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Abstract. In computer vision communities such as stereo, optical flow,
or visual tracking, commonly accepted and widely used benchmarks have
enabled objective comparison and boosted scientific progress.

In the emergent light field community, a comparable benchmark and
evaluation methodology is still missing. The performance of newly pro-
posed methods is often demonstrated qualitatively on a handful of
images, making quantitative comparison and targeted progress very diffi-
cult. To overcome these difficulties, we propose a novel light field bench-
mark. We provide 24 carefully designed synthetic, densely sampled 4D
light fields with highly accurate disparity ground truth. We thoroughly
evaluate four state-of-the-art light field algorithms and one multi-view
stereo algorithm using existing and novel error measures.

This consolidated state-of-the art may serve as a baseline to stimulate
and guide further scientific progress. We publish the benchmark website
http://www lightfield-analysis.net, an evaluation toolkit, and our ren-
dering setup to encourage submissions of both algorithms and further
datasets.

1 Introduction

Over the last decade, light field analysis has grown from a niche topic to an estab-
lished part of the computer vision community. While in its most general form,
the light field captures the radiance distribution for every ray passing through
every point in space-time [1], one usually simplifies this to a 4D parametrization,
where one essentially considers a dense collection of pinhole views with parallel
optical axes, sampled on a rectangular grid in a 2D plane. The key difference to
the classical multi-view scenario is the dense and regular sampling, which allows
to develop novel and highly accurate methods for depth reconstruction [2-6],
which can correctly take occlusions into account to recover fine details [7].
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Fig. 1. We present a new light field benchmark consisting of four stratified, four test,
and four training scenes. The stratified scenes are designed to pose specific, isolated
challenges with spatially increasing difficulty. To warrant a deep and comprehensive
understanding of algorithm performance, we quantify a variety of characteristics such as
foreground fattening, texture sensitivity, and robustness to noise. For the stratified and
training scenes, we provide high resolution ground truth disparity maps, normal maps
and 3D depth point clouds. The same information is provided for twelve additional
scenes (see Fig. 2).

In more mature vision communities such as the stereo or tracking commu-
nity, standard benchmarks of sufficient variety and difficulty have proven their
fundamental importance for targeted development and objective judgment of the
overall progress in the respective field. Detailed evaluations and comparisons of
the precise strengths and weaknesses of different methods are guiding research
and thus stimulating progress. However, such a common benchmark is currently
lacking in the light field community. For this reason, recent papers often resort
to showing qualitative results on real-world datasets to showcase their improved
results [2,6,7], but performance is very difficult to judge without ground truth.
In those cases where a numeric evaluation is performed, the specific ground
truth data set and/or quality metrics often vary wildly between papers, again
making objective comparison hard [2-7]. Moreover, parameters might be fine-
tuned towards a certain quality metric, e.g. more smoothing in general improves
the mean squared error at the expense of per-pixel accuracy. Finally, there is
currently no benchmarking website which offers the opportunity of a common
gathering point for datasets and online performance comparison.
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Contributions. The light field benchmark we present in this paper is designed
to remedy the aforementioned shortcomings. In this first iteration, we focus
solely on the problem of depth estimation for Lambertian scenes, although we
provide some scenes with specular reflections to offer more of a challenge. Our
main contributions can be summarized as follows:

— We introduce a new synthetic dataset with 24 carefully designed scenes, which
overcomes technical shortcomings of previous datasets.

— We propose novel error measures and evaluation modalities enabling compre-
hensive and detailed characterizations of algorithm results.

— We present an initial performance analysis of four state-of-the-art light field
algorithms and one multi-view stereo algorithm.

— We publish a benchmarking website and an evaluation toolkit to provide
researchers with the necessary tools to facilitate algorithm evaluation.

We consider this benchmark as a first step towards a joint effort of the light field
community to develop a commonly accepted benchmark suite. All researchers in
the field are kindly invited to contribute existing and future algorithms, datasets,
and evaluation measures.

2 Related Work

Existing Light Field Datasets. The available datasets can be grouped into
synthetic light fields, real world light fields captured with a plenoptic camera
(usually a Lytro Illum) and real world scenes captured with a camera array or
gantry. We are aware of multiple smaller and larger collections, in particular
the Stanford Light Field Archive [8], the Synthetic Light Field Archive [9], a
collection of Lytro images [10], the 3D High-Resolution Disney Dataset [11], and
the New Light Field Image Dataset [12]. All these datasets have in common
that no ground truth data is available, making them hard to use for precise
benchmarking.

To our knowledge, the only collection of light fields which comes with ground
truth depth and an open benchmark is the HCI Light Field Benchmark by
Wanner et al. [13]. They provide synthetic as well as real world 4D light fields
including ground truth. In the past, this benchmark stimulated the growth of
multiple light field algorithms, but it now reaches a point where we think it can no
longer satisfy the needs of the light field community. This is due to three major
drawbacks. First, their ground truth gives around 130 distinct depth labels,
yielding a maximum evaluation accuracy which is already surpassed by state-
of-the-art algorithms. Second, the ground truth data contains errors in the form
of wrong pixels, as well as inaccuracies at occlusion boundaries, which are a key
part of depth accuracy evaluation. Third, due to the way the light fields were
rendered, a systematic noise pattern is present that is the same for all views.

Insights from Other Popular Benchmarks. In more mature communities
such as stereo, optical flow, and visual tracking, benchmarks play a fundamental
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role in boosting scientific progress: they help consolidate existing research [14]
and guide the community towards open challenges (e.g. [15] for large motion
optical flow, [16] for automotive stereo). Building upon the experience from
these successful benchmarks, we identify three key insights for the design of
our benchmark. From the Visual Object Tracking Community', we conclude
that scientific progress thrives if benchmarks are seen as a joint effort by and
service for the community [17,18]. We therefore encourage researchers to not only
contribute algorithms but also datasets and evaluation methods. Second, there
is no single best algorithm: algorithms have different strengths and weaknesses
and may be used for applications with very different requirements. We therefore
use multi-dimensional performance evaluation with carefully designed metrics to
reflect this diversity [19-21]. Third, as methods improve, benchmarks may no
longer be suitable to differentiate algorithm performance. They may even hinder
scientific progress by unintentionally stimulating overfitting. We hence designed
our benchmark for a limited lifespan, focusing on those challenges where current
algorithms struggle with. Together with the community, similar to [19,22], we
plan to regularly maintain the dataset and add new scenes when necessary.

3 Considerations on Benchmark Design

Light field and multi-view stereo algorithms find more and more applications in
real world challenges such as the movie set reconstruction and industrial optical
inspection. Often, medical or automotive technologies are even safety-relevant.
Designing a useful benchmark requires addressing the following four aspects:

(1) Benchmark Purpose. Test datasets should be compact to minimize dataset
creation cost, maximize information gain, and reduce benchmarking efforts.
Researchers across different fields of computer vision agree that a systematic,
considerate compilation of imagery is necessary to allow for specific, meaningful
algorithm evaluation [19,23-26]. Unintended biases can occur in dataset cre-
ation, causing e.g. an overemphasis on smooth surfaces in the scenes [23]. Using
top-down approaches such as requirements engineering [25] or bottom-up meth-
ods such as HAZOP studies [23] can alleviate this risk. As shown below, state of
the art algorithms often struggle with geometry and texture challenges. Hence,
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Fig. 2. We provide 12 additional scenes with ground truth. They are not part of the
official benchmark but can be used for algorithm development and evaluation.
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we focus on five challenges, namely occlusion boundaries, fine structures, low
texture, smooth surfaces and camera noise.

(2) Scene Design. Simple scenes focusing on a single challenge allow to decouple
the performance analysis of each individual challenge [24]. Thus, we introduce
four light fields with controlled parameters for a fixed challenge combination:
Backgammon, Dots, Pyramids and Stripes (see Fig.1). We call these scenes
stratified since their goal is to create quantifiable challenges which can be used
to re-weight performance metrics based on real-world, non-stratified data. To
gradually increase each challenge, the scenes exhibit spatially increasing diffi-
culties. This allows both for immediate visual inspection as well as quantitative
comparison between algorithms. Yet, complex real-world scenes contain all the
challenges in potentially statistically significant spatial combinations. We there-
fore create additional, photorealistically rendered scenes (see Fig.1). This sup-
presses the chance of overfitting parameters to a certain challenge and helps to
obtain an intuition on real-world performance.

(3) Dataset Acquisition. To date, no measurement technology exists to record
real light fields with sufficiently accurate ground truth. Using computer vision
algorithms to create ground truth for computer vision algorithms defeats the
purpose of benchmarking. Recent research shows promising results that render-
ing can be a valid approach [15,27,28]. We therefore use rendered scenes, build-
ing on the advantages of near-perfect ground truth accuracy and the option to
systematically vary scene parameters.

(4) Benchmarking Methodology. We adopt the approach of Scharstein et al. [19]
and divide our dataset into test, training, and additional scenes (see Figs.1
and 2). To be listed on the public benchmark table, we ask participants to sub-
mit their algorithm results and runtimes on the twelve scenes as depicted on
Fig. 1. Participants may use the input data and disparity ranges as provided on
the website. We further provide an evaluation toolkit which contains: (i) file IO
methods for Matlab and Python (ii) a submission validation script (iii) evalu-
ation code to compute and visualize the metrics on the stratified and training
scenes. All metric scores and visualizations will be computed on our server and
displayed publicly on the benchmark table. The ground truth of the training and
stratified scenes may be used to optimize parameter settings. We do not publish
ground truth for the four photorealistic test scenes. As in [19] algorithm results
of the training scenes will be available for download in full resolution. The twelve
additional scenes with full ground truth are not part of the benchmark. They
are shared with the community to support further algorithm development. We
refer to http://www.lightfield-analysis.net for technical submission details.

4 Description of Dataset and Metrics

In this section, we present the scenes and corresponding error metrics resulting
from our theoretical considerations on scene content and performance analysis.
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4.1 Technical Dataset Details

The scenes were created with Blender [29] using the internal renderer for the
stratified scenes and the Cycles renderer for the photorealistic scenes. We built
the light field setup in a way such that all cameras are shifted towards a common
focus plane while keeping the optical axes parallel. Thus, zero disparity does not
correspond to infinite depth. Most scene content lies within a range of —1.5 px
and 1.5 px, though disparities on some scenes are up to 3 px.

For each scene, we provide 8bit light fields (9 x 9 x 512 x 512 x 3), cam-
era parameters, and disparity ranges. For the stratified and training scenes we
further provide evaluation masks and 16 bit ground truth disparity maps in two
resolutions (512 x 512 px and 5120 x 5120 px). We use the high resolution ground
truth to accurately evaluate algorithm results at fine structures and depth dis-
continuities. The textures of the stratified scenes are generated from Gaussian
noise to minimize potential unwanted interference of texture irregularities with
the actual challenges in the scene. A detailed technical description of the data
generation process and the source code of the Blender add-on can be found at
http://www.lightfield-analysis.net.

4.2 General Evaluation Measures

Algorithms often have different strengths and weaknesses, such as overall accu-
racy or sensitivity to fine structures, which may be prioritized very differently
depending on the application. In the spirit of [21], we quantify a variety of char-
acteristics to warrant a deep and comprehensive understanding of individual
algorithm performance. We provide the commonly used MSE * 100 and Bad-
Pix(0.07) metrics as well as Bumpiness and scene specific adaptions of these
metrics. The adaptations are introduced together with the respective scenes.
The general MSE, BadPix, and Bumpiness metrics are defined as follows:

Given an estimated disparity map d, the ground truth disparity map gt and
an evaluation mask M, MSE is quantified as

Y (d(x) - gt(x))?
zeM
M|

MSE ;= %100 (1)

and BadPix is quantified as

[ € M: |d(x) — gt()| > 1} o)
M|

To measure algorithm performance at smooth planar and curved surfaces we

further define f = d — gt to quantify Bumpiness as

ZM min(0.05, || Hy(z)l|7)
Bumpiness = £ * 100. (3)
M|
Hence, the bumpiness metric solely focuses on the smoothness of an estima-
tion but does not assess misorientation or offset. These properties are covered
by other metrics.

BadPixpam(t) =
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4.3 Scene Descriptions with Corresponding Evaluation Measures

Backgammon. This scene (see Fig.1) is designed to assess the interplay of
fine structures, occlusion boundaries and disparity differences. It consists of two
parallel, slanted background planes and one foreground plane which is inversely
slanted. The foreground plane is jagged to create increasingly thin foreground
structures and increasingly fine background slits. On Backgammon, we quantify
Foreground Fattening which is defined at occlusion boundaries on a mask M
that only includes background pixels as

{z € M: d(x) > h}|
M W

FG_Fattening =

where h = (BG 4+ FG)/2. Thus, Foreground Fattening calculates the fraction of
pixels that are closer to the foreground than to the background and should have
been estimated as background. Similarly, Foreground Thinning is defined on a
mask M that only includes foreground pixels as

[{x € M: d(x) < h}|
M ’

FG_Thinning = (5)
i.e. Foreground Thinning calculates the fraction of pixels that are closer to the
background than to the foreground.

Pyramids. With this scene, we assess algorithm performance on convex versus
concave as well as rounded versus planar geometry. The upper hemisphere and
pyramid stick out of the middle plane whereas the lower hemisphere and pyra-
mid are embedded in the plane. We quantify surface reconstruction quality by
computing Bumpiness as defined in Eq.3 on masks for the fronto-parallel plane
and the slanted surfaces of the objects respectively.

Dots. This scene is designed to assess the effect of camera noise on the recon-
struction of objects of varying size. The image features 15 identical grid cells.
Each cell consists of 9 increasingly smaller coplanar circles. To approximate
thermal and shot noise, we add Gaussian noise with variances growing linearly
between 0.0 and 0.2 in row-major order. We quantify robustness against noise
by computing the MSE on the background plane. We further quantify sensitivity
to small geometries by computing the percentage of detected dots. A dot counts
as detected if the majority of its local disparity estimates is distinguishable from
the background by being in a BadPix range of 0.4 px to the ground truth dot.

Stripes. This scene is used to assess the influence of texture and contrast
at occlusion boundaries. It consists of a fronto-parallel background plane and
16 coplanar stripes. The amount of texture on the background plane is gradu-
ally increasing from left to right. Likewise, the vertical stripes are increasingly
textured from the bottom to the top of the image. The stripes feature alternating
intensities with dark, high contrast stripes and bright, low contrast stripes.

To quantify performance, we define three types of image regions and compute
BadPix(0.07) on each region individually: First, we use the no-occlusion areas on
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Per Pixel: Percentage of Algorithms with abs(gt-algo) > 0.07
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Fig. 3. The heatmaps illustrate local scene difficulty. Per pixel, they show the percent-
age of algorithms with a disparity error > 0.07 px. Algorithms struggle particularly
with fine structures, noise, and occlusion areas.

the stripes and on the background for low texture evaluation. Second, we use the
dark stripes and their occlusion areas to quantify performance at high contrast
occlusion boundaries. Similarly, we use bright stripes and their occlusion areas
to quantify performance at low contrast occlusion boundaries.

Photorealistic Scenes. We designed the photorealistic scenes to allow for per-
formance evaluation on fine structures, complex occlusion areas, slanted planar
surfaces, and continuous non-planar surfaces. The scenes contain various com-
binations of these challenges and allow to obtain an intuition of algorithm per-
formance on real world scenes. For quantitative performance analysis, we use
masks for different challenge regions. Apart from the overall MSE and Bad-
Pix(0.07) scores, we compute the BadPix(0.07) score at occlusion areas. We
further quantify smoothness at planar and non-planar continuous surfaces by
computing Bumpiness scores on the respective image areas. Furthermore, we
compute Thinning (0.15) and Fattening (—0.15) at fine structures by computing
adjusted BadPix scores as follows:

_ [{x € M: gt(z) — d(z) > t}]
M|

(6)

Thinning y,(¢)

where M is a mask for fine structure pixels and

_ Hz e M: gt(z) — d(z) <t}

Fattening ,(t)

where M is a mask for pixels surrounding fine structures.
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5 Experimental Validation of Dataset and Metrics

5.1 Evaluation of Scene Content

In order to verify our reasoning on challenging scene characteristics, we ana-
lyze local scene difficulty as shown in Fig.3. Challenging regions on the
heatmaps (bright) correlate with our intended challenges as described in Sect. 4.
On the stratified scenes, the fine gaps on Backgammon, low texture areas on
Stripes and noisy regions on Dots feature low algorithm performance. On the
photorealistic scenes, complex occlusions on Herbs, fine structures on Bedroom,
and fine structure grids on Bicycle represent the most challenging image regions.
By contrast, the well-textured fronto-parallel surface of Pyramids, the noise-free
area on Dots as well as smooth and high-texture regions on the photorealistic
scenes feature good algorithm performance.

5.2 Evaluation of Performance Measures

In this section, we examine whether our metrics appropriately quantify algo-
rithm performance on the stratified and photorealistic scenes. We show algo-
rithm results of one multi-view algorithm (MV) and four light field algorithms
(LF, LF_.OCC, EPI2, EPI1). In order to keep the focus on the metrics, we treat
the algorithms as black boxes until Sect. 6. For additional results we refer to the
supplemental material.

Backgammon: Fine Structures, Thin Gaps and Occlusions. The algo-
rithm results on Fig. 4 show that algorithms do indeed struggle at gradually finer
peaks and especially at thin gaps of the Backgammon scene. The depicted fat-
tening and thinning scores quantify the respective algorithm performance appro-
priately. More fattening occurs at occlusion areas on the top part of the image,

Ground Truth EPI1

i
=3

Disparity Map

diff: GT - Algo

Fattening [ 2098% | 13.74%
Thinning 2.00%

Fig. 4. All algorithms struggle with reconstructing the background depth of the narrow
gaps on the left side of the image. LF_OCC and EPI2 have the strongest fattening,
for LF_OCC it is concentrated between the upper bars and for EPI2 it is uniformly
distributed around each bar.
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Fig. 5. The bumpiness scores correctly reflect the observation that LF produces very
smooth estimates on the fronto-parallel plane but heavily staircased estimates on the
slanted object surfaces. On both types of surfaces LF_OCC results are bumpy and

EPI2 results are smooth.
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Fig. 6. The performance of most algorithms degrades by increasing levels of noise.
Robustness via strong regularization is traded for low sensitivity on the smaller

dots (LF) and vice versa (EPI1).
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Fig. 7. Algorithms struggle with the increasingly low texture towards the bottom of
the image. As reflected by our metrics, LF_OCC and LF handle dark, high contrast

stripes much better than bright, low contrast stripes.
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where disparity distances are large (see LE_OCC and MV). In this area, back-
ground pixels which are visible from the center view are occluded in many other
views. For very thin gaps, an epipolar line belonging to a background point might
then be occluded at both ends.

Pyramids: Slanted and Convex vs. Concave Surfaces. Algorithms face
various difficulties on the Pyramids scene (see Fig.5), such as systematic offset
on the middle plane, bumpy surfaces and inaccurate object boundaries. The
continuous disparity ranges of the slanted surfaces are particularly challenging
for algorithms which estimate discrete disparity labels such as LF. The bias on
the middle planes is also caused by a limited number of disparity steps where
no step matches the disparity of the plane. The depicted bumpiness scores for
slanted surfaces correctly identify smooth and staircased disparity maps.

Dots: Noise and Tiny Objects. Results on Fig. 6 show that algorithms strug-
gle either with reconstructing small dots or with reconstructing smooth and
accurate background planes. LF_OCC and LF robustly yield accurate results on
the background, whereas EPI1 and MV are strongly affected by artifacts due to
noise. In contrast, LF applies strong regularization, causing poor scores for the
number of reconstructed dots; EPI1 and EPI2 perform better. These effects show
that the complementary metrics of this scene nicely challenge the algorithms to
find a good trade-off between regularization and fine structure sensitivity.

Stripes: Texture and Contrast at Occlusions. Algorithms struggle with
correctly computing disparities at the low contrast boundaries of the bright
stripes and on the low texture regions towards the bottom of the image (see
Fig. 7). Our metrics quantify that algorithms such as LF, which use image gra-
dients as priors for their occlusion handling, almost completely miss the low
contrast stripes. While EPI2 shows decent performance on both types of occlu-
sion boundaries, LF_OCC performs almost an order of magnitude better on high
contrast stripes as compared to low contrast stripes.

Photorealistic Scenes. Figure 8 shows three sample algorithm results for the
Herbs scene and a cutout of the Bedroom scene together with region specific
challenge evaluations. MSE scores on the Herbs scene are rather similar and
relatively high for all three algorithms. On this scene, high errors at the scene
background and on the thyme structures reduce the expressiveness of the MSE
metric. With our evaluation methods, we specifically quantify performance at
smooth surfaces. The bumpiness metric is useful to show that EPI2 features
smooth results, whereas the locally smooth but stepped results of LF or the
noisy results of LF_OCC are not suitable in case accurate surface normals are
needed per application requirements.

On the Bedroom cutout, MSE scores are much lower. Since fine structures
only make up 2.8% of the total cutout, performance on these image regions
is poorly reflected by MSE or BadPix scores. Hence quantifying thinning and
fattening at fine structures gives additional, more specific characteristics of algo-
rithm performance. LF may have the lowest MSE but it misses most of the fine
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Fig. 8. Our region specific evaluation on Herbs reveals that EPI2 features the
smoothest surfaces but the poorest discontinuities, whereas MSE scores for all three
algorithms are close to each other. On the Bedroom cutout we quantify that LF fea-
tures high fine structure thinning and low fattening whereas EPI2 and LF_OCC miss
fewer structures but tend to fattening.
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structures which is correctly represented by our thinning scores. By contrast,
EPI2 and LF_OCC have better thinning scores but show very strong fattening.

6 Baseline Evaluation of Existing Light Field Algorithms

Experimental Setup. We evaluate four state-of-the art light field algorithms
and one multi-view stereo approach. The algorithms were selected based on
demonstrated state-of-the-art performance and source code availability.

LF [5] poses depth estimation as a multilabel problem which is later refined
by locally fitting a quadratic function. For subpixel accurate shifting, the phase-
shift theorem is used. LE_OCC [7] also poses depth estimation as a multi-label
problem. As an occlusion cost, boundary orientation in the center view is com-
pared against boundary orientation of so-called scene cam patches, which are
constructed from all observed pixels for a single scene point. EPI1 [6] builds
a dictionary consisting of atoms of fixed known disparity. By solving a sparse
coding problem, the dictionary is employed to recover disparity for each epipo-
lar plane image patch. EPI2 [30] employs the structure tensor to estimate the
orientation of patches on the epipolar plane image. A weighted variational reg-
ularization is performed to obtain a smooth result. Finally, MV is a lab code
implementation of a multi view stereo approach.

Multidimensional Algorithm Characterization. In Sect. 5, we used black-
box representations of the algorithm results to show that our scenes and metrics



Dataset and Evaluation for Depth Estimation on 4D Light Fields 31

Algorithms:
EPIL
= EPI2
BadPix(0.07) Runtime (log10) = tpOCC

— W
o BadPix(0.07) 20 Runtime (log10)

Pyramids:
Bump. Parallel
30

Dots:
Background MSE
as

PN\ ) o 29— a0_Pyramids: Planar 50 | 2l i 200\ ¥ue. soDiscontinuity

Dots:
Missed Dots BUmp. Slanted Surfaces Regions

Backgammon:
Fattening

Stripes:
Low Texture

30 a8

Continuous Fine Structure
Surfaces Fattening
Backgammon: Stripes:
Thinning Bright Stripes
Stripes: Fine Structure
Dark Stripes Thinning

Fig. 9. The radar charts summarize all scores of the proposed metrics on the strati-
fied (left) and photorealistic (right) test scenes. Lower scores in the center represent
better performance. Neither stratified nor photorealistic scenes can be perfectly solved
with a single best algorithm outperforming all others.

are capable of quantifying specific strengths and weaknesses of given algorithms.
Here, we demonstrate how our scenes and metrics can be used to obtain an
in-depth understanding of algorithm performance. In particular, we show how
algorithms can be compared given a range of various scores instead of a single
MSE score. Figure9 summarizes all scores computed on the five algorithms,
eight scenes and all associated metrics. Each radar axis represents one metric
with zero in the center representing perfect performance.

Neither stratified nor photorealistic scenes can be perfectly solved with a
single best algorithm outperforming all others. The radar charts illustrate that
every algorithm has different strengths and weaknesses. Thus, if application data
mostly contains only a subset of the challenges, optimal choice of algorithm can
differ considerably. As algorithm rankings on the MSE and BadPix axes differ
from rankings on other performance characteristics, our metrics indeed quantify
specific properties which cannot be inferred by simply computing the MSE. For
example, the multi-view stereo approach MV scores best in MSE and BadPix
over all photorealistic scenes, but in no other dimension.

Furthermore, performance differences and changes in relative rankings per
metric are much higher on the stratified scenes than on the photorealistic scenes.
Our stratified scenes are very focused on measuring a specific algorithm charac-
teristic, with difficulty levels ranging from feasible to almost impossible. Algo-
rithm performance deteriorates at different levels, allowing quantification of even
small differences in top performing algorithms.

Insights on Specific Algorithm Performance. The algorithms EPI1 and
EPI2 are similar in that they both work on epipolar images. On the radar charts
they perform similarly well on most scores of the stratified scenes, but relatively
poor in the photorealistic scenes. Our metrics quantify that EPI2 outperforms
all other algorithms on reconstructing smooth surfaces in the stratified scenes.
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However, on the photorealistic scenes, EPI2 does not feature good scores on
planar and continuous surface reconstruction. We speculate that EPI2 is very
good on specific challenges but not very robust when different challenges are
combined in more complex scenes.

By contrast, LF features solid performance on the photorealistic scenes, but
very poor performance on many metrics of the stratified scenes. The strong
regularization of LF seems to be good for scoring well on the photorealistic
scenes due to the spatial distribution of the contained challenges.

LF_OCC is the only algorithm explicitly handling occlusions. Indeed, it
demonstrates good performance at discontinuities and fine structure in partic-
ular on the photorealistic scenes, as well as at the high contrast stripes on the
stratified scene. LF_OCC performance is much lower on the low contrast stripes
since it uses image gradients for occlusion handling.

Our dataset reveals several directions for future research: based on the results
shown in Figs.3 and 9, we conclude that occlusion areas, fine structures, the
reconstruction of slanted surfaces, and low texture are still unsolved challenges
for light field algorithms. Additionally, while most algorithms perform well on
some characteristics, there is no algorithm with solid performance on all charac-
teristics simultaneously.

7 Conclusion

We presented and carefully justified a novel light field benchmark consisting of
4 stratified and 20 photorealistic light field scenes, a solid evaluation procedure,
and a baseline evaluation to seed a public benchmark.

We thoroughly evaluated four state-of-the-art light field algorithms and one
multi-view stereo algorithm using our proposed evaluation approach. Thereby,
we showed that our dataset highlights open challenges for depth reconstruction
algorithms. Moreover, the careful design of our dataset allowed for a structured,
quantitative and specific performance analysis of the algorithms at hand. Our
evaluation approach facilitated sophisticated and detailed comparisons between
the strengths and weaknesses of different algorithms. The presented scenes
and evaluation methods are available at http://www.lightfield-analysis.net. We
encourage researchers to contribute not only algorithms but also datasets and
evaluation methods to this benchmark.

In this paper we focused on the geometrical aspects of depth estimation from
light fields. In future work we plan to extend the benchmark to include more
non-Lambertian materials.
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