may describe the same action with
different phrases, which leads to the difficulty of vocabulary expansion
for traditional fully-supervised methods. We observe that large amounts
of images with sentence descriptions are readily available on the Inter-
net. The sentence descriptions can be regarded as weak labels for the
images, which contain rich information and could be used to learn flexible
expressions of action categories. We propose a method to learn an Action
Concept Tree (ACT) and an Action Semantic Alignment (ASA) model
for classification from image-description data via a two-stage learning
process. A new dataset for the task of learning actions from descriptions
is built. Experimental results show that our method outperforms several
baseline methods significantly.

1 Introduction

Action classification in still images has been a popular research topic in com-
puter vision. Traditional fully-supervised learning methods for action classifi-
cation rely on large amount of fully-labelled data (i.e. each image is labelled
with one or more action categories) to learn action classifiers. However, labelling
image data with action categories requires tremendous manual work, which is
time-consuming and hard to scale-up. Another drawback of traditional super-
vised learning framework is that the action categories are pre-defined and limited,
while humans may describe the same action with different phrases, for example,
take out the chopping board and fetch out the wooden board. This drawback
leads to the difficulty of vocabulary expansion, as CNN [1,2] models or SVM
classifiers just assign a label to the test image. Hence, CNN or SVM models
would fail to classify the categories that are not in the training set.

We observe that large amounts of images with sentence descriptions are read-
ily available on the Internet, such as videos with captions and social media,
such as Flickr and Instagram. Such sentence descriptions can be regarded as
weak labels of the images. Sentence descriptions are generated by humans and
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Fig. 1. Descriptions, as weak labels to images, contain rich information about actions.
Images and corresponding descriptions are from Visual Genome [3]

contain rich information about actions, which could be used to learn an expand-
ing vocabulary of actions. Some example are shown in Fig. 1. Another observa-
tion we make is that action concepts are naturally represented as a hierarchy; for
example, “play guitar” and “play violin” are subcategories of “play instrument”.
If such hierarchical structure of action categories is available, classification meth-
ods can choose to use detailed knowledge if necessary or generalized knowledge
when details are unavailable or irrelevant.

In this paper, we propose a method to tackle the problem of learning actions
from descriptions: Given a set of image-description data (assuming descriptions
containing human action information), learning to recognize human actions.
Our method supports hierarchical clustering of action concepts and vocabu-
lary expansion for action classification. Specifically, our method learns an Action
Concept Tree (ACT) and an Action Semantic Alignment (ASA) model for classi-
fication via a two-stage learning process. ASA model contains a CNN to extract
image-level features, an LSTM to extract text embeddings and a multi-layer
neural network to align these two modalities. In the first stage, (a) we design a
Hierarchical Action Concept Discovery (H-ACD) method to automatically dis-
cover action concepts from image-description data and cluster them into a hier-
archical structure (i.e. ACT); (b) ASA is initialized by the image-description
mapping task in stage-1. In the second stage, the target action categories are
matched to the nodes in ACT and the associated image data are used to fine-
tune ASA for this action classification task to improve the performance. Note
that no image data from test domain are used for training.
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To facilitate research on this task, we constructed a dataset based on Visual
Genome [3], called Visual Genome Action (VGA). Although Visual Genome
contains well-annotated region descriptions, we do not use the region information
and treat the descriptions as image-level. There are 52931 image-description pairs
in the training set and 4689 images of 45 categories in test set. More details of
this dataset are given in Sect. 4.1 later.

In summary, our main contributions are:

(1) A Hierarchical Action Concept Discovery (H-ACD) algorithm to automati-
cally discover an Action Concept Tree (ACT) from image-description data
and gather samples for each action node in ACT.

(2) An end-to-end CNN-LSTM Action Semantic Alignment (ASA) network
which aligns semantic and visual representation to classify actions with
expanding vocabulary.

(3) A dataset for the problem of learning actions from descriptions, which is
built on Visual Genome, containing 52931 image-description pairs for train-
ing and 45 action categories for testing.

The paper is organized as follows. Section 2 discusses the related works. In
Sect. 3, we will introduce our two-stage framework to learn actions from image-
description data. We evaluate our model in Sect. 4 and give our conclusions in
Sect. 5.

2 Related Work

Action Classification in Still Images: The use of convolutional neural net-
work (CNN) has brought huge improvement in action classification [4]. [5] fine-
tunes the CNN pre-trained on ImageNet and shows improvement over traditional
methods. [6] designs a multi-task (person-detection, pose-estimation and action
classification) model based on R-CNN. [7] develops an end-to-end deep convolu-
tional neural network that utilizes contextual information of actions. HICO [8]
introduces a new benchmark for recognizing human-object interactions, which
contains a diverse set of interactions with common object categories, such as
“hold banana” and “eat pizza”. Ramanathan et al. [9] proposes a neural network
framework to jointly extract the relationship between actions and uses them for
training better action retrieval models. These methods all rely on fully-labelled
data.

Weakly Supervised Action Concept Learning: Weakly supervised action
concept learning relies on weakly-labelled data, such as video-caption stream
data [10,11] and focuses on automatically discovering and learning action con-
cepts. [12] designs a method to automatically discover the main steps for spe-
cific tasks, such as “make coffee” and “change tire”, from narrated instructional
videos. Their method solves two clustering problems, one in text and one in video,
applied one after each other and linked by joint constraints to obtain a single
coherent sequence of steps in both modalities. Ramanathan et al. [13] propose a
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method to learn action and role recognition models based on natural language
descriptions of the training videos. Yu et al. [14] discover Verb-Object (VO) pairs
from the captions of the instructional videos and use the associated video clips
as training samples. The learned classifiers are evaluated in event classification,
compared with well defined action categories in HMDB51 [15] and UCF50 [16].
[17] proposes a general concept discovery method from image-sentence corpora
and apply the concepts on image-sentence retrieval tasks.

ACD [18] solves a similar problem to ours. It automatically discovers action
concepts from image-sentence corpora [19,20], clusters them and trains classifier
for each action concept cluster. However, there are two main drawbacks in this
method: (1) no hierarchical clustering: once the action concepts are clustered,
the detailed information are lost; (2) no vocabulary expansion: if the target
test action categories are missed in the training set, ACD would fail to perform
classification.

Language & Vision: Image captioning methods take an input image and gen-
erate a text description of the image content. Recently, methods based on con-
volutional neural networks and recurrent neural networks [21,22] have shown
to be an effective way on this task. VSA [23] is one of the recent successful
models. It uses bidirectional recurrent neural networks over sentences, convolu-
tional neural networks over image regions and a structured objective that aligns
the two modalities through a multimodal embedding. Besides image captioning,
other relevant work includes natural language object retrieval [24] or segmen-
tation [25], which takes an input image and a query description and outputs a
corresponding object bounding box or a segmentation mask.

3 Actions from Descriptions

In this section, we introduce the learning framework, which is a two-stage
method. In the first stage, our target is to learn a general knowledge base of
actions, which contains two parts: a hierarchical structure for action concepts
and a general visual-semantic alignment model. In the second stage, the frame-
work learns to classify specific action categories (i.e. target categories for test).
The classifiers are fine-tuned from the visual-semantic alignment model learned
in stage 1. The overall system is shown in Fig. 1.

3.1 Stage 1: Learning General Action Knowledge

As for general action knowledge, we refers to two concepts. The first one is a
hierarchical structure of actions, which we call Action Concept Tree (ACT): each
node in ACT contains an action concept, such as play frisbee and play basketball,
and the related images; the action concepts are extracted from descriptions and
the images come from the original image-description dataset. The second one is
a general visual-semantic alignment model: the input of the model is an image
and a description, and the output is a confidence score of the similarity of the
image and the description. The framework of Stage 1 is shown in Fig. 2.
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Fig. 2. Stage-1: model initialization via image-description matching and hierarchy
action discovery

Hierarchical Action Concept Discovery (H-ACD): ACD [18] proposed
an action concept discovery method working with image-sentence corpora. How-
ever, the discovered action clusters are not organized in a hierarchical struc-
ture, which may lose the detailed information after clustering. Hence, based on
ACD, we propose a Hierarchical Action Concept Discovery (H-ACD) method,
which automatically discovers action concepts from image-description data and
organizes them in a hierarchical structure using WordNet [26]. The process of
action concept discovery and clustering are similar to ACD. First we extract
Verb-Object (VO) pairs from sentence descriptions and the visualness of these
VO pairs are verified by two fold cross-validation. After visualness verification,
we generate a multi-modal representation for each action concept and calculate
similarity score for each pair of action concepts.

After computing the similarity, we use the H-ACD algorithm to generate
a hierarchical structure for action concepts. Note that nearest neighbor (NN)
clustering algorithm is proposed in ACD [18]; we use it as a part of our H-ACD
algorithm. We first apply NN-clustering algorithm (we fix the parameter C of
NN-clustering as 4.) [18] on all the action concepts to get a list of action clusters.
Then, inside each cluster, we continuously apply NN-clustering algorithm to get
more smaller clusters; we do this recursively util no new cluster is generated.
Each cluster is regarded as a node in the hierarchical structure and the node
names are generated following a similar naming strategy of HAN [27] described
in the following. For the object part, we find the lowest common hypernym in
WordNet. For the verb part, we follow a simple strategy: if the verbs are the
same, then the father node keeps the same verb; if the verbs are different, the
father node is named as “interact with”. For example, for a node containing



24 J. Gao and R. Nevatia

{hold dish, hold pan}, the least shared parent of dish and pan is container and
for the verb part, “hold” itself is the least shared parent. So the name of this
action node is “hold container”. The H-ACD algorithm is shown in Algorithm1.

Data: Concept similarity matrix M of size l × l and concept list L of size l
Result: Action Concept Tree (ACT)
Queue q ← NN-Clustering(M , L);
TreeNode root;
root.addChild(q.all());
while q not empty do

Lcluster ← q.pop();
node=ACT.getNode(Lcluster);
Mcluster ← getSimMat(Lcluster);
tinyclusters=NN-Clustering(Mcluster, Lcluster);
q.push(tinyclusters);
node.addChild(tinyclusters);

end
Generate node names following the naming strategy.

Algorithm 1. Hierarchical Action Concept Discovery (H-ACD) algorithm

ASA Model Initialization via Image-Description Mapping: Our final
target is to classify action categories. Rather than training classifiers for each
category, we want to build a connection between the semantic meaning and
visual meaning of actions. Therefore, we formulate the action classification as
a visual-semantic alignment problem between the image and action categories.
The Action Semantic Alignment (ASA) model contains three parts: a CNN net-
work to extract feature vector of the input image, an LSTM network to extract
text embedding and an alignment network to compute the alignment score of
the visual and semantic representations. Image-description mapping serves as a
parameter initialization method for ASA model, which helps the model to learn
a connection between semantic and visual spaces.

The input of ASA is an image Ii and the corresponding sentence descrip-
tion Di. The image is processed by VGG-16, which outputs a dimg dimensional
feature vi. For a text sequence S = (w1, ..., wT ) with T words, each word is
transformed to a dw2v dimensional vector by the word embedding matrix and
then processed by an LSTM module sequentially. The word embedding matrix is
trained by skip-gram model on English Wiki data. At the final time step t = T ,
LSTM outputs the final hidden state and we use it as the sentence-level embed-
ding si, which is a dtext dimensional vector. vi and si are concatenated to vsii
with a length of dvs = dtext + dimg, which is visual-semantic representation of
the image and description. Then we train a two-layer alignment network, with
a dalg dimensional hidden layer. The alignment network take dvs dimensional
input and output a confidence score csii, which indicates whether the image and
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the description is aligned. The alignment network is implemented in a fully con-
volutional way as two 1 ∗ 1 convolutional layers (with ReLU function between
them).

During the training time, we optimize the model inside each mini-batch. The
loss function is as follows.

loss1 =
N∑

i=0

[αclog(1 + exp(−csi,i)) +
N∑

j=0,j �=i

αwlog(1 + exp(csi,j))] (1)

where N is the batch size, αc and αw are the loss weights for correct and wrong
image-description. The loss function encourages the network to output high score
of correct image-description pairs and low score of incorrect image-description
pairs. In practice, we find that training converges faster using higher loss weights
for correct pairs and we use αc = 1 and αw = 0.01.

3.2 Stage 2: Action Classification on Target Categories

Given a set of action categories for classification (without training samples), we
adjust the ASA model to the specific action classification task. The first step
is to match the given action categories to some existing action nodes in ACT.
Then we use the matched action nodes and the associated images to fine-tune
our ASA model. The framework of Stage 2 is shown in Fig. 3.

Target Action Categories Matching: We first match the actions via keyword
searching. Suppose the target action category is ci and the action node in ACT
is represented by nj . We extract the verb and object from the target action
category ci and search for them in the discovered action hierarchy to see if there
is an exact match. For example, a target action category is “play instrument”
and there is a node in action hierarchy named “play instrument”, then we match
them and use the similarity score (calculated by ASA, see below) between them
as a baseline score θ. If there is no exact match via keyword searching, we assign

Fig. 3. Stage-2: adjust the model to a specific action classification task.
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θ with a constant value. In the second step, we use the ASA model to compute
a similarity score between the target action category ci and all action nodes nj

in ACT. The associated images of nj are Pj = {Ijk}, which has size m. The
similarity score between ci and nj is

S(ci, nj) =
1
m

m∑

k=0

ASA(Ijk, ci) (2)

For a specific action category ci, we select the action node nj that has the highest
similarity score and if the score is larger than or equal to θ, we match < ci, nj >.
Note that some categories may still not be matched after the second step. After
matching, we obtain a list of training samples {ci, Pj}. The labels are ci and the
training images are the associated images of the corresponding matched node
nj . We don’t assign any training data for the target categories with no matched
node in ACT. The matching algorithm is detailed in Algorithm2 below.

Data: ASA model, ACT and Target action categories C = {ci}
Result: Matched pairs < ci, nj >
for ci in C do

for nj in ACT do
if ci.name=nj .name: match < ci, nj >;
break;

end
if ci is matched:

ExactMatch, θ ← nj , S(ci, nj);
match < ci, ExactMatch >;

else:
ExactMatch, θ=None, InitializationValue;

MaxScore=0;
for nj in ACT and nj �= ExactMatch do

if S(ci, nj) >MaxScore:
Node, MaxScore ← nj , S(ci, nj)

end
if MaxScore >= θ: match < ci, Node >;

end

Algorithm 2. Target action categories matching algorithm

ASA Fine-Tuning for Specific Action Classification Task: We use the
training samples obtained in last step to fine-tune the network. In stage 1, the
loss function tends to match the correct image-description pair and it works as
a parameter initialization method. In stage 2, our goal is to optimize the model
to some specific classification task. We formulate the classification problem as a
image-description matching problem. The name of the category is regarded as a
text sequence, just like the sentence description. Suppose there are M categories,
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leading to M corresponding category descriptions {CDj , j = 0, 1, 2...,M − 1}.
Suppose the label of the input image Ii is ti, then the loss function of stage 2 is
as follows.

loss2 =
N∑

i=0

[αclog(1 + exp(−csi,ti)) +
M∑

j=0,j �=ti

αwlog(1 + exp(csi,j))] (3)

where csi,j is the matching score between Ii and CDj , N is the batch size. We
use αc = 1 and αw = 0.01. The loss function encourages the correct image-action
pairs to output high positive score and other wrong pairs output low negative
score.

Action Category Prediction: At test time, the prediction of an input image
Ii is the argmax of the matching scores csi,j between Ii and CDj .

prediction(Ii) = argmax(csi,j), j = 0, 1, 2...M − 1 (4)

4 Evaluation

4.1 Experiments on VGA

Dataset: Visual Genome Action (VGA). There are many image-
description datasets, which are suitable for learning actions from descriptions.
However, none of them contain pre-defined action categories and category anno-
tations for each image. Therefore, we construct a dataset from Visual Genome
for this problem, called Visual Genome Action (VGA). We split Visual Genome
into two parts: 75% for training and validation and 25% for testing. The training
set and test set are carefully checked to ensure that there is no overlap of images
between these two sets.

For the training split, since we only focus on human action learning, we filter
out the descriptions which don’t have verbs or human subjects; for example, “a
dog is running on the grass” and “a man with a white shirt” are filtered out.
52931 image-description pairs remain after such filtering. The descriptions in
Visual Genome are region based, but we treat them as image-level descriptions.
For the test split, we extract Verb-Object (VO) pairs and filter out the ones
with very few image samples. After that, we manually filter out the VOs with
no visual meaning, such as “do things”. Finally, there are 45 categories and
4689 images for testing. The 45 test action categories are listed in Table 1. Some
categories overlap; for example, “hold racket” and “play tennis”, “hit ball” and
“play soccer”. We manually checked each image of these categories and added
additional labels if necessary. For example, if an image of the category “hold
racket” also represents the action of “play tennis”, then we also add this image
to the category of “play tennis”. In other cases, people may be just holding a
tennis racket but not playing, then we don’t add additional labels to such images.
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Table 1. Action categories in VGA test set

boat brush tooth color hair do trick drink wine

eat fruit eat pizza enjoy outdoors fly kite hit ball

hold bag hold banana hold bat hold camera hold controller

hold dog hold fork hold kite hold knife hold pole

hold racket hold sandwich hold umbrella jump play baseball

play basketball play frisbee play soccer play tennis read book

ride elephant ride horse ride wave run sit

ride skateboard ski smile stand surf

swim use phone walk watch game wear necklace

Metric. We tested our model on action classification task on VGA. As for
evaluation metric, we report the mean Average Precision (mAP), Recall@1 and
Recall@5.

Network Implementation. We implemented ASA network in Tensorflow [28],
including CNN network, LSTM network and the multi-layer alignment net-
work. For the CNN part, We use VGG-16 architecture and the parameters are
initialized by ImageNet [29] image classification dataset. We use a standard
LSTM architecture with 1000-dimensional hidden state. The descriptions input
to LSTM have maximum length of 6 for both stage-1 and stage-2. The hidden
layer of the visual-semantic alignment network is 500-dimensional. We train a
skip-gram [30] model for the word embedding matrix using the English Dump
of Wikipedia. The dimension of the word vector is 500. The whole network is
trained end-to-end in two stages. We use three Adam optimizers [31] to optimize
CNN, LSTM and the visual-semantic alignment network. The learning rates are
0.0001, 0.001 and 0.001 respectively. The model is trained on a Tesla K40 GPU;
the batch size is 96. It takes about 1 day to train the whole model for both
stage-1 and stage-2.

System Variants. We experimented with variants of our system to test the
effectiveness of our method. ASA (Stage 1): we only trained the ASA model for
stage-1 using the image-description pairs. ASA (Stage 2): we only trained the
ASA model for stage-2 using the matched action nodes in ACT. ASA (Stage
1+2, w/o ACT): ASA model is trained for stage-1 and stage-2, but we only
use flat action concepts (i.e. only the leaf action nodes in ACT) to match the
target action categories. ASA (Stage 1+2, w/ ACT): this is our full model;
ASA model is trained for stage-1 and stage-2, and full ACT is used to match
the target action categories.
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Baseline Methods. We introduce the baseline methods we implemented.
ACD [18]+SVM+AdaBoost: In this baseline method, we use ACD [18] to

discover a list of action concepts from the training set and train SVM classifiers
[32] for each action concept. Then we match the test action categories with the
discovered action concepts by keyword searching. Multiple action concepts may
matched to the same test categories and each of them can be regarded as weak
classifier to the test category. To make use of all the related training data, we
further use AdaBoost to build a stronger classifier.

ACD [18]+DeViSE [33]: In this baseline method, we first use ACD to discover
a list of action concepts. Instead of training SVM classifiers for each of them, we
apply DeViSE [33] methodology. The verb and the object of a action category
are transformed to vectors using a word embedding matrix and are concatenated
together. The word embedding matrix is trained by wiki dump data and the
dimension of the word vector is 500. All the discovered action concepts and the
associated images are used to train DeViSE model. At test time, the action
categories are transformed to vectors using the same word embedding matrix.
The prediction of an input image is the argmax of the matching scores between
the image and the test categories.

Visual-semantic alignment [23]: This baseline method is similar to the model
in VSA [23]. However, we use regular LSTM instead of BRNN to encode the input
description. The image is processed by VGG-16 and 4096 dimensional fc7 vector
is extracted as image-level feature. The training data are image-description pairs.
The output of the model is a confidence score which indicates whether the image
and description are matched. The test image is matched with all action categories
and the prediction is the category with the highest score.

Action Concept Tree (ACT). There are totally over 100 action concepts
(i.e. leaf action nodes) discovered in the training set of VGA. These action
concepts are clustered into a 4-layer action concept tree (ACT). Due to the
limited space, we can’t illustrate the whole ACT. Some nodes in ACT are shown

Fig. 4. Example nodes in ACT.
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in Fig. 4. Under the node “ride entity”, we can see that “ride motorcycle”, “ride
bicycle” and “ride bike” are clustered together and the automatically generated
node name is “ride wheeled vehicle”, as “wheeled vehicle” is the lowest common
hypernym of “bike”, “bicycle” and “motorcycle” in WordNet. Under the node
“interact with frisbee”, there are four leaf nodes: “catch frisbee”, “hold frisbee”,
“play frisbee” and “throw frisbee”. They have common object “frisbee” but
different verb actions, so we generate the father node name as “interact with
frisbee”. The node “interact with physical entity” is illustrated as a poor case
of our naming strategy. The child nodes have no common verb and the lowest
common hypernym of the objects in WordNet is “physical entity”, therefore the
father node is named as “interact with physical object”, which is a very vague
action name. Although, the naming strategy is not ideal in this case, the cluster
itself still represents one meaningful action category: “interact with food”.

Action Classification Results. The experimental results on VGA are shown
in Table 2. From the results, we can see that our 2-stage learning method out-
performs several baseline methods. Training models with only stage-1 or stage-
2 would lower the performance. Stage-1 only learns general image-description
matching knowledge and it does not optimize the model to a specific action clas-
sification task; on the other hand, without stage-1, stage-2 optimizes the model
from random parameters and it may overfit on such a small dataset of language.
Using the hierarchical structure of action concepts ( i.e. ASA (Stage1+2, w/
ACT)) brings a 1.7% improvement, compared with the flat structure of action
concepts ( i.e. ASA (Stage1+2, w/o ACT)). We believe the reason is that ACT
and the node matching algorithm together provide a better way to organize and
search for the generalized and detailed knowledge of actions. For example, com-
pared with the flat action concept structure, the test category “brush tooth” is
matched not only with the node of “brush tooth”, but also with the parent node
of “hold toothbrush” and “brush tooth” in ACT, which allows ASA to use the
additional data provided by“hold toothbrush”.

In Fig. 5, some example predictions are shown. We can see that failure could
happen when subtle human-object interaction differences are involved; for exam-
ple, “hold sandwich” and “hold banana” have the same verb action (i.e. hold)
and visually similar objects.

Table 2. Comparison of different methods on the VGA action classification test set

Method mAP(%) R@1(%) R@5(%)

ACD+SVM+AdaBoost 20.2 24.5 56.3

ACD+DeViSE 22.1 25.1 54.2

VSA 15.9 18.1 47.3

ASA (Stage 1) 20.1 25.3 56.5

ASA (Stage 2) 18.5 24.6 50.4

ASA (Stage 1+2, w/o ACT) 26.8 29.6 60.4

ASA (Stage 1+2, w/ ACT) 28.5 31.3 63.2
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Fig. 5. Prediction examples of the top 3 results on VSA test set. The first four rows
are positive examples and green represents the condition when the prediction matches
the ground truth. The last row shows some failure cases. (Color figure online)
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Table 3. Transfer learning from Flickr30k to PASCAL VOC 2012 action classification
test set (AP%).

method jump phone instr. read bike horse run photo comp. walk mAP

ACD [18] 62.2 15.4 78.8 29.6 84.5 85.9 60.8 24.0 69.2 32.4 54.3

ASA+ACT 63.5 15.5 80.9 28.9 86.7 92.0 60.7 24.1 69.3 30.9 55.2

4.2 Experiments on Flickr30k and PASCAL VOC

We use the same experiment setup as ACD [18]: using Flickr30k [20] as source
image-description dataset and PASCAL VOC 2012 action classification as tar-
get test dataset. Flickr30k contains 30000 images and each image is captioned
by 5 sentences. PASCAL VOC 2012 action classification dataset has 10 action
categories. We train our full model (ASA + ACT) on Flickr30k and apply the
action concepts on PASCAL VOC.

As shown in Table 3, our method outperforms ACD [18] in most categories
and by 0.9% in mAP. For example, “ride bike” and “ride horse” are two separate
subcategories in our ACT and provide more precise data for training, while ACD
[18] may cluster these two with other categories such as “ride skateboard”.

5 Conclusion

We presented a two-stage learning framework to learn an Action Concept Tree
(ACT) and an Action Semantic Alignment (ASA) model from image-description
data. Stage-1 has two steps: (a) ACT is discovered and built by H-ACD algo-
rithm, each node in the tree contains an action name and the relevant images; (b)
ASA model is trained by image-description mapping task for parameter initial-
ization. In stage two, we adjust the ASA model to a specific action classification
task. The first step is to match the target action categories to the action nodes in
ACT discovered in stage-1. After matching, we use the associated data to fine-
tune ASA model to this action classification task. Experimental results show
that our model outperforms several baseline methods significantly.
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