Chapter 2
The Linearized Monge-Ampere Equation

2.1 The Linearized Monge-Ampere Equation and Interior
Regularity of Its Solution

2.1.1 The Linearized Monge-Ampere Equation

The linearized Monge-Ampere equation associated with a C? and locally uniformly
convex potential u defined on some subset of R” is of the form

Ly =Y Ulv; = trace(UD*) = g. 2.1)
ij=1
Here and throughout,
U = (UY) = (det D*u)(D*u)™"

is the matrix of cofactors of the Hessian matrix D*u = (). The coefficient matrix
U of L, arises from the linearization of the Monge-Ampere operator det D?u because

. d(det D*u)
(D)

One can also note that L, v is the coefficient of 7 in the expansion

det D*(u + 1v) = det D*u + t trace(UD?v) + - - - + " det D*v.
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36 2 The Linearized Monge-Ampere Equation

Typically, one assumes that u solves the Monge-Ampere equation
detD*u = f for some function f satisfying the bounds 0 < A <f < A 2.2)

where A and A are positive constants. Given these bounds, U is a positive semi-
definite matrix. Hence, L, is a linear elliptic partial differential operator, possibly
degenerate.

The linearized Monge-Ampere operator L, captures two of the most important
second order equations in PDEs from the simplest linear equation to one of
the most important nonlinear equations. In fact, in the special case where u is
a quadratic polynomial, say u(x) = é|x|2, L, becomes the Laplace operator:

noog2
L, =A= Z aaxz. On the other hand, since L,u = n det D?u, the Monge-Ampere
i=1 i

equation is a special case of the linearized Monge-Ampere equation. As U = (UY)
is divergence-free (see Lemma 3.61), that is,

Zn: dU =0
i=1

forallj = 1,---, n, the linearized Monge-Ampere equation can be written in both
divergence and double divergence form:

L, = Xn: Bi(Uijvj) = Xn: BU(UUU)

ij=1 ij=1

2.1.2 Linearized Monge-Ampére Equations in Contexts

L, appears in many contexts:

(1) Affine maximal surface equation in affine geometry (Chern [12], Trudinger-
Wang [37-39])

. n+1
Ulw; = 0, w = (detD*u)~ 2

(2) Abreu’s equation (Abreu [1], Donaldson [15-18]) in the context of existence of
Kihler metrics of constant scalar curvature in complex geometry

Uijw,;i =—1, w = (detD?u)"!
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A more familiar form of the Abreu’s equation is
n 32 ij

Y e =

ij= ax,-axj

where (u¥) = (D?u)™" is the inverse matrix of D?u.

(3) Semigeostrophic equations in fluid mechanics (Brenier [4], Cullen-Norbury-
Purser [13], Loeper [27]).

(4) Regularity of the polar factorization for time dependent maps (Loeper [26]).

2.1.3 Difficulties and Expected Regularity

The classical regularity theory for uniformly elliptic equations with measurable
coefficients deals with divergence form operators

"9 0
— ij
L Z 0x; (a axj)

ij=1

or nondivergence form operators

L= Zn:aiiaij

ij=1

with positive ellipticity constants A and A, that is, the eigenvalues of the coefficient
matrix A = (a”) are bounded between A and A. The important Harnack and Holder
estimates for divergence form equations Lu = 0 were established in the late 50s by
De Giorgi-Nash-Moser [14, 31, 30]. The regularity theory in this case is connected
with isoperimetric inequality, Sobolev embedding, Moser iteration, heat kernel,
BMO (the space of functions of bounded mean oscillation). On the other hand,
the Harnack and Holder estimates for nondivergence form equations Ly = 0 were
established only in the late 70s by Krylov-Safonov [22, 23]. The regularity theory
is connected with the Aleksandrov-Bakelman-Pucci (ABP) maximum principle
coming from the Monge-Ampere equation.
The linearized Monge-Ampere theory investigates operators of the form

L, = Z U’d;

ij=1
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where it is only known that the product of the eigenvalues of the coefficient matrix
U is bounded between two constants. This comes from (2.2) because

Al < detU = (detD*u)"™ ! < A",

Therefore, the linearized Monge-Ampere operator L, is in general not uniformly
elliptic, i.e., the eigenvalues of U = (UY) are not necessarily bounded away from
0 and oco. Moreover, when considered in a bounded convex domain 2, L, can be
possibly singular near the boundary. In other words, the linearized Monge-Ampere
equation can be both degenerate and singular. The degeneracy and singularity of L,
are the main difficulties in establishing regularity results for its solutions.

A natural question is what regularity we can hope for solutions of the linearized
Monge-Ampere equation L,v = 0 under the structural assumption (2.2). At least
on a heuristic level, they can be expected to be Holder continuous. Indeed, strictly
convex solutions of (2.2), interpreted in the sense of Aleksandrov for u not Cc?
as in Definition 3.6, are C'* for some o € (0, 1) depending only on n,A and
A. This follows from the regularity theory of the Monge-Ampere equation; see
Theorems 3.53 and 3.58. By differentiating (2.2), we see that each partial derivative

ou

e = oo (k = 1,---,n) is a solution of the inhomogeneous linearized Monge-

Ampere equation
Luuk = ﬂ

We can expect that the regularity for v is that of u;, which is C%, and hence it should
be Holder continuous. The theory of Caffarelli-Gutiérrez confirms this expectation.

2.1.4 Affine Invariance Property

The second order operator L, := U"9;; is affine invariant, i.e., invariant with respect
to linear transformations of the independent variable x of the form x +— Tx with
det T = 1. Indeed, for such 7, the rescaled functions
u(x) = u(Tx) and v(x) = v(Tx)
satisfy the same structural conditions as in (2.1) and (2.2) because
det D*ii(x) = det D*u(Tx) = f(Tx) and L; 9 (x) = L,v(Tx) = g(Tx).

More generally, under the transformations

u(x) = u(Tx), v(x) = v(Tx),
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the Eq. (2.1) becomes
LzD(x) := U5;(x) = (det T)*g(Tx).

The last equation follows from standard computation. We have

Dii = T'Du; D*ii = T'(D*u)T; D* = T'(D*v)T
and
U = (detD*i)(D*i) " = (det T)*(det D*u) T~ (D*u) " (T™") = (det T)* T UT™")".
Therefore,
L;(x) = trace(UD*¥) = (det T)*trace(UD*v(Tx)) = (det T)2L,v(Tx) = (det T)g(Tx).

The rest of the section will be devoted to interior regularity for solutions to
the linearized Monge-Ampere equation. We start by recalling Krylov-Safonov’s
Harnack inequality for linear, uniformly elliptic equations in non-divergence form.

2.1.5 Krylov-Safonov’s Harnack Inequality

In 1979, Krylov-Safonov [22, 23] established the Harnack inequality and Holder
estimates for solutions of linear elliptic equations in non-divergence form

n 2
L= d v (2.3)
= 0x;0x;

where the eigenvalues of the coefficient matrix A = (a¥) are bounded between two
positive constants A and A, that is

A, < (@) < A, (2.4)

The following theorem is the celebrated result of Krylov-Safonov.

Theorem 2.1 (Krylov-Safonov’s Harnack Inequality, [22, 23]) Assume (a”) sat-
isfies (2.4). Let v be a nonnegative solution of (2.3) in Q. Then v satisfies the
Harnack inequality on Euclidean balls. More precisely, for all B, (xo) CC 2, we
have

sup v < C(n, A, A) inf)v. (2.5)

By (x0) Br(xo
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From the Harnack inequality (2.5), we obtain a Holder estimate

o) —v(Y)] < Clx—y|* sup |v]
Bar(x0)

for x,y € B,(xo) where « and C are positive constants depending only on n, A, A.
Remark 2.2

(i) The uniform ellipticity of A(x) is invariant under rigid transformation of the
domain, i.e., for any orthogonal matrix O, the matrix A(Ox) is also uniformly
elliptic with the same ellipticity constants as A(x).

(i) Balls are invariant under orthogonal transformations.

(iii) One important fact, but hidden, in the regularity theory of uniformly elliptic
equations is that the quadratic polynomials

Px)=a+b-x+ ; Ix|*, b e R",
are “potentials® for L, that is
L(P)~ 1
and level surfaces of P(x) are all possible balls of R”. Moreover,
[VP(x) —b| =~ 1

for x in the ring B, (b)\B ().

Krylov-Safonov theory makes crucial use of the ABP estimate which bounds
solution of Lv = f using the boundary values of v and L" norm of the right hand
side. In general form, it states as follows; see [2, 3, 32] and also [19, Theorem 9.1].

Theorem 2.3 (ABP Maximum Principle) Let (a¥) be a measurable, positive
definite matrix. For u € C*(Q) N C°(Q), we have

supu < supu +

diam(R2) H aVu;;
Q 90

ol | [det(ay)]/n

L”(F+)
where T is the upper contact set

't ={yeQuk <u(y)+p-(x—y)forallx € Q, for somep = p(y) € R"}.
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2.1.6 Harnack Inequality for the Linearized Monge-Ampeére
Equation

The regularity theory for the linearized Monge-Ampere equation was initiated in
the fundamental paper [10] by Caffarelli and Gutiérrez. They developed an interior
Harnack inequality theory for nonnegative solutions of the homogeneous equations

L,v=0,

where L, is defined as in (2.1), in terms of the pinching of the Hessian determinant
A < detD*u < A. (2.6)

Their approach is based on that of Krylov and Safonov [22, 23] on the Harnack
inequality and Holder estimates for linear, uniformly elliptic equations in general
form, with sections replacing Euclidean balls. Before stating precisely the Harnack
inequality theory of Caffarelli-Gutiérrez, we would like to see, at least heuristically,
what objects are prominent in this theory.

Remark 2.4

(i) By the affine invariance property of the linearized Monge-Ampere equations
(see Sect. 2.1.4), it is not hard to imagine that good estimates for the linearized
Monge-Ampere equations must be formulated on domains that are invariant
under affine transformations. Balls are not affine invariant.

(ii) Clearly, after an affine transformation, an ellipsoid becomes another ellipsoid.
(iii)) A very important class of ellipsoid-like objects in the context of the Monge-
Ampere equation and the linearized Monge-Ampere equation are sections.

The notion of sections (or cross sections) of convex solutions to the Monge-Ampere
equation was first introduced and studied by Caffarelli [5-8], and plays an important
role in his fundamental interior W2? estimates [6]. Sections are defined as sublevel
sets of convex solutions after subtracting their supporting hyperplanes. They have
the same role as Euclidean balls have in the classical theory. The section of a convex
function u defined on 2 with center xj in €2 and height 7 is defined by

Su(xo, 1) = {x € Q :u(x) < u(xg) + Vu(xo) - (x — xo) + t}.

After affine transformations, the sections of u# become sections of another convex
function.

Example 2.5 A Euclidean ball of radius r is a section with height 2/2 of the
quadratic function |x|2/2 whose Hessian determinant is 1. For u(x) = |x|* /2, we
have

Su(x, h) = BJZh(x) n Q.
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An important fact is the convexity of sections. They can be normalized to look like
balls (John’s lemma, Lemma 3.23). Illustrating (i) and (iii) in Remark 2.4, we can
consider the following example.

2
Example 2.6 Consider the functions u(xy,xs) = ;2 + gx% and

2
v(x1.x) = 5! — 5x3 + 1in R? where & € (0, 1). Then det D?x = 1 and

&

Ulv; = 0.
Wecancomputefor}1 <r< ; and i <t< é
@
supv = r’ + 1; inf v = l—grz;supv > ! inf v.
B,(0) 2¢ B,(0) 2 B0 32¢ B,(0)
(i)

sup v=r+1; inf v=1-1.
S.(0.,1) Su(0,1)

The ratio sup v/ inf v does not depend on the eccentricity of the section S,(0, ¢) for
the given range of ¢. This ratio becomes unbounded on balls around 0 when ¢ — 0.

Now, if v is a nonnegative solution of the linearized Monge-Ampere equation
L,v = 0 in a section S,(x9,2h) CC 2 then Caffarelli and Gutiérrez’s theorem on
the Harnack inequality says that the values of v in the concentric section of half
height are comparable with each other. More precisely, we have the following:

Theorem 2.7 (Caffarelli-Gutiérrez’s Harnack Inequality, [10]) Assume that the
C? convex function u satisfies the Monge-Ampére equation

A<detD’u<AinSQ.

Letv € WIZOL" (2) be a nonnegative solution of

Ly :=U%; =0
in a section S,(xg,2h) CC Q. Then

sup v < C(n,A,A) inf wv. 2.7
Su(x0,h) Su(x0,h)

This theory of Caffarelli and Gutiérrez is an affine invariant version of the classical
Harnack inequality for uniformly elliptic equations with measurable coefficients.
In fact, since the linearized Monge-Ampere operator L, can be written in both
divergence form and non-divergence form, Caffarelli-Gutiérrez’s theorem is the
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affine invariant analogue of De Giorgi-Nash-Moser’s theorem [14, 31, 30] and also
Krylov-Safonov’s theorem [22, 23] on Holder continuity of solutions to uniformly
elliptic equations in divergence and nondivergence form, respectively.

Remark 2.8 The Harnack estimate (2.7) also holds for nonnegative solutions to
equations of the form

trace(A(x) UD?*v) = 0
with A uniformly elliptic

Cc'1, <A®x) < I,

Thus, when u(x) = é |x|>, we obtain the Krylov-Safonov’s Harnack inequality for
uniformly elliptic equations. Therefore, Harnack inequality also works for

a’:"v,j =0
with
A(D*uw) " < (d¥) < A(D*u)~".

In this case, we have a Hessian™!-like elliptic equation.

The Harnack inequality (2.7) implies the geometric decay of the oscillation of
the solution on sections with smaller height and gives the C* estimate for solution.
Quantitatively, this says that if v solves L,v = 0 in S,(x,2) CC Q2 then v is C* in
S, (xo, 1) and

vllce(s,xo.1y) < Cln, A, A, Su(xo, 2)) |0l 250 (5, (x0.2)) -

The important point to be emphasized here is that & depends only on n, A, A and
the dependence of C on S,(xp,2) can be actually removed in applications if we
use affine transformations to transform the convex set S,(xg,2) into a convex set
comparable to the unit Euclidean ball. The latter point follows from John’s lemma
(see Lemma 3.23) on inscribing ellipsoid of maximal volume of a convex set [21].
In fact, we can obtain interior Holder estimate for inhomogeneous equations.

Theorem 2.9 (Interior Holder Estimate) Assume that A < detD?>u < A ina
convex domain Q@ C R" with u = 0 on 0Q where Bj(0) C Q C B,(0). Let
f el (B1(0)) and v € W,Z,;C"(Bl(O)) be a solution of U'v; = f in B(0). Then
there exist constants € (0,1) and C > 0 depending only on n, A, and A such that

lv(x) —v(y) < Clx—ylﬁ(llvllmwon + IlfllL"(BIm») forallx,y € B (0).
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The Harnack inequality (2.7) is also true for more general hypotheses on the
Monge-Ampere measure ;4 = det D*u such as a suitable doubling property. We
say that the Borel measure u is doubling with respect to the center of mass on the
sections of u if there exist constants 8 > 1 and 0 < o < 1 such that for all sections

Su(XOv t),
p(Su(xo, 1)) < Bu(aSu(xo, 1)). (2.8)

Here oS, (xo, t) denotes the -dilation of S, (xo, f) with respect to its center of mass
x* (computed with respect to the Lebesgue measure):

aS,(xo. 1) = {x* + a(x —x*) : x € S,(x0,0)}.

Maldonado [29], extending the work of Caffarelli-Gutiérrez, proved the follow-
ing Harnack inequality for the linearized Monge-Ampere equation under minimal
geometric condition, namely, the doubling condition (2.8).

Theorem 2.10 ([29]) Assume that det D*u = u satisfies (2.8). For each compactly
supported section S,(x,t) CC 2, and any nonnegative solution v of L,v = 0 in
S, (x, 1), we have

sup v < C inf v
Su(x,t1) Su(x,70)

for universal t, C depending only on n, B and .

For example, the Harnack inequality holds for p positive polynomials. If
u(x1,x2) = xj+x3 then u = det D>u = Cx? is an admissible measure. The Harnack
inequality applies to equation of the Grushin-type

X7 2vpp + vy = 0. (2.9)

Remark 2.11 Equation of the type (2.9) is relevant in non-local equations such as
fractional Laplace equation. By Caffarelli-Silvestre [11], we can relate the fractional
Laplacian

J@) =f(&)

oo b= g

(=A)f(x) = Cy, dé,

where the parameter s is a real number between 0 and 1, and C,, is some
normalization constant, with solutions of the following extension problem. For a
function f : R” — R, we consider the extension v : R" x [0, c0) — R that satisfies
the equations

v(x,0) = f(x), Aw + ivy + vy = 0.
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The last equation can also be written as
div(y*Dv) =0

which is clearly the Euler-Lagrange equation for the functional

J(v) = / |Dv|2y“dX, X = (x,y).
y>0

We can show that

1 y) —v(x.0
C(_A)Yf = lim —yavy — lim U(x y) U(.x )
ot 1—ay—o0 yl—a

fors = 15“ and some constant C depending on n and s, which reduces to the regular
normal derivative in the case a = 0.

If we make the change of variables z = (
form equation of the type (2.9)

y

1—a . .
1_a) , we obtain a nondivergence

A +7%,=0

fora = | 2@ Moreover, y* vy, = v.. Thus, we can show that the following equality
Za ,

holds up to a multiplicative constant
(=A)f(x) = — lim yv,(x,y) = —v:(x,0).
y—)0+
Remark 2.12 The Harnack inequality in Theorem 2.7 has been recently extended to

the boundary in [24].

2.2 Interior Harnack and Holder Estimates for the
Linearized Monge-Ampere Equation

In this section, we prove Theorems 2.7 and 2.9.

2.2.1 Proof of Caffarelli-Gutiérrez’s Harnack Inequality

In this section, we prove Theorem 2.7 concerning Caffarelli-Gutiérrez’s Harnack
inequality for the linearized Monge-Ampere equation.
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We first briefly outline the proof of the Harnack inequality (2.7) in Theorem 2.7.
Our proof adapts the general scheme in proving Harnack inequality in
Krylov-Safonov [22, 23], Caffarelli-Cabré [9], Caffarelli-Gutiérrez [10], Savin [33]
and most recently Imbert-Silvestre [20].

By using the affine invariant property of the linearized Monge-Ampere equation
as explained in Sect.2.1.4, we can rescale the domain, and the functions « and v.
Furthermore, by changing coordinates and subtracting a supporting hyperplane to
the graph of u at (xo, u(xp)), we can assume that x, = 0, u(0) = 0, Du(0) = 0,
h = 2 and that the section Sy = S,(0,4) CC Q2 is normalized, that is

Bl(O) C S84 C Bn(O)

For simplicity, we denote S; = S,(0, 1).

A constant depending only on A, A and n is called universal. We denote universal
constants by ¢, C, Cy,C, K, M, §,--- , etc. Their values may change from line to
line.

From the engulfing property of sections in Theorem 3.54, we find that if y €
Su(x, 1) then

Su(x, ) C Su(y,6001) C Su(x, 031),

it suffices to show thatif v > 0in S, then v < C(n, A, A)v(0) in Sy.

The idea of the proof is the following. We show that the distribution function
of v, |{v > t} N S;| decays like 7% (Lf estimate). Thus, v &~ v(0) in S; except
a set of very small measure. If v(xp) > v(0) at some point xo, then by the same
method (now applying to C; — Cyv), we find v > v(0) in a set of positive
measure which contradicts the above estimate. To study the distribution function
of v, we slide generalized paraboloids associated with u of constant opening,
P(x) = —alu(x) — u(y) — Du(y) - (x — y)], from below till they touch the graph of
v for the first time. These are the points where we use the equation and obtain the
lower bound for the measure of the touching points. By increasing the opening of
the sliding paraboloids, the set of touching points almost covers §; in measure.

There are three main steps in the proof of the L® estimate.

Step 1:  Measure (ABP type) estimate. The rough idea is that
Measure of contact points > ¢ Measure of vertices.

This step is not difficult. The reason why it works is the following. In the ABP
estimate, we need the lower bound on the determinant of the coefficient matrix
which is the case here.
Step 2: Doubling estimate. This step is based on construction of subsolutions.
Step 3:  This step proves the geometric decay of [{v > ¢} N Sy|. It is based on a
covering lemma which is a consequence of geometric properties of sections.

Our measure estimate in Step 1 states as follows.
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Lemma 2.13 (Measure Estimate) Suppose that v > 0 is a solution of L,v = 0 in
a normalized section S4. There are small, universal constants § > 0, > 0 and a
large constant M| > 1 with the following properties. If infs, v < 1 then

[{v > M} NS < (1-98)S].

The key doubling estimate for Step 2 is the following lemma.

Lemma 2.14 (Doubling Estimate) Suppose that v > 0 is a solution of L,y = 0
in a normalized section Sy. Let a be the small constant in Lemma 2.13. If v > 1 in

Sy thenv > c(n, A, A) in Sy.

Combining Lemmas 2.13 and 2.14, and letting M := M;c(n, A, A)~', we obtain the
following result:

Proposition 2.15 (Critical Density Estimate) Suppose that v > 0 is a solution of
L,v = 0 in a normalized section Sy. There is a small, universal constant § > 0 and
a large constant M > 1 with the following properties. If

v >Myn S| > 1-8)S]

thenv > 1in S;.

From the critical density estimate and the growing ink-spots lemma stated in
Lemma 2.19, we obtain the L* estimate and completing the proof of Step 3.

Theorem 2.16 (Decay Estimate of the Distribution Function) Suppose that
v > 0is a solution of L,v = 0 in a normalized section S4 with

inf v<1.
Su(0,1)

Then there are universal constants C1 > 1 and ¢ € (0, 1) such that for all t > 0, we
have

fv>tnNS | <Cir.
Proof of Theorem 2.16 Let § € (0,1) and M > 1 be the constants in Proposi-
tion 2.15. The conclusion of the theorem follows from the following decay estimate
for Ay := {v > M*y N Sy:
Al = CoM™

Note that A;’s are open sets and Ay C A; for all k > 1. Recalling infg, v < 1, by
Proposition 2.15, we have

|Ac| < A1 < (1 —8)|S,]| for all k.
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From Proposition 2.15, we find that if a section § C S satisfies |S N Ag41| >
(1 =26)|S], then S C Ay. Using Lemma 2.19, we obtain

|Ak1] = (1 = c8)|Axl,
and therefore, by induction,
Akl = (1 =811 = 8)IS1] = M,
where ¢ = —log(1 — ¢8)/logM and C, = (1 — ¢8§)~ (1 — §)|S;|. This finishes the

proof. O

Proof of Theorem 2.7 Let§ € (0,1) and M > 1 be the constants in Proposition 2.15
and ¢ € (0,1) be the constant in Theorem 2.16. By a covering argument, our
theorem follows from the following claim.

Claim 2.17
sup v<C inf w.
54(0,1/2) 54(0,1/2)
This in turns follows from the following claim.

Claim 2.18 1f infs,,1/2v < 1 then for some universal constant C, we have

Sups,0.1/2) ¥ = C.
Indeed, for each t > 0, the function

. v

infsu((),1/2) v+T

satisfies a’ v;; = 0. We apply Claim 2.18 to v" to obtain

sup USC( inf v-}-;),
5,(0,1/2) $4(0,1/2)

Sending t — 0, we get the conclusion of Claim 2.17.

It remains to prove Claim 2.18. Let § > 0 be a universal constant to be
determined later and let /,(x) = #(1 — u(x))~* be defined in S,,(0, 1). We consider
the minimum value of ¢ such that 4, > v in S,(0, 1). It suffices to show that ¢ is
universally bounded by a constant C because we have then

sup v<C sup (1—uk)?<2tcC
5,(0,1/2) 54(0,1/2)

If t < 1, we are done. Hence, we further assume that ¢t > 1.
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Since ¢ is chosen to be the minimum value such that #; > v, then there must
exist some xg € S,(0, 1) such that /,(xg) = v(xp). Let r = (1 — u(xp))/2. Let
Hy := hi(xo) = t(2r)™ > 1. By Theorem 3.57, there is a small constant ¢ and large
constant p; = ™! such that S, (xo, 2c’') C S,(0, 1). We bound ¢ by estimating the
measure of the set {v > Hy/2} N S,(xo, cr’') from above and below.

The estimate from above can be done using Theorem 2.16 which then says that

[{v > Ho/2} N Su(xo. e < [{v > Ho/2} N 5,0, 1)| < CH* = Cr = (2r)*.
(2.10)

To estimate the measure of {v > Hy/2} N S,(xo, cr’') from below, we apply
Theorem 2.16 to C; — C,v on a small but definite fraction of this section. Let p be
the small universal constant and § be a large universal constant such that

1 n
Ml-p?P-1)<_,p>_" . 2.11
(1-p) ) < , Bz e (2.11)
Consider the section S, (xg, ¢;7') where ¢; < c is small. We claim that 1 —u(x) >
2r — 2pr in this section. Indeed, if x € S, (xq, c;#"') then by Lemma 3.52, we have
|x — xo| < C(ci"")* < cpr for small ¢; and hence, by the gradient estimate in
Lemma3.11

1 —u(x) = 2r + u(xo) — u(x) > 2r— (sup |Du|)|x —xo| = 2r —2pr.
S$u(0.1)

The maximum of v in the section S, (xo, c¢; ") is at most the maximum of /, which
is not greater than 1(2r — 2pr) ™ = (1 — p) P H,. Define the following function for
x € 8,(xg,c11)

w(x) = (1—p)PHy — v(x)
C (=pF—1)Ho

Note that w(xp) = 1, and w is a non-negative solution of L,w = 0 in S,(xo, c;7!).
Using Proposition 2.15, we obtain

[{w < M} N S,(xp, 1/4c177Y)| = 8]Su(x0, 1/4c17Y)].

In terms of the original function v, this is an estimate of a set where v is larger
than

Ho (=) b (= pyf 1) = .
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because of the choice of p and . Thus, we obtain the estimate
[{tv = Ho/2} N Su(xo, c17”)| = 8Su(xo, c17™)|.
In view of (2.10), and the volume estimate on sections in Theorem 3.42, we find
Cre2r)P° = §1S,(xo. 1) = c(n. A, )PP = c(n, A, A)re.

By the choice of § in (2.11), we find that 7 is universally bounded. O

In the proof of Theorem 2.16, we use the following consequence of Vitali’s
covering lemma. It is often referred to as the growing ink-spots lemma which was
first introduced by Krylov-Safonov [23]. The term “growing ink-spots lemma” was
coined by E. M. Landis.

Lemma 2.19 (Growing Ink-Spots Lemma) Suppose that u is a strictly convex
solution to the Monge-Ampére equation A < det D*u < A in a bounded and convex
set 2 C R". Assume that for some h > 0, S,,(0,2h) CC Q.

Let E C F C S,(0, h) be two open sets. Assume that for some constant § € (0, 1),
the following two assumptions are satisfied.

e Ifany section S,(x,t) C S,(0, h) satisfies |S,(x,t) N E| > (1 — 8)|S.(x, )|, then
Su(x,t) C F.
o |E] = (1=6)[S.(0,h)].

Then |E| < (1 — ¢d)|F| for some constant ¢ depending only on n, A and A.

Proof For every x € F, since F is open, there exists some maximal section which is
contained in F and contains x. We choose one of those sections for each x € F and
call it S, (x, h(x)).

If S, (x, l_z(x)) = S5,(0,h) for any x € F, then the result of the lemma follows
immediately since |E| < (1 — §)|S,(0, h)|, so let us assume that it is not the case.

We claim that |S,, (x, h(x)) NEl < (1 =9)|Su(x, h(x))|. Otherwise, we could find
a slightly larger section § containing S, (x, 2(x)) such that |S N E| > (1 — §)|S| and
S ¢ F, contradicting the first hypothesis.

The family of sections S,(x,/s(x)) covers the set F. By the Vitali cover-
ing Lemma 2.20, we can select a subcollection of non overlapping sections
S; =S, (xj,h(xj)) such that F C U, 1 Su (xj,Kh(xj)) for some universal constant
K depending only on n, A and A. The volume estimates in Lemma 3.42 then imply
that

1S.(xj, Kh(x)))| < C(n, A, A)|S.(x), h(x)))]

for each j.
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By construction, S; C F and |S; N E| < (1 — §)|S;|. Thus, we have that
|S; N (F\ E)| = §|S;|. Therefore

IF\E| =) 1SN (F\E)|

Jj=1

A%

o0
S sl
=1

8 ad _ 8
2 oA A) > 1840 Kh(x)| = Cld. A) |F].

j=1

Hence |E| < (1 — ¢8)|F| where ¢ = C(n, A, A)7. O

Lemma 2.20 (Vitali Covering) Suppose that A < detD*u < A in a bounded on
convex set 2 C R". Then there exists a universal constant K > 1 depending only
on n, A and A\ with the following properties.

(i) Let S be a collection of sections S* = S,(x, h(x)) CC 2. Then there exists a
o0

countable subcollection of disjoint sections U S (xi, h(x;)) such that

i=1

U N« USu(xi,Kh(xi)).

S*eS i=1

(ii) Let D be a compact set in Q2 and assume that to each x € D we associate a
corresponding section S, (x, h(x)) CC Q. Then we can find a finite number of
these sections S, (x;, h(x;)),i = 1,--- ,m, such that

D C U Su(xi, h(x;)), with S,(xi, K~'h(x;)) disjoint.

i=1

Proof of Lemma 2.20 We use the following fact for sections compactly included in
Q: There exists a universal constant K > 1 such that if S,,(x1, #1) N S, (x2, hy) # @
and 2h; > h, then S,(x2,hy) C S,(x1,Kh;). The proof of this fact is based on
the engulfing property of sections in Theorem 3.54. Suppose that x € S,(x;, /1) N
S.(x2, hp) and 2h; > hy. Then we have S,(x2,h;) C S,(x, Oohy) C S,(x,2600h)
and x; € S,(x1,h) C S,(x,2600h). Again, by the engulfing property, we have
Su(x,2600h1) C S,(x1, 293}11). It follows that S, (x2, h2) C S, (x1, 29§h1). The result
follows by choosing K = 267.

(i) From the volume estimate for sections in Lemma 3.42 and S, (x, h(x)) CC €2,
we find that

H = sup{h(x)|S* e S} < C(n, A, A, Q) < oo.
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Define
H H
S=18"e S|, <h@ < 13 (=1.2,).

We define F; C S; as follows. Let F; be any maximal disjoint collection of sections
in Sy. By the volume estimate in Lemma 3.42, F is finite. Assuming F, - , Fi—|
have been selected, we choose Fj to be any maximal disjoint subcollection of

k—1
Se&|SNs =@ forall $* €| ) F
j=1

Each F; is again a finite set.

We claim that the countable subcollection of disjoint sections S, (x;, #(x;)) where
Sie F = U,fil JF satisfies the conclusion of the lemma. To see this, it suffices to
show that for any section S* € S, there exists a section §* € F such that S*NS” # @
and §* C S,(y, Kh(y)). The proof of this fact is simple. There is an index j such that
$* C &;. By the maximality of F}, there is a section §* € |_J,_, Fx with $*NS” # 0.
Because i(y) > g and h(x) < zfil , we have h(x) < 2h(y). By the fact established
above, we have S* C S,(y, Kh(y)).

(ii) We apply (i) to the collection of sections S, (x, K~'h(x)) where x € D. Then
there exists a countable subcollection of disjoint sections {Su (xi, K _1h(xi))}i°:1 such
that

D C Usu(xs K_lh(-x)) C USu(-xivh(xi))'

x€D i=1

By the compactness of D, we can choose a finite number of sections S, (x;, h(x;))
(i=1,---,m) which cover D. O

Proof of Lemma 2.13 Suppose v(xp) < 1 at xo € S, where « € (0, 1/2). Consider
the set of vertices V = S,,. We claim there is a large constant a (called the opening)
such that, for each y € V, there is a constant ¢, such that the generalized paraboloid
—afu(x) — Du(y) - (x —y) —u(y)] + c, touches the graph of v from below at some
point x (called the contact point) in S;. Indeed, for each y € V, we consider the
function

P(x) = v(x) + afu(x) — Du(y) - (x = y) —u(y)]

and look for its minimum points on S;. On the boundary 95, we have

P = afu(x) = Du(y) - (x —y) —u(y)] = aCi(n, A, A)
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by the Aleksandrov maximum principle. At xo, we have
P(x0) = 1+ alu(xo) — Du(y) - (xo —y) —u(y)] < 1 + acby.
The last inequality follows from the engulfing property. Indeed, we have xp,y € S,
and hence by the engulfing property in Theorem 3.54, xo, y € S,(0, ) C S.(y, focx).
Consequently,
u(xo) — Du(y) - (xo —y) —u(y) < boc.
Thus, we can fix ¢ > 0 small, universal and a, M; large such that
M| =2+ aaby < aCj.
Therefore, P attains its minimum at a point x € S;. Furthermore
v(x) < P(xp) < M.
At the contact point x € S;, we have
Dv(x) = a(Du(y) — Du(x))
which gives
Du(y) = Du(x) + Clle(x).
We also have
D*v(x) > —aDu(x). (2.12)
Hence
D*u(y)D,y = D*u(x) + LllDzv(x) > 0. (2.13)
Now using the equation at only x, we find that
trace((D*u) "' D*v(x)) = 0.
This together with (2.12) gives
C(a, n)D*u(x) > D*v(x) > —aDu(x). (2.14)
Here we use the following basic estimates. If A > —B and trace(B~'A) = 0 then

CB>A>-B.
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Indeed, we can rewrite
B~'2AB7Y? > I, trace(B~'/?AB™'/?) = 0.
Hence
B~'2AB7'? < C(n)I,.

Now, taking the determinant in (2.13) and invoking (2.14), we obtain
1
det D*u(y) |det Dy| = det(D*u(x) + D*v(x)) < C(a,n) det D*u(x).
a

This implies the bound
|detDyy| < C(a,n, A, A).

Then, by the area formula, the set E of contact points x satisfies
[Se] = V| = / |detD,y| < C(a,n, A, ) |E| < Cl{v < M;}NSy|.
E

Using the volume estimate of sections in Lemma 3.42, we find that
[S1] < C*[{v < M} N S| for some C* > 1 universal. The conclusion of the
Lemma holds with § = 1/C*. O

Proof of Lemma 2.14 Recall that u(0) = 0,Du(0) = 0 and B;(0) C S,(0,4) C
B,(0). To prove the lemma, it suffices to construct a subsolution w : $3\S, — R,
i.e., Ulw; > 0, with the following properties

(i) w <0onaS,
(i) w < 1onadS,
(iii)) w > c(n, A, A) in S{\S,.

Our first guess is
w=Cla,m)(u " —=2"")

where m is large.
Let (u”)<;j<n be the inverse matrix (D*u)~" of the Hessian matrix D*u. We can
compute for W = =" — 27"

ulwy = mu”" 2 [(m+ D wuj—unuyj) = mu”""2[(m+ Duwuj—nu).  (2.15)
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By Lemma 3.64

i |Dul?
u’nuju; .
"= trace(D%u)

Ifx € S, \ Sy and y = 0 then from the convexity of u, we have 0 = u(y) >
u(x) + Du(x) - (0 — x) and therefore,

€9)

|Du(x)| > " > * = 2¢,
n

x|

for some constant ¢, depending only on n, A and A.

In order to obtain u/W; > 0 using (2.15), we only have trouble when | D?ul|
is unbounded. But the set of bad points, i.e., where ||[D’u| is large, is small.
Here is how we see this. Because S,(0, 4) is normalized, we can deduce from the
Aleksandrov maximum principle, Theorem 3.20 applied to u — 4, that

dist(S,(0, 3), 35,(0,4)) > c(n, A, A)
for some universal c(n, A, A) > 0. By Lemma 3.11, Du is bounded on S3. Now let

v denote the outernormal unit vector field on dS3. Then, using the convexity of u,
we have ||D?u|| < Au and thus, by the divergence theorem,

ad
1D%u|| 5/ Au = Yo C AN
S3 S3 083 31)
Therefore, given ¢ > 0 small, the set
) 1
Ho={res: | |Du) = )
has measure bounded from above by
|He| < Ce.

To construct a proper subsolution bypassing the bad points in H,, we only need
to modify w at bad points. Roughly speaking, the modification involves the solution
to

det D*u, = Axn,, u, = 0on dSy.
Here we use yg to denote the characteristic function of the set E : yg(x) = lifx € E
and yg(x) = 0 if otherwise. The problem with this equation is that the solution is

not in general smooth while we need two derivatives to construct the subsolution.
But this problem can be fixed, using approximation, as follows.
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We approximate H, by an open set ﬁg where H, C ﬁg C S, and the measure of
their difference is small, that is

|H, \ He| < e.
We introduce a smooth function ¢ with the following properties:
¢ =1inH,, ¢ =sinS4\I:IS, e<¢@ <1linS,.
Let A, be the solution to
det D*h, = A, h, = 0 on dSy;

see Theorem 3.27. By Caffarelli’s C>% estimates [6], h, € C>%(S,) for all « €
(0, 1). From the Aleksandrov maximum principle, Theorem 3.20, we have on Sy

1/n
|he| < C,diam(Sy) (/ A<P) .
S

We need to estimate the above right hand side. From the definitions of H, and ©, we
can estimate

/A(pz/ A+/~ A(p—{-/ & < AlHe|+A|He\He|+6C(n, A, A) < C(n, A, A)e.
S4 & S\Hé‘ S4\Hs

It follows that for some universal constant Cy(n, A, A),
|he| < Ci(n, A, A)e'/".
By the gradient estimate in Lemma 3.11, we have on S,

_ha(x) 1
Dh.(x)| < < Gy(n, A, N)e'/".
IDhI = jici(ss. s,y = G204 A

We choose ¢ small so that
Ci(n, A, N)e/" < 1/4, Co(n, A, A)e'/" < ¢, (2.16)
Let
V=@w@—h)and W =V"—-2""
Then

V| <3and |DV| > c,on 8\ Sy; & <V <1+4+1/4=5/4onS\Sy. (2.17)
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Now, compute as before
u”V~V,] = mV "2 [(m+1)u” \7,\71—\7#’\7,]] = mV "2 [(m+1)u” Vi\7j+\~/(uij(hs)ij—n)].
We note that, by Lemma 3.63,
u’(h.);; = trace((D*u) "' D*h;) > n(det(D*u)~" det D*h.)!/" > n on H.
It follows that
u'Wy; > 0 on H,.
On (S, \ S¢)\H., we have trace(D?u) < ne~! and from (2.17)
MUWU > m\7_m_2[(m + l)uijVif/j — n\~/]

iDv)>

trace(D%u)

> mV""2[(m + Dn"'ec, —nV] > 0

> mV "2 [(m + 1) nV]

if we choose m large, universal. Therefore,
uWi; > 0on S, \ Sy

and hence W = V" — 2_:” is a subsolution to uifvij >0o0nS;\ S,
Finally, by (2.17) and W < 0 on 9S;, we choose a suitable C(«, n, A, A) so that
the subsolution of the form

W= Cla,n, A, ) (V" =27™)

satisfies w < 1 on dS,. Now, we obtain the desired universal lower bound for v in
S; fromv > won S;\S, and v > 1 on §,,. O

2.2.2 Proof of the Interior Holder Estimates for the
Inhomogeneous Linearized Monge-Ampere Equation

In this section, we prove Theorem 2.9, following an argument of Trudinger and
Wang [40].

The following lemma is a refined version of the Aleksandrov-Bakelman-Pucci
(ABP) maximum principle for convex domains.
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Lemma 2.21 Assume that 2 is a bounded, convex domain in R". Let
Lu(x) = trace(A(x)D?u(x))

where A is an n X n symmetric and positive definite matrix in 2. Then, for all

ue CHQ) N CQ),

Lu
(detA)!/n

maxu < max u + C(n)|Q)'/"
Q

Q

Q) .
Proof We use the ABP estimate, Theorem 2.3, and John’s lemma, Lemma 3.23.
According to this lemma, there is an affine transformation 7'(x) = Mx + b where M
is an n X n invertible matrix and » € R" such that
B1(0) C T(2) C B,(0). (2.18)
For x € T(2), we define
v(x) = u(T"'x) and Lv = trace(A(x)D?*v(x))

where A(x) = MA(T~'x)M'. We then compute D*v(x) = (M~")'D?u(T~'x)M™!
and hence

Lv(x) = Lu(T~' (x)).
Applying the ABP to v and Lv(x) on T(£2), we find
Lv

max v < max v + Cj(n)diam(7(2 -
pdiam(r@) | o

T(Q) T(2)

(2.19)

LN(T(R2))

By changing variables x = T(y) for x € T(S2), we find from detA = (det M)? detA
that

Lv
(detA)1/»

1

= (detM)!/n
LN(T(2))

Lu

(et (2.20)

L)

From (2.18), we have detM > c(n)|2|™! and diam(T(2)) < 2n. Using these
estimates in (2.19) and (2.20), we obtain the conclusion of the lemma. |

By employing Lemma 2.21 and the interior Harnack inequality in Theorem 2.7 for
nonnegative solutions to the homogeneous linearized Monge-Ampere equations, we
get:
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Lemma 2.22 (Harnack Inequality for Inhomogeneous Linearized Monge-
Ampere) Assume that A < detD*u < A in a convex domain Q@ C R”". Let
fel'(RQ)andv € leof(Q) satisfy Ulv; = f almost everywhere in Q. Then if
S,(x, 1) CC Qandv > 0in S,(x, 1), we have

sup v < C(n,A,A)( inf. v+ t% ||f||L,,(Su(x,,))). 2.21)

Su(xvé) ulXs
Proof Letw be the solution of
U'w; = f in S,(x, 1), and w = 0 on 3S,(x, 7).

Then, by Lemma 2.21 and the volume bound on sections in Theorem 3.42, we get

1
S?P lw| < C(n, M8 D)7 | fllinsuceny < CE2 N F i sucen - (2.22)
Su(x,1)

Furthermore, we have U%(v — w);; = 0in S,(x,7) and v — w > 0 on 3S,(x, 7). Thus
we conclude from the ABP maximum principle that v —w > 0 in S, (x, ). Hence,
we can apply the interior Harnack inequality, Theorem 2.7, to obtain

sup (v—w) < C inf (v—w),
Sulx.3) ulx.y

for some constant C depending only on n, A, and A, which then implies

sup v < C’( inf v+ sup |w|) < C( inf v+ 1 |[f||L,,(Su(x,,))>.

Sulx, é) Sulx. é) Su(x, é) ul¥s o

|
As a consequence of Lemma 2.22, we obtain the following oscillation estimate:

Corollary 2.23 Assume that A < detD?u < A in a convex domain Q C R". Let
fel"(RQ)andv € Wz’"(Q) satisfy Ulv; = f almost everywhere in Q. Then if

loc

S.(x, h) CC 2, we have
Pya !
0SCs, (xp)V < C(h) I:OSCSL,(x,h)U + h> |lf||L"(su(x,h))] forall p=<h,
where C, o > 0 depend only on n, A, and A, and oscgv := supv — irElf v.
E

Proof Let us write S; for the section S, (x, ). Set

m(t) 1= iglfv, M(t) :=supv, and w(t) := M) —m(t).
t Sy
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Let p € (0, h] be arbitrary. Then since ¥ := v — m(p) is a nonnegative solution of
U'%; = f in S,, we can apply Lemma 2.22 to  to obtain

1 e n 1
sup ¥ <inf o + p2 |If|zn(s,)-
S;tz) Sg

It follows that for all p € (0, /], we have

P - e 1 - 1 1 1
() =supd—infd < (1= _)supd + p2 [[fllns,y < (1= )@(p) + p2 Ifllzrsy-
2 N C Sp C

S;ZJ *2’
Thus, by the standard iteration we deduce that
Pya 1
w(p) = (1) [oth) + 1 If sy )

giving the conclusion of the corollary. O

Proof of Theorem 2.9 By Lemma 3.11, there is a constant M > 1 depending only on
n, A and A such that |Du(z)| < M for all z € B3;4(0). By Theorem 3.50, there exists
a constant 7o > 0 depending only on 7, A and A such that S, (z, ro) C B3/4(0) for all
z € By2(0). The gradient bound implies that B(z, ,,,) C S.(z, r) for all z € By,2(0)
and r < ro. Fix x € By,2(0). It suffices to prove the lemma for y € S,(x, ro/4). Let
r € (0,7r9/2) be such thaty € S,(x,r)\S,(x,r/2). Then [y — x| > ,} . The above
corollary gives

r 1
[v(y) — v(x)| < 0scs,(xnV < C(ro)“ |:||v||L°°(S¢(X,r0)) + 73 “f”L”(Su(x,ro)):|
< Clx—y[* [Ivlizee@iop + o] -

|

Remark 2.24 The proof of Theorem 2.7 follows the presentation in [25] where the
case of lower order terms was treated. For related results, see also [28].

2.3 Global Holder Estimates for the Linearized
Monge-Ampere Equations

In this section, we prove Proposition 1.14 and Theorem 1.13.
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2.3.1 Boundary Holder Continuity for Solutions
of Non-uniformly Elliptic Equations

Proof of Proposition 1.14 By considering the equation satisfied by ||¢||Cu(m)'jr||g”wm ,
we can assume that

lellcxo) + lgllr@ =1
and we need to prove that
[v(x) — v(x0)| < Clx — xo| =+ forall x € 2 N Bs(xo).
Moreover, without loss of generality, we assume that A = 1 and
QCR'N{x, >0}, 0 09.

Take xo = 0. By the ABP estimate in Theorem 2.3 and the assumption det(a”) > 1,
we have

[v(xX)| < ll@llze@a) + Cudiam(R2)||gllzr @) < Co ¥V x € Q

for a constant Cy > 1 depending only on n and diam(f2), and hence, for any
e€(0,1)

|[v(x) —v(0) £ ¢| <3C := C. (2.23)
Consider now the functions
ha(x) := v(x) — v(0) + & £+ C,(inf{y, : y € 2 N 3B, (0)}) " 'x,

in the region A := 2 N Bs,(0) where §, is small to be chosen later.
Note that, if x € 02 with

x| < 81(e) := &'/
then, we have from ||¢||c«3) < 1 that
[v(x) = v(0)] = |p(x) — @(0)] < |x|* <. (2.24)
It follows that, if we choose 6, < §; then from (2.23) and (2.24), we have

h— <0,hy > 0on 0A.
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On the other hand,
a’j(hi)ij = ginA.
The ABP estimate in Theorem 2.3 applied in A gives
h- < Cydiam(A)g]lin(a) < Cu8 in A
and

h+ = _Cndiam(A)”g”L”(A) > —C,6, in A.

—a

By restricting ¢ < C,~*, we can assume that

&
81 :El/a <
n

Then, for 6, < §;, we have C,8, < ¢ and thus, for all x € A, we have
lv(x) — v(0)] < 2&+ C(inf{y, : y € QN 3Bs,(0)}) 'x,.
The uniform convexity of €2 gives
inf{y, : y € Q2 N dBs,(0)} > C;'62. (2.25)

Therefore, choosing 6, = §;, we obtain

lv(x) — v(0)| < 26+ Ci(inf{y, : y € 2 N 0By, (0)}) 'x, = 2¢ + 2c(slzczx” in A.
2
As a consequence, we have just obtained the following inequality
lv(x) — v(0)| <2+ ZC(S‘%CZ x| = 26 + 2C, Cre™ 2 x| (2.26)
for all x, e satisfying the following conditions
| < 81(e) 1= &%, 6 < ' = ¢1(a, L, K, n). 2.27)

Finally, let us choose ¢ = |x| o2 It satisfies the conditions in (2.27) it

a+2
|x| < min{c,* ,1}:=6.
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Then, by (2.26), we have for all x € Q N B;(0)
[v(x) — v(0)] < Clx|e+2, C =2+ 2C,C,.

|

Proposition 1.14 gives the boundary Holder continuity for solutions to the
linearized Monge-Ampere equation

Ulv; =g

where (UY) is the cofactor matrix of the Hessian matrix D?u of the convex function
u satisfying

A < detD?u < A.

This combined with the interior Holder continuity estimates of Caffarelli-Gutiérrez
in Theorem 2.9 gives the global Holder estimates for solutions to the linearized
Monge-Ampere equations on uniformly convex domains as stated in Theorem 1.13.
The rest of this section will be devoted to the proof of these global Holder estimates.

The main tool to connect the interior and boundary Hélder continuity for solu-
tions to the linearized Monge-Ampere equation is Savin’s Localization Theorem at
the boundary for the Monge-Ampere equation.

2.3.2 Savin’s Localization Theorem

We now state the main tool used in the proof of Theorem 1.13, the localization
theorem.
Let 2 C R” be a bounded convex set with

B,(pe,) C Q C{x, >0} NB1(0), (2.28)
P
for some small p > 0. Here ¢, = (0,---,0, 1) € R". Assume that

foreachy € 3Q2 N B,(0) there is a ball B,(z) C €2 that is tangent to 92 at y.
(2.29)

Letu:Q — R,u e C*'() N C*(R) be a convex function satisfying
det D*u = f, 0<A<f<A inQ, (2.30)
and assume that

u(0) =0, Vu(0)=0. (2.31)
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If the boundary data has quadratic growth near {x, = 0} then, as iz — 0, the section
S.(0, h) of u at 0 with level £ is equivalent to a half-ellipsoid centered at O; here we
recall that

S, h) :={yeQ:u(y) <ulx)+ Vulx)-(y—x) + h}.

This is the content of Savin’s Localization Theorem proved in [34, 35]. Precisely,
this theorem reads as follows.

Theorem 2.25 (Localization Theorem [34, 35]) Assume that Q2 satisfies (2.28)—
(2.29) and u satisfies (2.30), (2.31) above and,

plx* < u(x) < p x> ondQN{x, < p}. (2.32)
Then, for each h < k there exists an ellipsoid Ej, of volume w,h"* such that
kE,NQ C S,0,h) C k'E, N Q.

Moreover, the ellipsoid Ej, is obtained from the ball of radius h'/? by a linear
transformation A;l (sliding along the x, = 0 plane)

AwE, = h'?By,  detA, =1,
Ap(x) = x— Xy, T = (t1, 72, ..., Tu-1,0),
with
|th| < k1| loghl.

The constant k above depends only on p, A, A, n.

The ellipsoid Ej, or equivalently the linear map Ay, provides useful information
about the behavior of u near the origin. From Theorem 2.25 we also control the
shape of sections that are tangent to d2 at the origin.

Proposition 2.26 Let u and QQ satisfy the hypotheses of the Localization Theo-
rem 2.25 at the origin. Assume that for some y € Q the section S,(y,h) C Q
is tangent to 02 at 0 for some h < c with ¢ universal. Then there exists a small
constant kg > 0 depending on A, A, p and n such that

Du(y) = ae, forsome a € [koh'? ky'h'/?],
koEy C Su(yy h) —yC k(TlEh, kohl/Z < dist(y, aQ) < ko_lhl/z,

with Ej, the ellipsoid defined in the Localization Theorem 2.25.



2.3 Global Holder Estimates for the Linearized Monge-Ampére Equations 65

Proposition 2.26, proved in [36], is a consequence of Theorem 2.25. We sketch
its proof here.

Proof of Proposition 2.26 Assume that the hypotheses of the Localization Theo-
rem 2.25 hold at the origin. For @ > 0 we denote

S i={xe Q| ulx) <ax,},

and clearly S;l C S;z if a; < a,. The proposition easily follows once we show that
Si_ 412 has the shape of the ellipsoid Ej, for all small A.
From Theorem 2.25 we know

S,(0,h) :={u <h} Ck'E, C {x, <k 'h'/?
and since #(0) = 0 we use the convexity of u and obtain

Sl’(hl/2 C S.(0,h) N Q. (2.33)
This inclusion shows that in order to prove that S]’(h1 2

to bound its volume by below

is equivalent to Ej, it suffices

|S;/(h1/z| > c|Ey|.

From Theorem 2.25, there exists y € 3Sg; such that y, > k(6h)'/?>. We evaluate
it := u — kh'/?x,, at y and find

i(y) < 0h — kh'*k(0h)"/* < —8h,

for some § > 0 provided that we choose 6 small depending on k. Since # = 0 on
aS]/(hl/z and detD’ii < A, we apply Lemma 2.21 to —iz which solves Ul(—in); =
—ndet D*u. We have

8h < max —it < C(A, )|}, *",

khl/2
Skhl/l
hence

2
ch = |S;/(h1/z|-

|

The quadratic separation from tangent planes on the boundary for solutions to the
Monge-Ampere equation is a crucial assumption in the Localization Theorem 2.25.
This is the case for u in Theorem 1.13 as proved in [35, Proposition 3.2].
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Proposition 2.27 Let u be as in Theorem 1.13. Then, on 0L2, u separates quadrati-
cally from its tangent planes on 2. This means that if xo € 02 then

plx—xol* < u(x) — u(xo) — Vu(xo) - (x — x0) < p~" |x — xo|, (2.34)

for all x € 02, for some small constant p universal.

Proof We prove the Proposition for the case xyo € d€2. By rotation of coordinates,
we can assume that xo = 0 and

QC{xeR":x,>0}.
We denote a point x = (x1,-+*,X—1,%) € R" by x = (¥',x,) where X' =
(x1,+++ ,x,—1). By the Aleksandrov maximum principle, we have that u is univer-
sally bounded. Since 2 is uniformly convex at the origin and det D’u is bounded
from above, we can use barriers and obtain that /y, the tangent plane at the origin,
has bounded slope. The proof of this fact is quite similar to that of Lemma 1.19.

After subtracting this linear function from u and ¢ = u|ys, we may assume /o = 0.
Thus, u > 0 and it suffices to show that

plx—xol* <u(x) <p'x—xof. (2.35)
for all x € dS2. Since u is universally bounded, we only need to prove (2.35) for |x|
universally small.

Since ¢ = uly, IR are C? at the origin, we find that

d(x) = Qo(x) + o(|X']?) for x = (X', x,) € 0, (2.36)

with Qp a cubic polynomial. Indeed, locally around 0, <2 is given by the graph of a
C? function Y for some ¢ small,

92 N B.(0) = {(x', x,) 1 %, = Y ()}
Thus, we can write for (x', x,) € Q2 N B.(0) :
% = Qi) + o) (2.37)
with Q; a cubic polynomial. Since ¢ € C3(R2), we can again write around 0:
$(x) = 02(x) + o(|x) for x = (¥, x,) € Q

with O, a cubic polynomial. Substituting (2.37) into this equation, we obtain (2.36)
as claimed.
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Now we use (2.36). Because u = ¢ > 0 on 92, Qp has no linear part and its
quadratic part is given by, say

Mi 2
X;s

with u; > 0.

i<n
We need to show that u; > 0.
If ©; = 0, then the coefficient of x? is 0 in Qq. Thus, if we restrict to d€2 in a
small neighborhood near the origin, then for all small % the set {¢p < h} contains
{lxi] < r(h' Py N {1¥] < ch'/?)
for some ¢ > 0 and with

r(h) > oo ash— 0.

Now S,(0, %) contains the convex set generated by {¢ < h} thus, since Q is
uniformly convex,

1S.(0. )| = ¢/ (r(W)R' P’ 272 = ' r(h)*n2.
On the other hand, since det D?*u > A and
O0<u<h inS,0,h)
we obtain from Lemma 3.44 that
15,0, )] < CQA, m)"?,

and we contradict the inequality above as 7 — 0. O

2.3.3 Proof of Global Holder Estimates for the Linearized
Monge-Ampere Equation

Proof of Theorem 1.13 We recall from Proposition 2.27 that u separates quadrati-
cally from its tangent planes on d<2. Therefore, Proposition 2.26 applies. Let y € Q
with r := dist(y,dR2) < ¢, for ¢ universal, and consider the maximal section
S.(v,h(y)) centered at y, i.e.,

h(y) = max{h| S.(y.h) C Q}.
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When it is clear from the context, we write / for 4(y). By Proposition 2.26 applied

at the point xo € 3S,(y, h) N 92, we have
2y,
and S, (v, h) is equivalent to an ellipsoid E i.e
cE C S,(y.h) —y C CE,
where
E:=h'?A7'B1(0), with [A;].IA;"]| < C|loghl: detA; = 1.
We denote
uy := u—u(y) —Du(y) - (x—y).
The rescaling ii : §; — R of u
(%) = ;luy(ch) x=Tk:=y+h'?A 'k,
satisfies
det D*iu(%) = f(X) := f(TX),
and
Be(0) C 81 CBc(0),  §i=h"PA5(Su(y )~ ).

where §; represents the section of i at the origin at height 1.
We define also the rescaling v for v

7(%) := v(T%) —v(xo), X€S8).
Then v solves

UVt = g(x) := hg(T%).

(2.38)

(2.39)

(2.40)

Now, we apply Caffarelli-Gutiérrez’s interior Holder estimates in Theorem 2.9 to v

to obtain

5G) = 5G| < Cla =B {15l 0, + 18l ) YE1LE € S

for some small constant 8 € (0, 1) depending only on n, A, A.
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By (2.40), we can decrease B if necessary and thus we can assume that

o

2B < =2y
'B_oz—i—2 v

Note that, by (2.39)
1212 = B2 N8l s -
We observe that (2.38) and (2.39) give

BCr|10gr\(y) D) Su(ys il) D) Su(yv ljl/z) D) BC\lo;r (y)

and

diam(S,(y, h)) < Cr|logr|.
By Proposition 1.14, we have

191|005,y < Cdiam(Su(y, 1)* < C(r|logr|)*.
Hence
5(21) — 5@ < CIEr =Ll {(rlog rl)™ + B |8l s, iy Y2122 € S

Rescaling back and using

—2= }_l_l/zA;l(Zl —22),
and the fact that
21 =2l < [B724;5] 21 — 22| < C™'72 [logh |21 — 22 < Cr ™' flog r| |21 — 2]
we find

() —v@)| < |z — 2 Va.z € Su(y.h/2). (2.41)

lo;

Notice that this inequality holds also in the Euclidean ball BC‘ o (y) C Su(v.h/2).
T

Combining this with Proposition 1.14, we easily obtain that

[vllcs @) = C.

for some B € (0, 1), C universal.
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For completeness, we include the details. By rescaling the domain, we can

assume that & C Bjj100(0). We estimate I”(l")_”‘fgy)l for x and y in Q. Let r, =
x—y

dist(x, €2) and r, = dist(y, dS2). Suppose that r, < r,, say. Take xo € J2 and

yo € 02 such that r, = |[x—xo| and r, = |y —yo|. From the interior Holder

estimates of Caffarelli-Gutiérrez, we only need to consider the case r, < r, < c.
Assume first that [x—y| < ¢, ;. Then y € B, o (x) C S.(x,h(x)/2).

[log ry|*
By (2.41), we have

P —vO _ |

—ylf
Assume finally that |x —y| > C|1o§’r E We claim that r, < C|x—y||log|x—y]|.
Indeed, if
1> 7z [x—y[logx —y[| = [x =]
then

1 1
rs —ylllogr| < |r—yl[loglx—yll.
Now, we have
[Xo —yo| =+ |x =yl + 1y = Clx—y|[log |x — y|| .

Hence, by Proposition 1.14 and recalling 2y = 9,,

[v(x) —v(Y)] = [v(x) = v(xo)| + [v(x0) — v(Yo)| + [v(y0) —v(V)]
<C(r7 + o —yol" +17)

< C(lx—y|floglx—y[)? < Clx—y|’.
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