
Chapter 2
The Linearized Monge-Ampère Equation

2.1 The Linearized Monge-Ampère Equation and Interior
Regularity of Its Solution

2.1.1 The Linearized Monge-Ampère Equation

The linearized Monge-Ampère equation associated with a C2 and locally uniformly
convex potential u defined on some subset of Rn is of the form

Luv WD
nX

i;jD1
Uijvij � trace.UD2v/ D g: (2.1)

Here and throughout,

U D .Uij/ D .detD2u/.D2u/�1

is the matrix of cofactors of the Hessian matrix D2u D .uij/. The coefficient matrix
U of Lu arises from the linearization of the Monge-Ampère operator detD2u because

U D @.detD2u/

@.D2u/
:

One can also note that Luv is the coefficient of t in the expansion

detD2.u C tv/ D detD2u C t trace.UD2v/C � � � C tn detD2v:
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36 2 The Linearized Monge-Ampère Equation

Typically, one assumes that u solves the Monge-Ampère equation

detD2u D f for some function f satisfying the bounds 0 < � � f � ƒ (2.2)

where � and ƒ are positive constants. Given these bounds, U is a positive semi-
definite matrix. Hence, Lu is a linear elliptic partial differential operator, possibly
degenerate.

The linearized Monge-Ampère operator Lu captures two of the most important
second order equations in PDEs from the simplest linear equation to one of
the most important nonlinear equations. In fact, in the special case where u is
a quadratic polynomial, say u.x/ D 1

2
jxj2, Lu becomes the Laplace operator:

Lu D 
 D
nX

iD1

@2

@x2i
. On the other hand, since Luu D n detD2u, the Monge-Ampère

equation is a special case of the linearized Monge-Ampère equation. As U D .Uij/

is divergence-free (see Lemma 3.61), that is,

nX

iD1
@iU

ij D 0

for all j D 1; � � � ; n, the linearized Monge-Ampère equation can be written in both
divergence and double divergence form:

Luv D
nX

i;jD1
@i.U

ijvj/ D
nX

i;jD1
@ij.U

ijv/:

2.1.2 Linearized Monge-Ampère Equations in Contexts

Lu appears in many contexts:

(1) Affine maximal surface equation in affine geometry (Chern [12], Trudinger-
Wang [37–39])

Uijwij D 0; w D .detD2u/�
nC1
nC2

(2) Abreu’s equation (Abreu [1], Donaldson [15–18]) in the context of existence of
Kähler metrics of constant scalar curvature in complex geometry

Uijwij D �1; w D .detD2u/�1
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A more familiar form of the Abreu’s equation is

nX

i;jD1

@2uij

@xi@xj
D �1

where .uij/ D .D2u/�1 is the inverse matrix of D2u.
(3) Semigeostrophic equations in fluid mechanics (Brenier [4], Cullen-Norbury-

Purser [13], Loeper [27]).
(4) Regularity of the polar factorization for time dependent maps (Loeper [26]).

2.1.3 Difficulties and Expected Regularity

The classical regularity theory for uniformly elliptic equations with measurable
coefficients deals with divergence form operators

L D
nX

i;jD1

@

@xi

�
aij
@

@xj

�

or nondivergence form operators

L D
nX

i;jD1
aij@ij

with positive ellipticity constants � andƒ, that is, the eigenvalues of the coefficient
matrix A D .aij/ are bounded between � andƒ. The important Harnack and Hölder
estimates for divergence form equations Lu D 0 were established in the late 50s by
De Giorgi-Nash-Moser [14, 31, 30]. The regularity theory in this case is connected
with isoperimetric inequality, Sobolev embedding, Moser iteration, heat kernel,
BMO (the space of functions of bounded mean oscillation). On the other hand,
the Harnack and Hölder estimates for nondivergence form equations Lu D 0 were
established only in the late 70s by Krylov-Safonov [22, 23]. The regularity theory
is connected with the Aleksandrov-Bakelman-Pucci (ABP) maximum principle
coming from the Monge-Ampère equation.

The linearized Monge-Ampère theory investigates operators of the form

Lu D
nX

i;jD1
Uij@ij
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where it is only known that the product of the eigenvalues of the coefficient matrix
U is bounded between two constants. This comes from (2.2) because

�n�1 � detU D .detD2u/n�1 � ƒn�1:

Therefore, the linearized Monge-Ampère operator Lu is in general not uniformly
elliptic, i.e., the eigenvalues of U D .Uij/ are not necessarily bounded away from
0 and 1: Moreover, when considered in a bounded convex domain �, Lu can be
possibly singular near the boundary. In other words, the linearized Monge-Ampère
equation can be both degenerate and singular. The degeneracy and singularity of Lu
are the main difficulties in establishing regularity results for its solutions.

A natural question is what regularity we can hope for solutions of the linearized
Monge-Ampère equation Luv D 0 under the structural assumption (2.2). At least
on a heuristic level, they can be expected to be Hölder continuous. Indeed, strictly
convex solutions of (2.2), interpreted in the sense of Aleksandrov for u not C2

as in Definition 3.6, are C1;˛ for some ˛ 2 .0; 1/ depending only on n; � and
ƒ. This follows from the regularity theory of the Monge-Ampère equation; see
Theorems 3.53 and 3.58. By differentiating (2.2), we see that each partial derivative
uk D @u

@xk
(k D 1; � � � ; n) is a solution of the inhomogeneous linearized Monge-

Ampère equation

Luuk D fk:

We can expect that the regularity for v is that of uk, which is C˛ , and hence it should
be Hölder continuous. The theory of Caffarelli-Gutiérrez confirms this expectation.

2.1.4 Affine Invariance Property

The second order operator Lu WD Uij@ij is affine invariant, i.e., invariant with respect
to linear transformations of the independent variable x of the form x 7! Tx with
detT D 1. Indeed, for such T, the rescaled functions

Qu.x/ D u.Tx/ and Qv.x/ D v.Tx/

satisfy the same structural conditions as in (2.1) and (2.2) because

detD2 Qu.x/ D detD2u.Tx/ D f .Tx/ and LQu Qv.x/ D Luv.Tx/ D g.Tx/:

More generally, under the transformations

Qu.x/ D u.Tx/; Qv.x/ D v.Tx/;
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the Eq. (2.1) becomes

LQu Qv.x/ WD QUij Qvij.x/ D .det T/2g.Tx/:

The last equation follows from standard computation. We have

DQu D TtDuI D2 Qu D Tt.D2u/TI D2 Qv D Tt.D2v/T

and

QU D .detD2 Qu/.D2 Qu/�1 D .detT/2.detD2u/T�1.D2u/�1.T�1/t D .detT/2T�1U.T�1/t:

Therefore,

LQu Qv.x/ D trace. QUD2 Qv/ D .det T/2trace.UD2v.Tx// D .det T/2Luv.Tx/ D .det T/2g.Tx/:

The rest of the section will be devoted to interior regularity for solutions to
the linearized Monge-Ampère equation. We start by recalling Krylov-Safonov’s
Harnack inequality for linear, uniformly elliptic equations in non-divergence form.

2.1.5 Krylov-Safonov’s Harnack Inequality

In 1979, Krylov-Safonov [22, 23] established the Harnack inequality and Hölder
estimates for solutions of linear elliptic equations in non-divergence form

Lv WD
nX

i;jD1
aij

@2v

@xi@xj
D 0 (2.3)

where the eigenvalues of the coefficient matrix A D .aij/ are bounded between two
positive constants � andƒ, that is

�In � .aij/ � ƒIn: (2.4)

The following theorem is the celebrated result of Krylov-Safonov.

Theorem 2.1 (Krylov-Safonov’sHarnack Inequality, [22, 23]) Assume .aij/ sat-
isfies (2.4). Let v be a nonnegative solution of (2.3) in �. Then v satisfies the
Harnack inequality on Euclidean balls. More precisely, for all B2r.x0/ �� �, we
have

sup
Br.x0/

v � C.n; �;ƒ/ inf
Br.x0/

v: (2.5)
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From the Harnack inequality (2.5), we obtain a Hölder estimate

jv.x/ � v. y/j � C jx � yj˛ sup
B2r.x0/

jvj

for x; y 2 Br.x0/ where ˛ and C are positive constants depending only on n; �;ƒ.

Remark 2.2

(i) The uniform ellipticity of A.x/ is invariant under rigid transformation of the
domain, i.e., for any orthogonal matrix O, the matrix A.Ox/ is also uniformly
elliptic with the same ellipticity constants as A.x/.

(ii) Balls are invariant under orthogonal transformations.
(iii) One important fact, but hidden, in the regularity theory of uniformly elliptic

equations is that the quadratic polynomials

P.x/ D a C b � x C 1

2
jxj2 ; b 2 R

n;

are “potentials“ for L, that is

L.P/ 	 1

and level surfaces of P.x/ are all possible balls of Rn: Moreover,

jrP.x/� bj 	 1

for x in the ring B2.b/nB1.b/:
Krylov-Safonov theory makes crucial use of the ABP estimate which bounds
solution of Lv D f using the boundary values of v and Ln norm of the right hand
side. In general form, it states as follows; see [2, 3, 32] and also [19, Theorem 9.1].

Theorem 2.3 (ABP Maximum Principle) Let .aij/ be a measurable, positive
definite matrix. For u 2 C2.�/\ C0.�/, we have

sup
�

u � sup
@�

u C diam.�/

n!1=nn

����
aijuij

Œdet.aij/�1=n

����
Ln.�C/

where �C is the upper contact set

�C D fy 2 �ju.x/ � u. y/C p � .x � y/ for all x 2 �; for some p D p. y/ 2 R
ng:
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2.1.6 Harnack Inequality for the Linearized Monge-Ampère
Equation

The regularity theory for the linearized Monge-Ampère equation was initiated in
the fundamental paper [10] by Caffarelli and Gutiérrez. They developed an interior
Harnack inequality theory for nonnegative solutions of the homogeneous equations

Luv D 0;

where Lu is defined as in (2.1), in terms of the pinching of the Hessian determinant

� � detD2u � ƒ: (2.6)

Their approach is based on that of Krylov and Safonov [22, 23] on the Harnack
inequality and Hölder estimates for linear, uniformly elliptic equations in general
form, with sections replacing Euclidean balls. Before stating precisely the Harnack
inequality theory of Caffarelli-Gutiérrez, we would like to see, at least heuristically,
what objects are prominent in this theory.

Remark 2.4

(i) By the affine invariance property of the linearized Monge-Ampère equations
(see Sect. 2.1.4), it is not hard to imagine that good estimates for the linearized
Monge-Ampère equations must be formulated on domains that are invariant
under affine transformations. Balls are not affine invariant.

(ii) Clearly, after an affine transformation, an ellipsoid becomes another ellipsoid.
(iii) A very important class of ellipsoid-like objects in the context of the Monge-

Ampère equation and the linearized Monge-Ampère equation are sections.

The notion of sections (or cross sections) of convex solutions to the Monge-Ampère
equation was first introduced and studied by Caffarelli [5–8], and plays an important
role in his fundamental interior W2;p estimates [6]. Sections are defined as sublevel
sets of convex solutions after subtracting their supporting hyperplanes. They have
the same role as Euclidean balls have in the classical theory. The section of a convex
function u defined on � with center x0 in � and height t is defined by

Su.x0; t/ D fx 2 � W u.x/ < u.x0/C ru.x0/ � .x � x0/C tg:

After affine transformations, the sections of u become sections of another convex
function.

Example 2.5 A Euclidean ball of radius r is a section with height r2=2 of the
quadratic function jxj2=2 whose Hessian determinant is 1. For u.x/ D jxj2 =2, we
have

Su.x; h/ D Bp
2h.x/ \�:
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An important fact is the convexity of sections. They can be normalized to look like
balls (John’s lemma, Lemma 3.23). Illustrating (i) and (iii) in Remark 2.4, we can
consider the following example.

Example 2.6 Consider the functions u.x1; x2/ D x21
2"

C "
2
x22 and

v.x1; x2/ D x21
2"

� "
2
x22 C 1 in R

2 where " 2 .0; 1/. Then detD2u D 1 and

Uijvij D 0:

We can compute for 1
4

� r � 1
2

and 1
4

� t � 1
2

(i)

sup
Br.0/

v D r2

2"
C 1I inf

Br.0/
v D 1 � "

2
r2I sup

Br.0/

v � 1

32"
inf
Br.0/

v:

(ii)

sup
Su.0;t/

v D t C 1I inf
Su.0;t/

v D 1 � t:

The ratio sup v= inf v does not depend on the eccentricity of the section Su.0; t/ for
the given range of t. This ratio becomes unbounded on balls around 0 when " ! 0:

Now, if v is a nonnegative solution of the linearized Monge-Ampère equation
Luv D 0 in a section Su.x0; 2h/ �� � then Caffarelli and Gutiérrez’s theorem on
the Harnack inequality says that the values of v in the concentric section of half
height are comparable with each other. More precisely, we have the following:

Theorem 2.7 (Caffarelli-Gutiérrez’sHarnack Inequality, [10]) Assume that the
C2 convex function u satisfies the Monge-Ampère equation

� � detD2u � ƒ in �:

Let v 2 W2;n
loc .�/ be a nonnegative solution of

Luv WD Uijvij D 0

in a section Su.x0; 2h/ �� �. Then

sup
Su.x0;h/

v � C.n; �;ƒ/ inf
Su.x0;h/

v: (2.7)

This theory of Caffarelli and Gutiérrez is an affine invariant version of the classical
Harnack inequality for uniformly elliptic equations with measurable coefficients.
In fact, since the linearized Monge-Ampère operator Lu can be written in both
divergence form and non-divergence form, Caffarelli-Gutiérrez’s theorem is the



2.1 The Linearized Monge-Ampère Equation and Interior Regularity of Its. . . 43

affine invariant analogue of De Giorgi-Nash-Moser’s theorem [14, 31, 30] and also
Krylov-Safonov’s theorem [22, 23] on Hölder continuity of solutions to uniformly
elliptic equations in divergence and nondivergence form, respectively.

Remark 2.8 The Harnack estimate (2.7) also holds for nonnegative solutions to
equations of the form

trace.A.x/UD2v/ D 0

with A uniformly elliptic

C�1In � A.x/ � CIn:

Thus, when u.x/ D 1
2

jxj2 ; we obtain the Krylov-Safonov’s Harnack inequality for
uniformly elliptic equations. Therefore, Harnack inequality also works for

aijvij D 0

with

Q�.D2u/�1 � .aij/ � Qƒ.D2u/�1:

In this case, we have a Hessian�1-like elliptic equation.

The Harnack inequality (2.7) implies the geometric decay of the oscillation of
the solution on sections with smaller height and gives the C˛ estimate for solution.
Quantitatively, this says that if v solves Luv D 0 in Su.x0; 2/ �� � then v is C˛ in
Su.x0; 1/ and

kvkC˛.Su.x0;1// � C.n; �;ƒ; Su.x0; 2//kvkL1.Su.x0;2//:

The important point to be emphasized here is that ˛ depends only on n; �;ƒ and
the dependence of C on Su.x0; 2/ can be actually removed in applications if we
use affine transformations to transform the convex set Su.x0; 2/ into a convex set
comparable to the unit Euclidean ball. The latter point follows from John’s lemma
(see Lemma 3.23) on inscribing ellipsoid of maximal volume of a convex set [21].
In fact, we can obtain interior Hölder estimate for inhomogeneous equations.

Theorem 2.9 (Interior Hölder Estimate) Assume that � � detD2u � ƒ in a
convex domain � � R

n with u D 0 on @� where B1.0/ � � � Bn.0/. Let
f 2 Ln.B1.0// and v 2 W2;n

loc .B1.0// be a solution of Uijvij D f in B1.0/. Then
there exist constants ˇ 2 .0; 1/ and C > 0 depending only on n, �, and ƒ such that

jv.x/ � v. y/j � Cjx � yjˇ
	
kvkL1.B1.0// C kfkLn.B1.0//



for all x; y 2 B 1

2
.0/:
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The Harnack inequality (2.7) is also true for more general hypotheses on the
Monge-Ampère measure � D detD2u such as a suitable doubling property. We
say that the Borel measure � is doubling with respect to the center of mass on the
sections of u if there exist constants ˇ > 1 and 0 < ˛ < 1 such that for all sections
Su.x0; t/,

�.Su.x0; t// � ˇ�.˛Su.x0; t//: (2.8)

Here ˛Su.x0; t/ denotes the ˛-dilation of Su.x0; t/ with respect to its center of mass
x� (computed with respect to the Lebesgue measure):

˛Su.x0; t/ D fx� C ˛.x � x�/ W x 2 Su.x0; t/g:

Maldonado [29], extending the work of Caffarelli-Gutiérrez, proved the follow-
ing Harnack inequality for the linearized Monge-Ampère equation under minimal
geometric condition, namely, the doubling condition (2.8).

Theorem 2.10 ([29]) Assume that detD2u D � satisfies (2.8). For each compactly
supported section Su.x; t/ �� �, and any nonnegative solution v of Luv D 0 in
Su.x; t/, we have

sup
Su.x;� t/

v � C inf
Su.x;� t/

v

for universal �;C depending only on n; ˇ and ˛.

For example, the Harnack inequality holds for � positive polynomials. If
u.x1; x2/ D x41Cx22 then� D detD2u D Cx21 is an admissible measure. The Harnack
inequality applies to equation of the Grushin-type

x�2
1 v11 C v22 D 0: (2.9)

Remark 2.11 Equation of the type (2.9) is relevant in non-local equations such as
fractional Laplace equation. By Caffarelli-Silvestre [11], we can relate the fractional
Laplacian

.�
/sf .x/ D Cn;s

Z

Rn

f .x/ � f .�/

jx � �jnC2s d�;

where the parameter s is a real number between 0 and 1, and Cn;s is some
normalization constant, with solutions of the following extension problem. For a
function f W Rn ! R, we consider the extension v W Rn � Œ0;1/ ! R that satisfies
the equations

v.x; 0/ D f .x/; 
xv C a

y
vy C vyy D 0:
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The last equation can also be written as

div. yaDv/ D 0

which is clearly the Euler-Lagrange equation for the functional

J.v/ D
Z

y>0
jDvj2 yadX; X D .x; y/:

We can show that

C.�
/sf D lim
y!0C

�yavy D 1

1 � a
lim
y!0

v.x; y/ � v.x; 0/
y1�a

for s D 1�a
2

and some constant C depending on n and s, which reduces to the regular
normal derivative in the case a D 0.

If we make the change of variables z D � y
1�a

�1�a
, we obtain a nondivergence

form equation of the type (2.9)


xv C z˛vzz D 0

for ˛ D �2a
1�a . Moreover, yavy D vz. Thus, we can show that the following equality

holds up to a multiplicative constant

.�
/sf .x/ D � lim
y!0C

yavy.x; y/ D �vz.x; 0/:

Remark 2.12 The Harnack inequality in Theorem 2.7 has been recently extended to
the boundary in [24].

2.2 Interior Harnack and Hölder Estimates for the
Linearized Monge-Ampère Equation

In this section, we prove Theorems 2.7 and 2.9.

2.2.1 Proof of Caffarelli-Gutiérrez’s Harnack Inequality

In this section, we prove Theorem 2.7 concerning Caffarelli-Gutiérrez’s Harnack
inequality for the linearized Monge-Ampère equation.
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We first briefly outline the proof of the Harnack inequality (2.7) in Theorem 2.7.
Our proof adapts the general scheme in proving Harnack inequality in
Krylov-Safonov [22, 23], Caffarelli-Cabré [9], Caffarelli-Gutiérrez [10], Savin [33]
and most recently Imbert-Silvestre [20].

By using the affine invariant property of the linearized Monge-Ampère equation
as explained in Sect. 2.1.4, we can rescale the domain, and the functions u and v.
Furthermore, by changing coordinates and subtracting a supporting hyperplane to
the graph of u at .x0; u.x0//, we can assume that x0 D 0, u.0/ D 0, Du.0/ D 0,
h D 2 and that the section S4 D Su.0; 4/ �� � is normalized, that is

B1.0/ � S4 � Bn.0/:

For simplicity, we denote St D Su.0; t/.
A constant depending only on �;ƒ and n is called universal. We denote universal

constants by c;C;C1;C2;K;M; ı; � � � ; etc. Their values may change from line to
line.

From the engulfing property of sections in Theorem 3.54, we find that if y 2
Su.x; t/ then

Su.x; t/ � Su. y; �0t/ � Su.x; �
2
0 t/;

it suffices to show that if v � 0 in S2 then v � C.n; �;ƒ/v.0/ in S1.
The idea of the proof is the following. We show that the distribution function

of v, jfv > tg \ S1j decays like t�" (L" estimate). Thus, v 	 v.0/ in S1 except
a set of very small measure. If v.x0/ 
 v.0/ at some point x0, then by the same
method (now applying to C1 � C2v), we find v 
 v.0/ in a set of positive
measure which contradicts the above estimate. To study the distribution function
of v, we slide generalized paraboloids associated with u of constant opening,
P.x/ D �aŒu.x/� u. y/� Du. y/ � .x � y/�, from below till they touch the graph of
v for the first time. These are the points where we use the equation and obtain the
lower bound for the measure of the touching points. By increasing the opening of
the sliding paraboloids, the set of touching points almost covers S1 in measure.

There are three main steps in the proof of the L" estimate.

Step 1: Measure (ABP type) estimate. The rough idea is that

Measure of contact points � c Measure of vertices:

This step is not difficult. The reason why it works is the following. In the ABP
estimate, we need the lower bound on the determinant of the coefficient matrix
which is the case here.

Step 2: Doubling estimate. This step is based on construction of subsolutions.
Step 3: This step proves the geometric decay of jfv > tg \ S1j. It is based on a

covering lemma which is a consequence of geometric properties of sections.

Our measure estimate in Step 1 states as follows.
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Lemma 2.13 (Measure Estimate) Suppose that v � 0 is a solution of Luv D 0 in
a normalized section S4. There are small, universal constants ı > 0; ˛ > 0 and a
large constant M1 > 1 with the following properties. If infS˛ v � 1 then

jfv > M1g \ S1j � .1 � ı/jS1j:

The key doubling estimate for Step 2 is the following lemma.

Lemma 2.14 (Doubling Estimate) Suppose that v � 0 is a solution of Luv D 0

in a normalized section S4. Let ˛ be the small constant in Lemma 2.13. If v � 1 in
S˛ then v � c.n; �;ƒ/ in S1:

Combining Lemmas 2.13 and 2.14, and letting M WD M1c.n; �;ƒ/�1, we obtain the
following result:

Proposition 2.15 (Critical Density Estimate) Suppose that v � 0 is a solution of
Luv D 0 in a normalized section S4. There is a small, universal constant ı > 0 and
a large constant M > 1 with the following properties. If

jfv > Mg \ S1j > .1 � ı/jS1j

then v > 1 in S1.

From the critical density estimate and the growing ink-spots lemma stated in
Lemma 2.19, we obtain the L" estimate and completing the proof of Step 3.

Theorem 2.16 (Decay Estimate of the Distribution Function) Suppose that
v � 0 is a solution of Luv D 0 in a normalized section S4 with

inf
Su.0;1/

v � 1:

Then there are universal constants C1 > 1 and " 2 .0; 1/ such that for all t > 0, we
have

jfv > tg \ S1j � C1t
�":

Proof of Theorem 2.16 Let ı 2 .0; 1/ and M > 1 be the constants in Proposi-
tion 2.15. The conclusion of the theorem follows from the following decay estimate
for Ak WD fv > Mkg \ S1:

jAkj � C2M
�"k:

Note that Ak’s are open sets and Ak � A1 for all k � 1. Recalling infS1 v � 1, by
Proposition 2.15, we have

jAkj � jA1j � .1 � ı/jS1j for all k:
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From Proposition 2.15, we find that if a section S � S1 satisfies jS \ AkC1j >
.1 � ı/jSj, then S � Ak. Using Lemma 2.19, we obtain

jAkC1j � .1 � cı/jAkj;

and therefore, by induction,

jAkj � .1 � cı/k�1.1 � ı/jS1j D C2M
�"k;

where " D � log.1 � cı/= logM and C2 D .1 � cı/�1.1 � ı/jS1j. This finishes the
proof. ut
Proof of Theorem 2.7 Let ı 2 .0; 1/ and M > 1 be the constants in Proposition 2.15
and " 2 .0; 1/ be the constant in Theorem 2.16. By a covering argument, our
theorem follows from the following claim.

Claim 2.17

sup
Su.0;1=2/

v � C inf
Su.0;1=2/

v:

This in turns follows from the following claim.

Claim 2.18 If infSu.0;1=2/ v � 1 then for some universal constant C, we have
supSu.0;1=2/ v � C:

Indeed, for each � > 0, the function

v� D v

infSu.0;1=2/ v C �

satisfies aijv�ij D 0:We apply Claim 2.18 to v� to obtain

sup
Su.0;1=2/

v � C

�
inf

Su.0;1=2/
v C �

�
:

Sending � ! 0, we get the conclusion of Claim 2.17.

It remains to prove Claim 2.18. Let ˇ > 0 be a universal constant to be
determined later and let ht.x/ D t.1 � u.x//�ˇ be defined in Su.0; 1/. We consider
the minimum value of t such that ht � v in Su.0; 1/. It suffices to show that t is
universally bounded by a constant C because we have then

sup
Su.0;1=2/

v � C sup
Su.0;1=2/

.1 � u.x//�ˇ � 2ˇC:

If t � 1, we are done. Hence, we further assume that t � 1.
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Since t is chosen to be the minimum value such that ht � v, then there must
exist some x0 2 Su.0; 1/ such that ht.x0/ D v.x0/. Let r D .1 � u.x0//=2. Let
H0 WD ht.x0/ D t.2r/�ˇ � 1. By Theorem 3.57, there is a small constant c and large
constant p1 D ��1 such that Su.x0; 2crp1 / � Su.0; 1/. We bound t by estimating the
measure of the set fv � H0=2g \ Su.x0; crp1 / from above and below.

The estimate from above can be done using Theorem 2.16 which then says that

jfv > H0=2g \ Su.x0; cr
p1 /j � jfv > H0=2g \ Su.0; 1/j � CH�"

0 D Ct�".2r/ˇ":
(2.10)

To estimate the measure of fv � H0=2g \ Su.x0; crp1 / from below, we apply
Theorem 2.16 to C1 � C2v on a small but definite fraction of this section. Let 	 be
the small universal constant and ˇ be a large universal constant such that

M
�
1 � 	/�ˇ � 1

� � 1

2
; ˇ � n

2�"
: (2.11)

Consider the section Su.x0; c1rp1 /where c1 � c is small. We claim that 1�u.x/ �
2r � 2	r in this section. Indeed, if x 2 Su.x0; c1rp1 / then by Lemma 3.52, we have
jx � x0j � C.c1rp1 /� � c	r for small c1 and hence, by the gradient estimate in
Lemma 3.11

1 � u.x/ D 2r C u.x0/� u.x/ � 2r � . sup
Su.0;1/

jDuj/jx � x0j � 2r � 2	r:

The maximum of v in the section Su.x0; c1r� / is at most the maximum of ht which
is not greater than t.2r � 2	r/�ˇ D .1 � 	/�ˇH0. Define the following function for
x 2 Su.x0; c1rp1 /

w.x/ D .1� 	/�ˇH0 � v.x/�
.1 � 	/�ˇ � 1�H0 :

Note that w.x0/ D 1, and w is a non-negative solution of Luw D 0 in Su.x0; c1rp1 /.
Using Proposition 2.15, we obtain

jfw � Mg \ Su.x0; 1=4c1r
p1 /j � ıjSu.x0; 1=4c1rp1 /j:

In terms of the original function v, this is an estimate of a set where v is larger
than

H0
�
.1 � 	/�ˇ � M

�
.1 � 	/�ˇ � 1�� � H0

2
;
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because of the choice of 	 and ˇ. Thus, we obtain the estimate

jfv � H0=2g \ Su.x0; c1r
p1 /j � ıjSu.x0; c1rp1 /j:

In view of (2.10), and the volume estimate on sections in Theorem 3.42, we find

Ct�".2r/ˇ" � ıjSu.x0; c1rp1 /j � c.n; �;ƒ/rnp1=2 D c.n; �;ƒ/r
n
2� :

By the choice of ˇ in (2.11), we find that t is universally bounded. ut
In the proof of Theorem 2.16, we use the following consequence of Vitali’s

covering lemma. It is often referred to as the growing ink-spots lemma which was
first introduced by Krylov-Safonov [23]. The term “growing ink-spots lemma” was
coined by E. M. Landis.

Lemma 2.19 (Growing Ink-Spots Lemma) Suppose that u is a strictly convex
solution to the Monge-Ampère equation � � detD2u � ƒ in a bounded and convex
set � � R

n. Assume that for some h > 0, Su.0; 2h/ �� �:

Let E � F � Su.0; h/ be two open sets. Assume that for some constant ı 2 .0; 1/,
the following two assumptions are satisfied.

• If any section Su.x; t/ � Su.0; h/ satisfies jSu.x; t/ \ Ej > .1 � ı/jSu.x; t/j, then
Su.x; t/ � F.

• jEj � .1 � ı/jSu.0; h/j.
Then jEj � .1 � cı/jFj for some constant c depending only on n; � andƒ.

Proof For every x 2 F, since F is open, there exists some maximal section which is
contained in F and contains x. We choose one of those sections for each x 2 F and
call it Su.x; Nh.x//.

If Su.x; Nh.x// D Su.0; h/ for any x 2 F, then the result of the lemma follows
immediately since jEj � .1 � ı/jSu.0; h/j, so let us assume that it is not the case.

We claim that jSu.x; Nh.x// \ Ej � .1 � ı/jSu.x; Nh.x//j. Otherwise, we could find
a slightly larger section QS containing Su.x; Nh.x// such that jQS \ Ej > .1 � ı/jQSj and
QS 6� F, contradicting the first hypothesis.

The family of sections Su.x; Nh.x// covers the set F. By the Vitali cover-
ing Lemma 2.20, we can select a subcollection of non overlapping sections
Sj WD Su.xj; Nh.xj// such that F � S1

jD1 Su.xj;K Nh.xj// for some universal constant
K depending only on n; � and ƒ. The volume estimates in Lemma 3.42 then imply
that

jSu.xj;K Nh.xj//j � C.n; �;ƒ/jSu.xj; Nh.xj//j

for each j.
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By construction, Sj � F and jSj \ Ej � .1 � ı/jSjj. Thus, we have that
jSj \ .F n E/j � ıjSjj. Therefore

jF n Ej �
1X

jD1
jSj \ .F n E/j �

1X

jD1
ıjSjj

� ı

C.n; �;ƒ/

1X

jD1
jSu.xj;K Nh.xj//j � ı

C.n; �;ƒ/
jFj:

Hence jEj � .1 � cı/jFj where c D C.n; �;ƒ/�1. ut
Lemma 2.20 (Vitali Covering) Suppose that � � detD2u � ƒ in a bounded on
convex set � � R

n. Then there exists a universal constant K > 1 depending only
on n; � andƒ with the following properties.

(i) Let S be a collection of sections Sx D Su.x; h.x// �� �. Then there exists a

countable subcollection of disjoint sections
1[

iD1
Su.xi; h.xi// such that

[

Sx2S
Sx �

1[

iD1
Su.xi;Kh.xi//:

(ii) Let D be a compact set in � and assume that to each x 2 D we associate a
corresponding section Su.x; h.x// �� �. Then we can find a finite number of
these sections Su.xi; h.xi//; i D 1; � � � ;m; such that

D �
m[

iD1
Su.xi; h.xi//; with Su.xi;K

�1h.xi// disjoint:

Proof of Lemma 2.20 We use the following fact for sections compactly included in
�: There exists a universal constant K > 1 such that if Su.x1; h1/ \ Su.x2; h2/ ¤ ;
and 2h1 � h2 then Su.x2; h2/ � Su.x1;Kh1/. The proof of this fact is based on
the engulfing property of sections in Theorem 3.54. Suppose that x 2 Su.x1; h1/ \
Su.x2; h2/ and 2h1 � h2. Then we have Su.x2; h2/ � Su.x; �0h2/ � Su.x; 2�0h1/
and x1 2 Su.x1; h1/ � Su.x; 2�0h1/. Again, by the engulfing property, we have
Su.x; 2�0h1/ � Su.x1; 2�20h1/. It follows that Su.x2; h2/ � Su.x1; 2�20h1/. The result
follows by choosing K D 2�20 .

(i) From the volume estimate for sections in Lemma 3.42 and Su.x; h.x// �� �,
we find that

H � supfh.x/jSx 2 Sg � C.n; �;ƒ;�/ < 1:
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Define

Si � fSx 2 SjH
2i
< h.x/ � H

2i�1
g .i D 1; 2; � � � /:

We define Fi � Si as follows. Let F1 be any maximal disjoint collection of sections
in S1. By the volume estimate in Lemma 3.42, F1 is finite. Assuming F1; � � � ;Fk�1
have been selected, we choose Fk to be any maximal disjoint subcollection of

8
<

:S 2 SkjS \ Sx D ; for all Sx 2
k�1[

jD1
Fj

9
=

; :

Each Fk is again a finite set.
We claim that the countable subcollection of disjoint sections Su.xi; h.xi// where

Sxi 2 F WD S1
kD1 Fk satisfies the conclusion of the lemma. To see this, it suffices to

show that for any section Sx 2 S, there exists a section Sy 2 F such that Sx \Sy ¤ ;
and Sx � Su. y;Kh. y//. The proof of this fact is simple. There is an index j such that
Sx � Sj. By the maximality of Fj, there is a section Sy 2 Sj

kD1Fk with Sx \Sy ¤ ;.
Because h. y/ > H

2j
and h.x/ � H

2j�1
, we have h.x/ � 2h. y/. By the fact established

above, we have Sx � Su. y;Kh. y//.
(ii) We apply (i) to the collection of sections Su.x;K�1h.x// where x 2 D. Then

there exists a countable subcollection of disjoint sections
˚
Su.xi;K�1h.xi//

�1
iD1 such

that

D �
[

x2D
Su.x;K

�1h.x// �
1[

iD1
Su.xi; h.xi//:

By the compactness of D, we can choose a finite number of sections Su.xi; h.xi//
.i D 1; � � � ;m/ which cover D. ut
Proof of Lemma 2.13 Suppose v.x0/ � 1 at x0 2 S˛ where ˛ 2 .0; 1=2/. Consider
the set of vertices V D S˛. We claim there is a large constant a (called the opening)
such that, for each y 2 V , there is a constant cy such that the generalized paraboloid
�aŒu.x/� Du. y/ � .x � y/ � u. y/�C cy touches the graph of v from below at some
point x (called the contact point) in S1. Indeed, for each y 2 V , we consider the
function

P.x/ D v.x/C aŒu.x/� Du. y/ � .x � y/� u. y/�

and look for its minimum points on S1. On the boundary @S1, we have

P � aŒu.x/� Du. y/ � .x � y/ � u. y/� � aC1.n; �;ƒ/
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by the Aleksandrov maximum principle. At x0, we have

P.x0/ � 1C aŒu.x0/ � Du. y/ � .x0 � y/� u. y/� � 1C a˛�0:

The last inequality follows from the engulfing property. Indeed, we have x0; y 2 S˛
and hence by the engulfing property in Theorem 3.54, x0; y 2 Su.0; ˛/ � Su. y; �0˛/.
Consequently,

u.x0/� Du. y/ � .x0 � y/� u. y/ � �0˛:

Thus, we can fix ˛ > 0 small, universal and a;M1 large such that

M1 D 2C a˛�0 < aC1:

Therefore, P attains its minimum at a point x 2 S1. Furthermore

v.x/ � P.x0/ < M1:

At the contact point x 2 S1, we have

Dv.x/ D a.Du. y/� Du.x//

which gives

Du. y/ D Du.x/C 1

a
Dv.x/:

We also have

D2v.x/ � �aD2u.x/: (2.12)

Hence

D2u. y/Dxy D D2u.x/C 1

a
D2v.x/ � 0: (2.13)

Now using the equation at only x, we find that

trace..D2u/�1D2v.x// D 0:

This together with (2.12) gives

C.a; n/D2u.x/ � D2v.x/ � �aD2u.x/: (2.14)

Here we use the following basic estimates. If A � �B and trace.B�1A/ D 0 then

CB � A � �B:
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Indeed, we can rewrite

B�1=2AB�1=2 � �In; trace.B�1=2AB�1=2/ D 0:

Hence

B�1=2AB�1=2 � C.n/In:

Now, taking the determinant in (2.13) and invoking (2.14), we obtain

detD2u. y/ jdetDxyj D det.D2u.x/C 1

a
D2v.x// � C.a; n/ detD2u.x/:

This implies the bound

jdetDxyj � C.a; n; ƒ; �/:

Then, by the area formula, the set E of contact points x satisfies

jS˛j D jVj D
Z

E
jdetDxyj � C.a; n; ƒ; �/ jEj � Cjfv < M1g \ S1j:

Using the volume estimate of sections in Lemma 3.42, we find that
jS1j � C�jfv < M1g \ S1j for some C� > 1 universal. The conclusion of the
Lemma holds with ı D 1=C�: ut
Proof of Lemma 2.14 Recall that u.0/ D 0;Du.0/ D 0 and B1.0/ � Su.0; 4/ �
Bn.0/. To prove the lemma, it suffices to construct a subsolution w W S2nS˛ �! R,
i.e., Uijwij � 0, with the following properties

(i) w � 0 on @S2
(ii) w � 1 on @S˛

(iii) w � c.n; ƒ; �/ in S1nS˛:
Our first guess is

w D C.˛;m/.u�m � 2�m/

where m is large.
Let .uij/1�i;j�n be the inverse matrix .D2u/�1 of the Hessian matrix D2u. We can

compute for W D u�m � 2�m

uijWij D mu�m�2Œ.mC1/uijuiuj�uuijuij� D mu�m�2Œ.mC1/uijuiuj�nu�: (2.15)
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By Lemma 3.64

uijuiuj � jDuj2
trace.D2u/

:

If x 2 S2 n S˛ and y D 0 then from the convexity of u, we have 0 D u. y/ �
u.x/C Du.x/ � .0 � x/ and therefore,

jDu.x/j � u.x/

jxj � ˛

n
� 2cn

for some constant cn depending only on n; � andƒ.
In order to obtain uijWij � 0 using (2.15), we only have trouble when kD2uk

is unbounded. But the set of bad points, i.e., where kD2uk is large, is small.
Here is how we see this. Because Su.0; 4/ is normalized, we can deduce from the
Aleksandrov maximum principle, Theorem 3.20 applied to u � 4, that

dist.Su.0; 3/; @Su.0; 4// � c.n; �;ƒ/

for some universal c.n; �;ƒ/ > 0. By Lemma 3.11, Du is bounded on S3. Now let
� denote the outernormal unit vector field on @S3. Then, using the convexity of u,
we have kD2uk � 
u and thus, by the divergence theorem,

Z

S3

kD2uk �
Z

S3


u D
Z

@S3

@u

@�
� C.n; �;ƒ/:

Therefore, given " > 0 small, the set

H" D fx 2 S3 j kD2uk � 1

"
g

has measure bounded from above by

jH"j � C":

To construct a proper subsolution bypassing the bad points in H", we only need
to modify w at bad points. Roughly speaking, the modification involves the solution
to

detD2u" D ƒ�H" ; u" D 0 on @S4:

Here we use �E to denote the characteristic function of the set E W �E.x/ D 1 if x 2 E
and �E.x/ D 0 if otherwise. The problem with this equation is that the solution is
not in general smooth while we need two derivatives to construct the subsolution.
But this problem can be fixed, using approximation, as follows.
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We approximate H" by an open set QH" where H" � QH" � S4 and the measure of
their difference is small, that is

j QH" n H"j � ":

We introduce a smooth function ' with the following properties:

' D 1 in H"; ' D " in S4 n QH"; " � ' � 1 in S4:

Let h" be the solution to

detD2h" D ƒ'; h" D 0 on @S4I

see Theorem 3.27. By Caffarelli’s C2;˛ estimates [6], h" 2 C2;˛.S4/ for all ˛ 2
.0; 1/. From the Aleksandrov maximum principle, Theorem 3.20, we have on S4

jh"j � Cndiam.S4/

�Z

S4

ƒ'

�1=n
:

We need to estimate the above right hand side. From the definitions of QH" and ', we
can estimate
Z

S4
ƒ' D

Z

H"
ƒC

Z

QH"nH"
ƒ'C

Z

S4n QH"
" � ƒjH"jCƒj QH"nH"jC"C.n; �;ƒ/ � C.n; �;ƒ/":

It follows that for some universal constant C1.n; �;ƒ/,

jh"j � C1.n; �;ƒ/"
1=n:

By the gradient estimate in Lemma 3.11, we have on S2

jDh".x/j � �h".x/

dist.S3; @S4/
� C2.n; �;ƒ/"

1=n:

We choose " small so that

C1.n; �;ƒ/"
1=n � 1=4; C2.n; �;ƒ/"

1=n � cn: (2.16)

Let

QV D .u � h"/ and QW D QV�m � 2�m:

Then

j QVj � 3 and jD QVj � cn on S2 n S˛I ˛ � QV � 1C 1=4 D 5=4 on S1nS˛: (2.17)
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Now, compute as before

uij QWij D m QV�m�2Œ.mC1/uij QVi QVj� QVuij QVij� D m QV�m�2Œ.mC1/uij QVi QVjC QV.uij.h"/ij�n/�:

We note that, by Lemma 3.63,

uij.h"/ij D trace..D2u/�1D2h"/ � n.det.D2u/�1 detD2h"/1=n � n on H":

It follows that

uij QWij � 0 on H":

On .S2 n S˛/nH", we have trace.D2u/ � n"�1 and from (2.17)

uij QWij � m QV�m�2Œ.m C 1/uij QVi QVj � n QV�

� m QV�m�2Œ.m C 1/
jD QVj2

trace.D2u/
� n QV�

� m QV�m�2Œ.m C 1/n�1"cn � n QV� � 0

if we choose m large, universal. Therefore,

uij QWij � 0 on S2 n S˛

and hence QW D QV�m � 2�m is a subsolution to uijvij � 0 on S2 n S˛.
Finally, by (2.17) and QW � 0 on @S2, we choose a suitable C.˛; n; �;ƒ/ so that

the subsolution of the form

Qw D C.˛; n; �; �/. QV�m � 2�m/

satisfies Qw � 1 on @S˛. Now, we obtain the desired universal lower bound for v in
S1 from v � Qw on S1nS˛ and v � 1 on S˛. ut

2.2.2 Proof of the Interior Hölder Estimates for the
Inhomogeneous Linearized Monge-Ampère Equation

In this section, we prove Theorem 2.9, following an argument of Trudinger and
Wang [40].

The following lemma is a refined version of the Aleksandrov-Bakelman-Pucci
(ABP) maximum principle for convex domains.
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Lemma 2.21 Assume that� is a bounded, convex domain in Rn. Let

Lu.x/ D trace.A.x/D2u.x//

where A is an n � n symmetric and positive definite matrix in �. Then, for all
u 2 C2.�/\ C.�/,

max
�

u � max
@�

u C C.n/j�j1=n
����

Lu

.detA/1=n

����
Ln.�/

:

Proof We use the ABP estimate, Theorem 2.3, and John’s lemma, Lemma 3.23.
According to this lemma, there is an affine transformation T.x/ D MxC b where M
is an n � n invertible matrix and b 2 R

n such that

B1.0/ � T.�/ � Bn.0/: (2.18)

For x 2 T.�/, we define

v.x/ D u.T�1x/ and QLv D trace. QA.x/D2v.x//

where QA.x/ D MA.T�1x/Mt. We then compute D2v.x/ D .M�1/tD2u.T�1x/M�1
and hence

QLv.x/ D Lu.T�1.x//:

Applying the ABP to v and QLv.x/ on T.�/, we find

max
T.�/

v � max
@T.�/

v C C1.n/diam.T.�//

�����
QLv

.det QA/1=n

�����
Ln.T.�//

: (2.19)

By changing variables x D T. y/ for x 2 T.�/, we find from det QA D .detM/2 detA
that

�����
QLv

.det QA/1=n
�����
Ln.T.�//

D 1

.detM/1=n

����
Lu

.detA/1=n

����
Ln.�/

(2.20)

From (2.18), we have detM � c.n/j�j�1 and diam.T.�// � 2n. Using these
estimates in (2.19) and (2.20), we obtain the conclusion of the lemma. ut
By employing Lemma 2.21 and the interior Harnack inequality in Theorem 2.7 for
nonnegative solutions to the homogeneous linearized Monge-Ampère equations, we
get:
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Lemma 2.22 (Harnack Inequality for Inhomogeneous Linearized Monge-
Ampère) Assume that � � detD2u � ƒ in a convex domain � � R

n. Let
f 2 Ln.�/ and v 2 W2;n

loc .�/ satisfy Uijvij D f almost everywhere in �. Then if
Su.x; t/ �� � and v � 0 in Su.x; t/, we have

sup
Su.x;

t
2 /

v � C.n; �;ƒ/
	

inf
Su.x;

t
2 /
v C t

1
2 k fkLn.Su.x;t//



: (2.21)

Proof Let w be the solution of

Uijwij D f in Su.x; t/; and w D 0 on @Su.x; t/:

Then, by Lemma 2.21 and the volume bound on sections in Theorem 3.42, we get

sup
Su.x;t/

jwj � C.n; �/jSu.x; t/j 1n k fkLn.Su.x;t// � Ct1=2k fkLn.Su.x;t//: (2.22)

Furthermore, we have Uij.v � w/ij D 0 in Su.x; t/ and v � w � 0 on @Su.x; t/. Thus
we conclude from the ABP maximum principle that v � w � 0 in Su.x; t/. Hence,
we can apply the interior Harnack inequality, Theorem 2.7, to obtain

sup
Su.x;

t
2 /

.v � w/ � C inf
Su.x;

t
2 /
.v � w/;

for some constant C depending only on n; �; and ƒ, which then implies

sup
Su.x;

t
2 /

v � C0	 inf
Su.x;

t
2 /
v C sup

Su.x;
t
2 /

jwj



� C
	

inf
Su.x;

t
2 /
v C t

1
2 kfkLn.Su.x;t//



:

ut
As a consequence of Lemma 2.22, we obtain the following oscillation estimate:

Corollary 2.23 Assume that � � detD2u � ƒ in a convex domain � � R
n. Let

f 2 Ln.�/ and v 2 W2;n
loc .�/ satisfy Uijvij D f almost everywhere in �. Then if

Su.x; h/ �� �, we have

oscSu.x;	/v � C
�	
h

�˛h
oscSu.x;h/v C h

1
2 kfkLn.Su.x;h//

i
for all 	 � h;

where C; ˛ > 0 depend only on n, �, andƒ, and oscEv WD sup
E
v � inf

E
v.

Proof Let us write St for the section Su.x; t/. Set

m.t/ WD inf
St
v; M.t/ WD sup

St

v; and !.t/ WD M.t/ � m.t/:
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Let 	 2 .0; h� be arbitrary. Then since Qv WD v � m.	/ is a nonnegative solution of
Uij Qvij D f in S	, we can apply Lemma 2.22 to Qv to obtain

1

C
sup
S 	
2

Qv � inf
S 	
2

Qv C 	
1
2 kfkLn.S	/:

It follows that for all 	 2 .0; h�, we have

!.
	

2
/ D sup

S 	
2

Qv � inf
S 	
2

Qv � �
1 � 1

C

�
sup
S 	
2

Qv C 	
1
2 kf kLn.S	/ � �

1 � 1

C

�
!.	/C 	

1
2 kf kLn.Sh/:

Thus, by the standard iteration we deduce that

!.	/ � C0�	
h

�˛h
!.h/C h

1
2 kfkLn.Sh/

i
;

giving the conclusion of the corollary. ut
Proof of Theorem 2.9 By Lemma 3.11, there is a constantM > 1 depending only on
n; � andƒ such that jDu.z/j � M for all z 2 B3=4.0/. By Theorem 3.50, there exists
a constant r0 > 0 depending only on n; � andƒ such that Su.z; r0/ � B3=4.0/ for all
z 2 B1=2.0/. The gradient bound implies that B.z; r

2M / � Su.z; r/ for all z 2 B1=2.0/
and r � r0. Fix x 2 B1=2.0/. It suffices to prove the lemma for y 2 Su.x; r0=4/. Let
r 2 .0; r0=2/ be such that y 2 Su.x; r/nSu.x; r=2/. Then jy � xj � r

4M . The above
corollary gives

jv. y/ � v.x/j � oscSu.x;r/v � C.
r

r0
/˛
�
kvkL1.S�.x;r0// C r

1
2

0 kfkLn.Su.x;r0//
�

� Cjx � yj˛ �kvkL1.B1.0// C kfkLn.B1.0///


:

ut
Remark 2.24 The proof of Theorem 2.7 follows the presentation in [25] where the
case of lower order terms was treated. For related results, see also [28].

2.3 Global Hölder Estimates for the Linearized
Monge-Ampère Equations

In this section, we prove Proposition 1.14 and Theorem 1.13.
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2.3.1 Boundary Hölder Continuity for Solutions
of Non-uniformly Elliptic Equations

Proof of Proposition 1.14 By considering the equation satisfied by v
k'kC˛.@�/CkgkLn.�/ ,

we can assume that

k'kC˛.@�/ C kgkLn.�/ D 1

and we need to prove that

jv.x/ � v.x0/j � Cjx � x0j ˛
˛C2 for all x 2 � \ Bı.x0/:

Moreover, without loss of generality, we assume that � D 1 and

� � R
n \ fxn > 0g; 0 2 @�:

Take x0 D 0. By the ABP estimate in Theorem 2.3 and the assumption det.aij/ � 1,
we have

jv.x/j � k'kL1.@�/ C Cndiam.�/kgkLn.�/ � C0 8 x 2 �

for a constant C0 > 1 depending only on n and diam.�/, and hence, for any
" 2 .0; 1/

jv.x/ � v.0/˙ "j � 3C0 WD C1: (2.23)

Consider now the functions

h˙.x/ WD v.x/ � v.0/˙ "˙ C1.inffyn W y 2 � \ @Bı2.0/g/�1xn
in the region A WD � \ Bı2.0/ where ı2 is small to be chosen later.

Note that, if x 2 @� with

jxj � ı1."/ WD "1=˛

then, we have from k'kC˛.@�/ � 1 that

jv.x/� v.0/j D j'.x/� '.0/j � jxj˛ � ": (2.24)

It follows that, if we choose ı2 � ı1 then from (2.23) and (2.24), we have

h� � 0; hC � 0 on @A:
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On the other hand,

aij.h˙/ij D g in A:

The ABP estimate in Theorem 2.3 applied in A gives

h� � Cndiam.A/kgkLn.A/ � Cnı2 in A

and

hC � �Cndiam.A/kgkLn.A/ � �Cnı2 in A:

By restricting " � C
�˛
1�˛
n , we can assume that

ı1 D "1=˛ � "

Cn
:

Then, for ı2 � ı1, we have Cnı2 � " and thus, for all x 2 A, we have

jv.x/� v.0/j � 2"C C1.inffyn W y 2 � \ @Bı2 .0/g/�1xn:

The uniform convexity of � gives

inffyn W y 2 � \ @Bı2.0/g � C�1
2 ı

2
2: (2.25)

Therefore, choosing ı2 D ı1, we obtain

jv.x/� v.0/j � 2"C C1.inffyn W y 2 � \ @Bı2 .0/g/�1xn D 2"C 2C1C2
ı22

xn in A:

As a consequence, we have just obtained the following inequality

jv.x/� v.0/j � 2"C 2C1C2
ı22

jxj D 2"C 2C1C2"
�2=˛jxj (2.26)

for all x; " satisfying the following conditions

jxj � ı1."/ WD "1=˛; " � C
�˛
1�˛
n WD c1.˛;L;K; n/: (2.27)

Finally, let us choose " D jxj ˛
˛C2 : It satisfies the conditions in (2.27) if

jxj � minfc
˛C2
˛

1 ; 1g WD ı:
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Then, by (2.26), we have for all x 2 � \ Bı.0/

jv.x/� v.0/j � Cjxj ˛
˛C2 ; C D 2C 2C1C2:

ut
Proposition 1.14 gives the boundary Hölder continuity for solutions to the

linearized Monge-Ampère equation

Uijvij D g

where .Uij/ is the cofactor matrix of the Hessian matrix D2u of the convex function
u satisfying

� � detD2u � ƒ:

This combined with the interior Hölder continuity estimates of Caffarelli-Gutiérrez
in Theorem 2.9 gives the global Hölder estimates for solutions to the linearized
Monge-Ampère equations on uniformly convex domains as stated in Theorem 1.13.
The rest of this section will be devoted to the proof of these global Hölder estimates.

The main tool to connect the interior and boundary Hölder continuity for solu-
tions to the linearized Monge-Ampère equation is Savin’s Localization Theorem at
the boundary for the Monge-Ampère equation.

2.3.2 Savin’s Localization Theorem

We now state the main tool used in the proof of Theorem 1.13, the localization
theorem.

Let � � R
n be a bounded convex set with

B	.	en/ � � � fxn � 0g \ B 1
	
.0/; (2.28)

for some small 	 > 0. Here en D .0; � � � ; 0; 1/ 2 R
n. Assume that

for each y 2 @� \ B	.0/ there is a ball B	.z/ � � that is tangent to @� at y:
(2.29)

Let u W � ! R, u 2 C0;1.�/\ C2.�/ be a convex function satisfying

detD2u D f ; 0 < � � f � ƒ in �; (2.30)

and assume that

u.0/ D 0; ru.0/ D 0: (2.31)
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If the boundary data has quadratic growth near fxn D 0g then, as h ! 0, the section
Su.0; h/ of u at 0 with level h is equivalent to a half-ellipsoid centered at 0; here we
recall that

Su.x; h/ WD fy 2 � W u. y/ < u.x/C ru.x/ � . y � x/C hg:

This is the content of Savin’s Localization Theorem proved in [34, 35]. Precisely,
this theorem reads as follows.

Theorem 2.25 (Localization Theorem [34, 35]) Assume that � satisfies (2.28)–
(2.29) and u satisfies (2.30), (2.31) above and,

	jxj2 � u.x/ � 	�1jxj2 on @� \ fxn � 	g: (2.32)

Then, for each h < k there exists an ellipsoid Eh of volume !nhn=2 such that

kEh \� � Su.0; h/ � k�1Eh \�:

Moreover, the ellipsoid Eh is obtained from the ball of radius h1=2 by a linear
transformation A�1

h (sliding along the xn D 0 plane)

AhEh D h1=2B1; detAh D 1;

Ah.x/ D x � �hxn; �h D .�1; �2; : : : ; �n�1; 0/;

with

j�hj � k�1j log hj:

The constant k above depends only on 	; �;ƒ; n.

The ellipsoid Eh, or equivalently the linear map Ah, provides useful information
about the behavior of u near the origin. From Theorem 2.25 we also control the
shape of sections that are tangent to @� at the origin.

Proposition 2.26 Let u and � satisfy the hypotheses of the Localization Theo-
rem 2.25 at the origin. Assume that for some y 2 � the section Su. y; h/ � �

is tangent to @� at 0 for some h � c with c universal. Then there exists a small
constant k0 > 0 depending on �, ƒ, 	 and n such that

Du. y/ D aen for some a 2 Œk0h1=2; k�1
0 h1=2�;

k0Eh � Su. y; h/� y � k�1
0 Eh; k0h

1=2 � dist. y; @�/ � k�1
0 h1=2;

with Eh the ellipsoid defined in the Localization Theorem 2.25.
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Proposition 2.26, proved in [36], is a consequence of Theorem 2.25. We sketch
its proof here.

Proof of Proposition 2.26 Assume that the hypotheses of the Localization Theo-
rem 2.25 hold at the origin. For a � 0 we denote

S0
a WD fx 2 �j u.x/ < axng;

and clearly S0
a1 � S0

a2 if a1 � a2. The proposition easily follows once we show that
S0
ch1=2

has the shape of the ellipsoid Eh for all small h.
From Theorem 2.25 we know

Su.0; h/ WD fu < hg � k�1Eh � fxn � k�1h1=2g

and since u.0/ D 0 we use the convexity of u and obtain

S0
kh1=2 � Su.0; h/\�: (2.33)

This inclusion shows that in order to prove that S0
kh1=2

is equivalent to Eh it suffices
to bound its volume by below

jS0
kh1=2 j � cjEhj:

From Theorem 2.25, there exists y 2 @S�h such that yn � k.�h/1=2. We evaluate
Qu WD u � kh1=2xn; at y and find

Qu. y/ � �h � kh1=2k.�h/1=2 � �ıh;

for some ı > 0 provided that we choose � small depending on k. Since Qu D 0 on
@S0

kh1=2
and detD2 Qu � ƒ, we apply Lemma 2.21 to �Qu which solves Uij.�Qu/ij D

�n detD2u. We have

ıh � max
S0

kh1=2

�Qu � C.ƒ; n/jS0
kh1=2 j2=n;

hence

chn=2 � jS0
kh1=2 j:

ut
The quadratic separation from tangent planes on the boundary for solutions to the

Monge-Ampère equation is a crucial assumption in the Localization Theorem 2.25.
This is the case for u in Theorem 1.13 as proved in [35, Proposition 3.2].
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Proposition 2.27 Let u be as in Theorem 1.13. Then, on @�, u separates quadrati-
cally from its tangent planes on @�. This means that if x0 2 @� then

	 jx � x0j2 � u.x/� u.x0/� ru.x0/ � .x � x0/ � 	�1 jx � x0j2 ; (2.34)

for all x 2 @�; for some small constant 	 universal.
Proof We prove the Proposition for the case x0 2 @�. By rotation of coordinates,
we can assume that x0 D 0 and

� � fx 2 R
n W xn > 0g:

We denote a point x D .x1; � � � ; xn�1; xn/ 2 R
n by x D .x0; xn/ where x0 D

.x1; � � � ; xn�1/. By the Aleksandrov maximum principle, we have that u is univer-
sally bounded. Since � is uniformly convex at the origin and detD2u is bounded
from above, we can use barriers and obtain that l0, the tangent plane at the origin,
has bounded slope. The proof of this fact is quite similar to that of Lemma 1.19.
After subtracting this linear function from u and � D uj@˝ , we may assume l0 D 0.
Thus, u � 0 and it suffices to show that

	 jx � x0j2 � u.x/ � 	�1 jx � x0j2 ; (2.35)

for all x 2 @�. Since u is universally bounded, we only need to prove (2.35) for jxj
universally small.

Since � D uj@˝ , @� are C3 at the origin, we find that

�.x/ D Q0.x
0/C o.jx0j3/ for x D .x0; xn/ 2 @�; (2.36)

with Q0 a cubic polynomial. Indeed, locally around 0, @� is given by the graph of a
C3 function  : for some c small,

@� \ Bc.0/ D f.x0; xn/ W xn D  .x0/g:

Thus, we can write for .x0; xn/ 2 @� \ Bc.0/ W

xn D Q1.x
0/C o.jx0j3/ (2.37)

with Q1 a cubic polynomial. Since � 2 C3.�/, we can again write around 0:

�.x/ D Q2.x/C o.jxj3/ for x D .x0; xn/ 2 �

with Q2 a cubic polynomial. Substituting (2.37) into this equation, we obtain (2.36)
as claimed.
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Now we use (2.36). Because u D � � 0 on @�, Q0 has no linear part and its
quadratic part is given by, say

X

i<n

�i

2
x2i ; with �i � 0:

We need to show that �i > 0.
If �1 D 0, then the coefficient of x31 is 0 in Q0. Thus, if we restrict to @� in a

small neighborhood near the origin, then for all small h the set f� < hg contains

fjx1j � r.h/h1=3g \ fjx0j � ch1=2g

for some c > 0 and with

r.h/ ! 1 as h ! 0:

Now Su.0; h/ contains the convex set generated by f� < hg thus, since � is
uniformly convex,

jSu.0; h/j � c0.r.h/h1=3/3h.n�2/=2 � c0r.h/3hn=2:

On the other hand, since detD2u � � and

0 � u � h in Su.0; h/

we obtain from Lemma 3.44 that

jSu.0; h/j � C.�; n/hn=2;

and we contradict the inequality above as h ! 0. ut

2.3.3 Proof of Global Hölder Estimates for the Linearized
Monge-Ampère Equation

Proof of Theorem 1.13 We recall from Proposition 2.27 that u separates quadrati-
cally from its tangent planes on @�. Therefore, Proposition 2.26 applies. Let y 2 �
with r WD dist. y; @�/ � c; for c universal, and consider the maximal section
Su. y; Nh. y// centered at y, i.e.,

Nh. y/ D maxfh j Su. y; h/ � �g:
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When it is clear from the context, we write Nh for Nh. y/. By Proposition 2.26 applied
at the point x0 2 @Su. y; Nh/\ @�; we have

Nh1=2 	 r; (2.38)

and Su. y; Nh/ is equivalent to an ellipsoid E i.e

cE � Su. y; Nh/� y � CE;

where

E WD Nh1=2A�1Nh B1.0/; with kANhk; kA�1Nh k � Cj log NhjI detANh D 1: (2.39)

We denote

uy WD u � u. y/� Du. y/ � .x � y/:

The rescaling Qu W QS1 ! R of u

Qu.Qx/ WD 1

Nhuy.T Qx/ x D T Qx WD y C Nh1=2A�1Nh Qx;

satisfies

detD2 Qu.Qx/ D Qf .Qx/ WD f .T Qx/;

and

Bc.0/ � QS1 � BC.0/; QS1 D Nh�1=2ANh.Su. y; Nh/� y/; (2.40)

where QS1 represents the section of Qu at the origin at height 1.
We define also the rescaling Qv for v

Qv.Qx/ WD v.T Qx/� v.x0/; Qx 2 QS1:

Then Qv solves

QUij Qvij D Qg.Qx/ WD Nhg.T Qx/:

Now, we apply Caffarelli-Gutiérrez’s interior Hölder estimates in Theorem 2.9 to Qv
to obtain

j Qv.Qz1/� Qv.Qz2/j � C jQz1 � Qz2jˇ fk QvkL1.QS1/ C kQgkLn.QS1/g; 8Qz1; Qz2 2 QS1=2;

for some small constant ˇ 2 .0; 1/ depending only on n; �;ƒ.
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By (2.40), we can decrease ˇ if necessary and thus we can assume that

2ˇ � ˛

˛ C 2
WD 2�:

Note that, by (2.39)

kQgkLn.QS1/ D Nh1=2 kgkLn.Su. y;Nh// :

We observe that (2.38) and (2.39) give

BCrjlog rj. y/ � Su. y; Nh/ � Su. y; Nh=2/ � Bc rjlog rj . y/

and

diam.Su. y; Nh// � Cr jlog rj :

By Proposition 1.14, we have

k QvkL1.QS1/ � Cdiam.Su. y; Nh//2� � C.r jlog rj/2� :

Hence

j Qv.Qz1/ � Qv.Qz2/j � C jQz1 � Qz2jˇ f.r jlog rj/2� C Nh1=2 kgkLn.Su. y;Nh//g 8Qz1; Qz2 2 QS1=2:

Rescaling back and using

Qz1 � Qz2 D Nh�1=2ANh.z1 � z2/;

and the fact that

jQz1 � Qz2j � ��Nh�1=2ANh
�� jz1 � z2j � C Nh�1=2 ˇ̌log Nhˇ̌ jz1 � z2j � Cr�1 jlog rj jz1 � z2j ;

we find

jv.z1/ � v.z2/j � jz1 � z2jˇ 8z1; z2 2 Su. y; Nh=2/: (2.41)

Notice that this inequality holds also in the Euclidean ball Bc rjlog rj . y/ � Su. y; Nh=2/.
Combining this with Proposition 1.14, we easily obtain that

kvkCˇ. N�/ � C;

for some ˇ 2 .0; 1/, C universal.
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For completeness, we include the details. By rescaling the domain, we can
assume that � � B1=100.0/: We estimate jv.x/�v. y/j

jx�yjˇ for x and y in �. Let rx D
dist.x; @�/ and ry D dist. y; @�/: Suppose that ry � rx; say. Take x0 2 @� and
y0 2 @� such that rx D jx � x0j and ry D jy � y0j : From the interior Hölder
estimates of Caffarelli-Gutiérrez, we only need to consider the case ry � rx � c:

Assume first that jx � yj � c rxjlog rxj : Then y 2 Bc rxjlog rxj .x/ � Su.x; Nh.x/=2/:
By (2.41), we have

jv.x/� v. y/j
jx � yjˇ � 1:

Assume finally that jx � yj � c rxjlog rxj : We claim that rx � C jx � yj jlog jx � yjj :
Indeed, if

1 > rx � jx � yj jlog jx � yjj � jx � yj

then

rx � 1

c
jx � yj jlog rxj � 1

c
jx � yj jlog jx � yjj :

Now, we have

jx0 � y0j � rx C jx � yj C ry � C jx � yj jlog jx � yjj :

Hence, by Proposition 1.14 and recalling 2� D ˛
˛C2 ;

jv.x/ � v. y/j � jv.x/ � v.x0/j C jv.x0/ � v. y0/j C jv. y0/� v. y/j
� C

�
r2�x C jx0 � y0j˛ C r2�y

�

� C .jx � yj jlog jx � yjj/2� � C jx � yjˇ :

ut
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