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Abstract. We study a market setting in which bidders are single-valued
but size-interchangeable, and there exist multiple copies of heterogeneous
goods. Our contributions are as follows: (1) providing polynomial-time
algorithms for finding a restricted envy-free equilibrium with reserve
prices (EFEr); (2) posing the problem of finding a revenue-maximizing
EFEr, and running experiments to show that our algorithms perform
well on the metrics of revenue, efficiency, and time, without incurring
too many violations of the stronger Walrasian equilibrium with reserve
(envy-free plus market clearance) conditions.

1 Introduction

In a centralized combinatorial matching market (CCMM), a market
maker offers a set of n heterogeneous goods to m consumers (or bidders), the
latter of which are interested in acquiring certain combinations (or bundles) of
goods. In general, there are multiple copies of each good i, but the total supply
Ni of each good is finite. Bidder j’s preferences are captured by a valuation
function vj(·) that describes how bidder j values each bundle.

In general, a bidder’s valuation function can be an arbitrary function of the
set of all bundles. We study a case where bidders are only interested in specific
varieties of goods, and we model these interests as edges in a graph connecting
bidders only to their goods of interest. Furthermore, in our model, bidder’s
valuations are single-valued, and depend only on the bundle’s size, assuming
the bundle is a match for the bidder. The value then is either a positive value
Rj , if the size of the bundle is at least some threshold Ij , and 0 otherwise.

Our model is motivated by the Trading Agent Competition Ad Exchange
game (TAC AdX) [15], which in turn models online ad exchanges in which
agents face the challenge of bidding for display-ad impressions needed to ful-
fill advertisement contracts, after which they earn the amount the advertiser
budgeted. Other settings captured by this model include the problem of how to
allocate specialized workers to firms, and how to compensate the workers, where
each firm requires a certain number of workers to produce an output (a new
technology, for instance) that yields a certain revenue.
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One well-studied special case of our model is that of (single-valued) single-
minded consumers [11]. There, bidders are only interested in one particular bun-
dle. Hence their valuation function can be understood as assigning value Rj to
that bundle or any superset thereof, and 0 to all other bundles. We call our val-
uations (single-valued) size-interchangeable, because bidders can be satisfied
(i.e., achieve value Rj) by any bundle of size Ij that consists of their desired
goods. Like single-minded valuations, our interchangeable valuations model com-
plements, since a bidder is not satisfied unless it receives a bundle of sufficient size.
Furthermore, our interchangeable valuations model (perfect) substitutes, since
any bundle of sufficient size that consists of suitable goods will do.

In this paper, we assume valuations are known to the market maker. Thus,
our problem is one of equilibrium computation rather than traditional mech-
anism design (where values are private). A market outcome is an allocation-
pricing pair (X,p), where X describes the assignment of goods to bidders, and
p ascribes prices to goods. While X is a matrix, we assume p is a vector, which
precludes any form of price discrimination (all copies of the same good must
have the same price). Furthermore, we assume item pricing, not bundle pric-
ing, so that the price of a bundle is the sum of the prices of all the goods (items)
in the bundle. Both of these assumptions—no price discrimination and item
pricing—are most natural.
Example 1 (CCMM and possible outcomes). Consider the CCMM in Figure (A).
There are two goods, G and F , with 2 copies of good G and 3 copies of good F ,
and two bidders, Y and Z. Bidder Y wants two copies of good G (as indicated
by the edge from G to Y ) and values this bundle at 10, and bidder Z ascribes
the value 5 to any bundle of size 2 comprised of any combination of Gs and
F s (also indicated by edges). Possible outcomes of this markets are depicted in
Figures (B) and (C).

goods bidders

G2

F3

Y 2,$10

Z 2,$5
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2
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F$1

Y
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1
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Y

Z

(A) (B) (C)

Outcome (B) allocates 2 copies of good G to bidder Y at a price of $5 per copy,
and 2 copies of good F to bidder Z at a price of $1 per copy. This outcome
results in the optimal social welfare ($15) and a revenue of $12.

Outcome (C) allocates to bidder Z only, 1 copy of good G at a price of $1,
and 1 copy of good F at a price of $2. This outcome results in a social welfare
of $5 and a revenue of $3.

In an important related setting, bidders have unit-demand valuations, mean-
ing they are interested in at most one good, but may have different valuations for
different goods. This is a well-studied setting [1,2,6,7], with important theoreti-
cal guarantees. In particular, there always exists a Walrasian equilibrium (WE)
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outcome [5] in which bidders are envy-free, meaning they all receive one of their
favorite bundles at the set prices, and the market clears, meaning unallocated
goods are priced at zero. It follows from this second condition, by the first wel-
fare theorem of economics, that any allocation that is part of any WE outcome
maximizes social welfare. In addition, it is possible to find a revenue-maximizing
WE among all WE outcomes in polynomial-time (assuming unit demand) [6].

Building on Myerson’s [10] intuition, Guruswami et al. [7] generalized the
problem of searching for a revenue-maximizing WE to that of searching for a
revenue-maximizing Walrasian equilibrium with reserve prices (WEr), where bid-
ders are envy-free and the market clears up to the reserve price: i.e., unallocated
goods are priced at the reserve. For bidders with unit-demand valuations a WE
always exists [5]; likewise, a WEr always exists. In addition, for a fixed reserve
price, we can find the revenue-maximizing WEr in polynomial-time (using the
same approach as in [6]). With this more general solution concept in mind,
Guruswami et al. pose the problem of finding a revenue-maximizing WEr, for
which they propose a polynomial-time approximation algorithm that picks a par-
ticular set of candidate reserve prices, generates a revenue-maximizing WEr for
each, and then returns the revenue-maximizing WEr among those considered.

For our model—single-valued, size-interchangeable bidders—we remind the
reader that WE do not exist in general; in fact, they are not guaranteed to exist
even for single-minded bidders. By relaxing the market clearance condition, we
arrive at more general solution concept—an Envy-Free Equilibirum (EFE)—
which insists only that bidders are envy-free, and which always exists. However,
the first welfare theorem does not hold for EFE, so maximal social welfare is not
guaranteed by this solution concept.

Departing from the social welfare concern, we instead tackle the competing
problem of maximizing seller revenue. Since finding revenue-maximizing WEr is
APX-hard in a CCMM assuming single-minded bidders [7], we propose a poly-
nomial time heuristic for approximately solving for revenue-maximizing EFEr
(an EFE in which unallocated goods are priced at a reserve), where we relax the
envy-free condition to a restricted envy-free condition, which we are able to
express as linear constraints. Building on the ideas of Guruswami et al., we then
search over a space of carefully chosen reserve prices to find an approximately
revenue-maximizing EFEr. In particular, whereas Guruswami et al. used this
approach to find an approximately revenue-maximizing WEr for unit-demand
bidders, we apply this same idea to the case of size-interchangeable (and hence,
single-minded) bidders.

In sum, our contributions are: (1) providing polynomial-time algorithms for
finding a restricted envy-free equilibrium with reserve prices (EFEr); (2) posing
the problem of finding a revenue-maximizing EFEr, and running experiments to
show that our algorithms perform well on the metrics of revenue, efficiency, and
time, without incurring too many violations of the WEr (envy-free plus market
clearance) conditions.
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2 Model and Solution Concepts

We define a centralized combinatorial matching market (CCMM) to be
an augmented bipartite graph (U,C,E,N , I ) with a set of n types of goods U ,
a set of m bidders C, a set of edges E from bidders to goods indicating which
goods are of interest to which bidders, a supply vector N = (N1, . . . , Nn), and a
demand vector I = (I1, . . . , Im). That is, there are Ni > 0 copies of good i ∈ U ,
and Ij > 0 total goods are demanded by bidder j ∈ C. Note, however, that
bidder j only demands copies of goods it is connected to via an edge.

In other words, in a CCMM, bidders are interested in acquiring bundles of
goods of at least some fixed size. Note that this is a more general case of the well-
studied problem of single-minded consumers [11] where bidders are interested
only in one particular bundle of goods. For this reason, we call our valuation
function size-interchangeable. Formally:

Definition 1 (Single-valued, Size-interchangeable valuations). Given a CCMM
M = (U,C,E,N, I), a bidder j is single-valued, size-interchangeable, if it
demands Ij > 0 goods among those to which it is connected, and values all
such bundles by the function: vj(Xj) = Rj > 0, if

∑
i|(i,j)∈E xij ≥ Ij, and 0

otherwise. We call Rj the reward attained by j in case its demand Ij is fulfilled.

Definition 2 (Market). We call a market M a pair consisting of a CCMM
(U,C,E,N, I) and a reward vector R = (R1, . . . , Rm).

Given a market M , an allocation A is a labeling x(i, j) ∈ Z≥0 of E that
represents the number of copies of good i allocated to bidder j. Such an allocation
can be represented by a matrix X ∈ Z

n
≥0 × Z

m
≥0 where entry xij = x(i, j). The

jth column of an allocation matrix is the bundle of goods assigned to bidder j,
which we denote by Xj ∈ B(N ), where B(N ) =

∏
i{0, 1, . . . , Ni}.

A market outcome is an allocation-pricing pair (X,p), assigning goods to
bidders and per-good prices pi ∈ R+. Given such an outcome, the cost of bundle
Xj to bidder j is given by Pj(Xj) =

∑
i xijpi.

An allocation is feasible if, for all i, the total number of goods assigned
across bidders is no more than i’s supply: i.e., for all i :

∑m
j=1 xij ≤ Ni. We use

F ≡ F (M) to denote the set of all feasible allocations. In a feasible outcome
the allocation is feasible.

The utility of bidder j is defined as follows: uj(X,p) = vj(Xj) − Pj(Xj). A
standard assumption is that all bidders are utility maximizers, and thus a bidder
prefers outcomes with higher utilities.

A fundamental market outcome studied in the literature is that of Walrasian
Equilibrium (WE) [14], which we define using our notation as follows.

Definition 3 (Walrasian Equilibrium). A feasible outcome (X,p) is a Wal-
rasian Equilibrium (WE) if the following two conditions hold:

1. Envy-freeness (EF): There is no bundle X ′
j that any bidder j prefers to its

assigned bundle Xj, i.e., for all j, Xj ∈ arg max
X′

j∈B(N)
{vj(X ′

j) − Pj(X ′
j)}.

2. Market clearance (MC): Every unallocated good is priced at zero.
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The EF condition is a fairness condition; it ensures that the outcome maxi-
mizes the utility of every bidder. Note that each bidder is individually rational
i.e., uj(X,p) ≥ 0, since the null allocation is always a feasible allocation. The
MC condition, together with EF, implies, by the first welfare theorem of eco-
nomics, that any allocation that is part of a WE is also welfare-maximizing.
However, a WE need not exist in the markets studied in this paper.

Example 2 (Non-existence of WE). Consider the market in Figure (A) with one
good and two single-minded bidders. Good u1 is supplied in N1 = 2 copies,
bidder c1 demands I1 = 1 good, and bidder c2 demands I2 = 2 goods. Rewards
are R1 = 5 and R2 = 7.

u12

c1 1,$5

c2 2,$7

2u12

c1 1,$5

c2 2,$7

1

u12

c1 1,$5

c2 2,$7

(A) (B) Not Envy-Free (C) Market doesn’t clear

There are a total of 6 feasible allocations in this market and none of them are
part of a Walrasian Equilibrium. Two such allocations are depicted in (B) and
(C). In (B), there is no price p1 for u1 at which both bidders would be envy-free.
In (C), we must have that p1 ≥ 3.5, or otherwise c2 would have preferred 2 copies
from u1. But then the market does not clear since there is an unsold copy of u1

with price greater than 0.
To address this existence problem, we drop the market clearance condition.

Definition 4 (Envy-Free Equilibrium). A feasible outcome (X,p) is an Envy-
Free Equilibrium (EFE) if envy-freeness holds.

Note that, in outcome (C) of Example 2, at any price p1 for u1 such that
3.5 ≤ p1 ≤ 5, both bidders c1 and c2 are envy-free. It follows that this outcome
is an EFE.

Unlike in the unit-demand case, where, by the first welfare theorem, a WE
implies a welfare-maximizing allocation [12], an EFE (even for unit-demand
bidders) does not guarantee a welfare-maximizing allocation. An outcome with
a null allocation and prices high enough such that no bidder can afford even a
single good is an EFE outcome with 0 welfare. But even for non-null allocations,
an EFE outcome can yield low welfare.

Example 3 (An EFE does not imply an efficient allocation). Consider a market
M with a single good that is supplied in N1 = m − 1 copies and m bidders,
where all bidders demand 1 good (i.e., Ij = 1, for all j). Rewards are defined as
follow: for 1 ≤ j < m : Rj = 1 and Rm = 2.

Consider outcome (X,p), where bidder m is allocated one good at any price
p1 such that 1 < p1 ≤ 2, and no other bidder is allocated any good. This outcome
is an EFE since all bidders are envy-free. However, the welfare of this outcome
is 2 for any m > 1, since we only satisfy bidder m.
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A welfare maximizing allocation for this market is one that satisfies bidder
m as well as many other bidders as possible, obtaining welfare 2 +

∑m−2
j=1 Rj =

2+m−2 = m. Therefore, the welfare of the EFE (X,p), relative to the optimal
welfare, approaches zero, as m approaches ∞.

Although at first glance it may seem disappointing the first welfare theo-
rem does not hold for EFE, it is not a show stopper. Even in the unit-demand
case, where the first welfare theorem does hold, there exists the competing, and
incompatible goal, of maximizing seller revenue.

In a unit-demand CCMM, if we let m(< r) = {j | Rj < r}, then |m(< r)|
is the number of bidders with reward less than the reserve r. Assuming there
exists an allocation that satisfies all bidders, by setting a reserve price r we lose
at least Rmin|m(< r)| welfare, where Rmin = minj{Rj}, while we are guaranteed
revenue of at least r|m(< r)c|. (Here Ac denotes the complement of set A.)

The following example further illustrate the tradeoff between welfare and
revenue, in the case of single-minded bidders.

Example 4 (Welfare-Revenue Tradeoff). Consider the market in Figure (A) and
the two different outcomes in Figures (B) and (C)

u11

u11

c1 1,$100

c2 1,$1

prices
1

1

u1pb1

u2pb2

c1

c2

prices
1u1pc1

u2pc2

c1

c2

(A) (B) Welfare-Max. (C) Revenue-Max.

Outcome (B)’s allocation is welfare maximizing. To support an EFE we must
have 0 ≤ pb2 ≤ 1; otherwise c2 would not be envy-free. Moreover, pb1 ≤ pb2;
otherwise c1 would have preferred a copy of u2. So prices can only be as high
as pb1 = pb2 = 1, yielding revenue of 2. Outcome (C)’s allocation is not welfare
maximizing. However, in this case, an EFE can be supported by higher prices
than those in (B). In particular, pc2 ≥ 1; otherwise c2 would have preferred a
copy of u2. Again pc1 ≤ pc2 for the same reasons as in (B). Prices could be as
high as pc1 = pc2 = 100, yielding revenue of 100.

Example 4 motivates the introduction of reserve prices as a way to increase
revenue while maintaining envy-freeness among market participants. In the pre-
vious example, we could set a reserve price of $2 for u2. Doing so would increase
revenue from a maximum possible of $2 (with no reserve price) to $100. However,
by setting reserve prices some bidders are effectively thrown out of the market,
so welfare might not be maximized, because any value these bidders bring to the
market is lost.

Motivated by this discussion, we generalize the definition of WE so that
unallocated goods are priced at some, possibly non-zero, reserve price r ∈ R+.
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Definition 5 (Walrasian Equilibrium with reserve r). A feasible outcome (X, p)
is a Walrasian Equilibrium with reserve r (WEr) if it is a WE with prices at
least r, including unallocated goods, which must be priced at exactly r.

Analogously, we augment the definition EFE to an EFE with reserve price r.

Definition 6 (Envy-Free Equilibirum with reserve r). A feasible outcome (X,p)
is an Envy-Free Equilibirum with reserve r (EFEr) if it is an EFE with prices
at least r.

3 Computation of Envy-Free Equilibria

Chen et al. [8] showed that deciding the existence of WE in a CCMM assuming
single-minded bidders is NP-hard. Consequently, we propose a natural restriction
on the envy-freeness condition, which lends itself to a polynomial-time compu-
tation. With it, we can find a restricted WE (outcomes that satisfy restricted
EF and MC) in polynomial time in single-minded CCMMs. Furthermore, in
size-interchangeable CCMMs, we can find a restricted EFE in polynomial time.

Before presenting our algorithm, we formally define restricted envy-free
prices. Let |Xj | =

∑n
i=1 xij be the size of the bundle assigned to bidder j.

Definition 7 (Restricted Envy-Free). A price vector p is called restricted
envyfree with respect to a feasible allocation X if, for all J such that |Xj | > 0:

Xj ∈ arg max
X′

j∈B(N|Xj |)
{vj(X ′

j) − Pj(X ′
j)}

where B(N|Xj |) = {0}∪{X ′
j ∈ B(N) | |X ′

j |x′ = |Xj |}, i.e., the set of all feasible
bundles of size equal to |Xj |.

This definition is “restricted” because it assumes an allocation, and then
is only concerned with bidders that are allocated (non-zero) bundles in that
allocation. Any envy felt by any other bidders is simply ignored.

Another seeming restriction is that even for a bidder j with |Xj | > 0, it
does not require envy-freeness with respect to all bundles X ′

j ∈ B(N ), but only
with respect to bundles of the same size as Xj (i.e., X ′

j ∈ B(N |Xj |)), and the
empty bundle 0. This definition might seem overly restrictive, but as we are
focused on bidders with single-valued, size-interchangeable valuations, we are
likewise concerned with all-or-none allocations, which either allocate to a bidder
in full—meaning a bundle of size Ij—or does not allocate at all. Hence, for our
purposes the size restriction is not restrictive at all.

Finally, note that restricted envy-free prices always exist. Given an allocation,
we can simply set prices equal to zero, and the condition will be satisfied. No one
who is allocated would have any envy at zero prices; and the restricted envy-free
condition ignores bidders that are unallocated.

Theorem 1. Given a market M and a feasible allocation X, the following con-
ditions are necessary and sufficient for p to be restricted envy-free.
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Individual Rationality: ∀j ∈ C : Pj(Xj) ≤ vj(Xj).
Compact Condition: ∀i ∈ U, j ∈ C : If xij > 0 then

∀k ∈ U : If (k, j) ∈ E and xkj < Nk then pi ≤ pk.

Proof (Sketch): The Individual Rationality condition ensures that bidders do
not pay more than their reward while the Compact Condition ensures that,
among all goods assigned to a bidder, she first consumes cheaper goods before
consuming more expensive ones. Equivalently, this condition states that prices
of goods that are completely consumed are cheaper than those that are only
partially consumed. �

The linear program shown in Algorithm 1, which uses seller revenue as the
objective function and the linear conditions that characterize restricted envy-
freeness as constraints, can be used to find a set of restricted envy-free prices
that maximizes seller revenue.

Algorithm 1. LP restricted EFE
Input: Market (U,C,E,N , I ,R) and allocation X
Output: A pricing p
maximize

∑
j

∑
i xijpi

subject to (1) ∀j ∈ C : If |Xj | > 0, then pj(Xj) ≤ vj(Xj)
(2) ∀i ∈ U,∀j ∈ C : If xij > 0 then

∀k ∈ U : If (k, j) ∈ E and xkj < Nk then pi ≤ pk

4 Revenue Maximizing Prices

In the remainder of this paper, we will be concerned with finding prices that
maximize seller revenue for different market outcomes. We start by defining
what a revenue-maximizing problem means for different solution concepts and
review algorithms found in the literature to compute these prices in the special
case of unit-demand bidders. We then present our algorithm for finding revenue-
maximizing EFEr in size-interchangeable CCMMs.

Definition 8. The revenue-maximizing WE problem: Given a CCMM,
find a revenue-maximizing WE.

Gul and Stachetti [6] presented a VCG-inspired [13] polynomial-time algo-
rithm that solves the revenue-maximizing WE problem in unit-demand CCMMs:
let V ∈ R

n
+ ×R

m
+ be the valuation matrix of a market with n items and m unit-

demand bidders where entry vij denotes bidder j’s valuation for good i. Let π
denote a maximum weight matching of V , and let w(V ) denote the weight of π.
Let V−i denote the same valuation matrix, but with good i removed. For each
good i, set pi = w(V ) − w(V−i). We call this algorithm, which returns (π,p),
MaxWE.

Then, building on Myerson’s [10] intuition that reserve prices can boost rev-
enue, Guruswami et al. [7] went one step further, essentially generalizing the
problem of searching for a revenue-maximizing WE to that of searching for a
revenue-maximizing WEr.
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Definition 9. The revenue-maximizing WEr problem: Given a CCMM,
find a revenue-maximizing WEr.

Recall from Example 4 that different allocations can support different levels of
seller revenue, while still maintaining the envy-freeness property. Algorithm 2 is a
high-level strategy for searching among WEr for one that is revenue maximizing.
The algorithm searches over different allocations X, computing WEr prices p
for each, and then outputs a pair (X,p) among those seen with maximal seller
revenue. The interesting choice, which governs the algorithm’s success, is which
allocations to search over. Generally speaking, based on some initial allocation,
the algorithm determines a set of reserve prices, each of which corresponds to an
alternative allocation, whose supporting envy-free prices may or may not yield
higher revenue than the others seen.

Algorithm 2. Strategy for finding a revenue-maximizing WEr
Input: Market M = (U,C,E,N , I ,R)
Output: A pricing p and an allocation X
1. Find an initial allocation X.
2. For all xij > 0:

2.0 Set a reserve price r as a function of xij .
2.1 Find a WEr (X,p).

Output a pair (X,p) among those seen with maximal seller revenue.

In the unit-demand case, Guruswami et al. [7], showed that the following
instance of Algorithm 2 finds a revenue-maximizing WEr with revenue at least
OPT/(2 ln m), where OPT is the revenue of a revenue-maximizing WEr. (Step 1.)
Find a maximum weight matching X of V . (Step 2.) For each valuation r on the
edges of X, compute a WEr as follows: for each good i augment the valuation
matrix to include two dummy bidders, each with reward r. Run MaxWE on the
new valuation matrix to obtain a WE (π,p), based on which a new matching π′

can be inferred by reallocating goods from dummy bidders to real bidders.
As shown in Example 2, a WE might not exist for a CCMM; thus, a WEr

might also not exist. But recall that an EFEr always exists. Hence, we define
the following problem:

Definition 10. The revenue-maximizing EFEr problem: Given a CCMM,
find a revenue-maximizing EFEr.

Like the algorithm of Guruswami et al. [7], our approach (Algorithm 3) to
searching for a revenue-maximizing EFEr in a size-interchangeable CCMM fol-
lows the structure of Algorithm 2. That is, for various choices of r, corresponding
to various allocations Xr, we find an EFEr, and then we output an EFEr which
is revenue-maximizing among all those considered.

More specifically, we first find an allocation X (Step 1), and then for all
xij > 0, we find a restricted EFEr (Step 2). Step 2.0 defines a reserve price, and
Step 2.1 finds an allocation that respects this reserve price (see Definition 12).
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Step 2.2 then invokes a subroutine we call restricted EFEr, which is a straightfor-
ward generalization of Algorithm 1 that finds a revenue-maximizing EFEr with
restricted envy-free prices in polynomial time. The generalization is simply that
this algorithm takes as input a reserve price r, and then includes the additional
set of constraints: ∀i ∈ U : pi ≥ r.

Algorithm 3. Revenue-Maximizing EFEr (RM-EFEr)
Input: Market M = (U,C,E,N , I ,R)
Output: A pricing p and an allocation X
1. Find an initial allocation X.
2. For all xij > 0:

2.0 Set reserve price r = Rj/xij .
2.1 Find an allocation Xr that respects reserve price r.
2.2 Run restriced EFEr on M , reserve price r, and allocation Xr.

Output the pair (X,p) with maximum seller revenue.

Allocations in Size-interchangeable CCMMs. Two steps in Algorithm 3 depend
on an allocation. The natural place to look are among those of optimal value. A
feasible allocation is optimal if it maximizes the total of all bidders’ rewards.

Definition 11 (Optimal Allocation). An optimal allocation is a solution to the
following optimization problem:

maxX

m∑

j=1

Rjyj, subject to: ∀i :
m∑

j=1

xij ≤ Ni, ∀j : yj ∈ {0, 1}

In the Appendix we present an ILP to compute optimal allocations.

Definition 12 (Optimal Allocation that respects a reserve price). An optimal
allocation that respects a reserve price is a solution to the following optimization
problem:

maxX

m∑

j=1

(Rj − rIj)yj, subject to: ∀i :
m∑

j=1

xij ≤ Ni, ∀j : yj ∈ {0, 1}

The following theorem implies that is unlikely that one can devise an Algo-
rithm that optimizes welfare in size-interchangeable CCMMs in polynomial time.

Theorem 2. Finding an optimal allocation is NP-hard. (Proof in Appendix)

Since finding an optimal allocation is NP-Hard, we present a greedy heuristic
(Algorithm 4) to find allocations. This algorithm can easily be adapted to pro-
duce an allocation that respects reserve price r as follows: given input market M ,
construct new market M ′ by removing any bidder j for which Rj − rIj < 0, and
setting the reward of the remaining bidders to be Rj −rIj . Now run Algorithm 4
on input M ′ to obtain an allocation X ′, which we lift up to create an allocation,
Xr, in the original market M that respects reserve prices.
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Algorithm 4. Greedy Approximation Algorithm
Input: Market M = (U,C,E,N , I ,R)
Output: Allocation X
For all i, j set xij = 0.
foreach j ∈ C do

Let Uj = {i | (i, j) ∈ E and
∑m

j=1 xij < Ni}.
if

∑
i∈Uj

Ni ≥ Ij then
foreach i ∈ Uj do

xij = min{Ij − ∑n
i=1 xij , Ni − ∑m

j=1 xij}.

There are two sources of non-determinism in Algorithm 4: (1) the order
in which to loop through bidders and (2) the order in which to loop through
goods. One approach is to orders bidders in descending order by rewards per
square root of goods demanded, i.e., Rj/

√
Ij , and goods in ascending order of

remaining supply. We also experiment with other combinations, e.g., ordering
goods in descending order of remaining supply.

5 Experiments

Experimental Setup. Given outcome (X,p), seller revenue ρ =
∑

j

∑
i xijpi, and

total welfare W =
∑

j Rjyj , where yj = 1 in case bidder j is a winner under
X and 0 otherwise. Let OPTW be the value of a welfare-maximizing alloca-
tion. Since we assume bidders are individually rational, seller revenue cannot
exceed OPTW . We thus report metrics of efficiency W/OPTW , and seller rev-
enue ρ/OPTW . We also report metrics based on violations of the (unrestricted)
envy-freeness and market clearing conditions. Given a market M and outcome
(X,p), we define an envy-free violation (EF) as the ratio between the number
of bidders that are not envy-free, and the total number of bidders in the market;
and define a market clearance violation (MC) as the ratio between the number
of goods completely unallocated whose price is greater than zero, and the total
number of goods in the market.

All metrics are reported over random markets M drawn from a distribution
we call Random-k-Market(n,m, p, k). Let S =

∑
i Ni be the total supply of M ,

and let D =
∑

j Ij be the total demand of M . The supply-to-demand ratio S/D,
is a measure of how much over (or under) demanded a market is. A market
is over demanded if S/D < 1 and under demanded if S/D > 1. A random
market drawn from Random-k-Market(n,m, p, k) over CCMM has n goods and
m bidders. The parameter p is the probability that an edge (i, j) is present in E,
and thus, the expected number of edges is pnm. Both Ni and Ij are randomly and
independently drawn integers between 1 and 10 such that the supply-to-demand
ratio is k. Finally, each bidder’s reward Rj is uniformly and independently drawn
uniformly on [1, 10]. From Random-k-Market(n,m, p, k) we generate markets
with n,m = 1, . . . , 20, p = 0.25, 0.5, 0.75, 1.0 and k = 0.25, 0.33, 0.5, 1, 2, 3, 4.
For each metric, we report the average across markets over 100 independent
trials. Results are shown in Table 1.
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Table 1. Results.

Efficiency Revenue Time (ms) EF MC

Under-demanded Singleton CCMM

CK 1.00 0.00 0.25 0.00 0.00

MaxWE 1.00 0.04 0.41 0.00 0.00

MaxWErApprox 0.85 0.67 12.94 0.00 0.64

LP Optimal 0.86 0.73 15.73 0.00 0.63

Over-demanded Singleton CCMM

CK 1.00 0.49 4.57 0.00 0.00

MaxWE 1.00 0.80 0.24 0.00 0.00

MaxWErApprox 0.96 0.84 5.69 0.00 0.12

LP Optimal 0.95 0.86 11.47 0.00 0.13

Under-demanded CCMM, k ∈ {2, 3, 4}
CK 0.97 0.08 4.22 0.00 0.07

LP Optimal 0.84 0.65 232.22 0.00 0.43

LP Greedy 0.84 0.65 12.87 0.00 0.49

Over-demanded CCMM, k ∈ {0.25, 0.33, 0.5}
CK 0.79 0.41 2.50 0.00 0.21

LP Optimal 0.93 0.75 199.59 0.02 0.11

LP Greedy 0.89 0.72 9.08 0.02 0.15

Algorithms. Algorithms’ names are abbreviated as follows: CK refers to the
Crawford-Knoer ascending auction [5] (see the Appendix for details). MaxWE
and MaxWErApprox refer to Guruswami et al.’s algorithms (see Sect. 4). LP
refers to our revenue-maximizing EFEr algorithm. The algorithm LP is qualified
by the type of allocation given as input: LP Optimal refers to the case when
an optimal allocation is given as input, and LP Greedy refers to the case
when the greedy allocation is given as input. We report results where the greedy
approximation orders goods by descending order of remaining supply. We also
experimented with ordering goods by ascending order of remaining supply, but
saw no qualitative differences in the results.

Results. We report on two sets of experiments: singleton CCMMs, and gen-
eral. In both cases, we take as a baseline the CK auction, which, in the case of
unit-demand markets, like MaxWE, is guaranteed to produce an efficient out-
come, but at the expense of low revenue. For singleton CCMMs, we compare our
algorithm to MaxWErApprox as well.

As expected, the efficiency of CK and MaxWE in singleton CCMMs is per-
fect. Also, these algorithms yield zero violations, as they are known to generate
Walrasian equilibria. However, their revenues are low, particularly in under-
demanded markets, because there are more unallocated goods in these markets,
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each of which must be priced at zero, thereby limiting the price of allocated
goods, in order to avoid envy. Our algorithm and MaxWErApprox both impose
a reserve, enabling them to disregard some of these overly constraining goods, but
ours obtains substantially more revenue than MaxWErApprox, with fewer (but
not significantly fewer) violations. In over-demanded markets, the performance
of our algorithm is comparable to that of MaxWErApprox, and both algorithms
outperform MaxWE, which outperforms CK. Note that our algorithm produces
unrestricted envy-free outcomes in singleton CCMMs.

In general CCMMs, CK is nearly efficient in under-demanded markets, but
much less so in the over-demanded case. But in neither case does it strike a
good balance between efficiency and revenue. In contrast, our algorithm is able
to accrue upwards of 72% revenue in over-demanded markets, while retaining an
efficiency of 89%, and it does so with hardly any EF violations, compared to CK,
which obtains an efficiency of only 79% and revenue of only 41%. As in the case of
singleton CCMMs, our algorithm does not fare as well in the harder case of under-
demanded markets, where once again there are more unallocated goods, although
it again produces nearly-unrestricted envy-free outcomes. These experiments
suggest that while not perfect, finding revenue-maximizing restricted envy-free
outcomes in polynomial time is a reasonable heuristic for maximizing revenue
among nearly-unrestricted envy-free outcomes.

6 Conclusion and Future Directions

CCMMs with unit-demand valuations have some important properties, e.g., a
WE always exists and there are polynomial-time algorithms to find such out-
comes. A WE outcome guarantees that all bidders are envy-free and that the
market clears, and thus, by the first welfare theorem of economics, yields an allo-
cation that maximizes social welfare. Guruswami et al. [7] proposed an algorithm
for the unit-demand case, sacrificing social welfare in an attempt to maximize
seller revenue, while maintaining the envy-freeness property. In this paper, we
proposed an algorithm that generalize this well-known algorithm for the unit-
demand case to the case of single valued, size-interchangeable CCMMs. In future
work, we plan to look more closely at algorithms [3,4,7,9] that have been pro-
posed for the more difficult case of single-minded bidders, and to perhaps gen-
eralize results about those algorithms to the single-valued, size-interchangeable
bidder setting studied here. We will also explore alternative solution concepts
where we combine the restricted EF condition with the objective of maximizing
the number of allocated bidders.

Appendix

Mixed ILP to Find Optimal Allocations

Given a market (U,C,E,N , I ,R), Algorithm 5 is a mixed ILP that can be used
to find an optimal allocation.
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Algorithm 5. Mixed ILP Optimal Allocation
Input: Market M = (U, C, E,N , I ,R)
Output: An optimal allocation X

maximize
m∑

j=1

Rjyj

subject to (1) ∀i :
∑m

j=1 xij ≤ Ni

(2) ∀i, j : If(i, j) /∈ E then xij = 0
(3) ∀j : yj ≤ 1

Ij

∑n
i=1 xij ≤ yj

(4) yj ∈ {0, 1}
(5) ∀i, j : xij ∈ Z

+

Constraints (1), (2) and (5) imply that a solution to the Mixed-ILP is a
feasible allocation. Constraints (3) and (4) imply that a bidder attains reward
Rj if and only if it is completely fulfilled, and together with constraint (5), imply
that if yj = 0 then xij = 0 for all i. The objective of the mixed ILP implies that
the solution maximizes bidders’ rewards over all feasible allocations and thus, it
is an optimal allocation. To obtain an allocation that respects reserve price r,
change the objective of the mixed ILP to

∑m
j=1(Rj − rIj)yj , where r ∈ R

+ is
the reserve price parameter.

Proof of Theorem 2

Finding an optimal allocation is NP-hard. To prove this, we reduce from the
following version of set packing: Given a universe U = {u1, u2, . . . , un} and a
family of subsets S = S1, S2, . . . , Sk ⊆ U , find the maximum number of pairwise
disjoint sets in S.

Consider an input (U ,S) to the set packing problem as described above. Let
us construct a market (U,C,E,N , I ,R) from (U ,S) as an input to the optimal
allocation problem. At a high level, the input market consists of n goods each
offered in exactly 1 copy and k bidders where each bidder corresponds to a
member Sj ∈ S that demand as many goods as elements in Sj and attains a
reward of exactly 1. A goods is connected to a bidder only if the index of the
good is contained in the set Sj associated with the bidder.

Formally, given (U ,S) where U = {1, 2, . . . , n} and S = {S1, S2, · · · , Sk}, con-
struct f(U ,S) = (U,C,E,N , I ,R) as follow: (1) let U = U and Ni = 1 for all
i = 1, 2, . . . , n. (2) let C = {1, 2, . . . , k}, and associate each bidder j ∈ C to Sj ∈ S
so that Ij = |Sj |. Also, Rj = 1 for all j = 1, 2, . . . , k. (3) add edge (i, j) to E only if
i ∈ Sj . Clearly the transformation f is polynomial on the size of the input (U ,S).

We now show that a set packing for (U ,S) corresponds to an optimal alloca-
tion for f(U ,S) and vice versa. Suppose that l is the maximum number of pair-
wise disjoint sets in S and that S1, S2, . . . , Sl ∈ S are these sets. By our transfor-
mation f we know that each bidder j associated with a set Sj from the previous
list is connected to as many goods as |Sj |. Since all these sets are pairwise dis-
joint, all bidders are connected to different goods. Therefore, each of these bidders
can be fulfilled which means that the value of the optimal allocation is at least l.
Moreover, we know that is not possible to fulfill more than l bidders since l is the
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maximum number of pairwise disjoint sets, and selecting more than l bidders
would imply, by our transformation f , that at least one good has a supply greater
than 1. Therefore, l is the value of the optimal allocation of f(U ,S).

Suppose that l is the value of the optimal allocation of f(U ,S). This means
that l is the maximum number of bidders that can be fulfilled. Bidder j is
fulfilled only if its allocation is at least |Sj |. By construction we know that a
bidder is connected to exactly |Sj | many goods. Therefore, each allocated bidder
j is fulfilled by exactly |Sj | goods. Moreover, none of these goods are allocated
to different bidders since there is exactly 1 copy of each good. Therefore, the sets
associated with the selected bidders must not overlap in any element, i.e., they
must be pairwise disjoint. This shows that there are at least l pairwise disjoint
sets in (U ,S). We also know that there must be at most l pairwise disjoint sets
or otherwise the value of the optimal allocation would have been more than l.
Therefore, l is the maximum number of pairwise disjoint sets in S. �

Crawford and Knoer Ascending Auction

In the unit-demand setting, it is well known that Walrasian Equilibria exist [6].
Furthermore, Crawford and Knoer [5] proposed an ascending auction mechanism
which, for price increment ε, yields an εWE.1 We describe the workings of their
mechanism in a unit-demand CCMM in Algorithm 6.2

Algorithm 6. Crawford-Knoer Ascending Auction (Unit-demand)
Input: Market M = (U, C, E,N , I ,R), where ∀i : Ni ≥ 1 and ∀j : Ij = 1
Output: A pricing p and an allocation X
For every i, set pi = 0
For every i, j, set xij = 0
while TRUE do

foreach Unallocated bidder j do
Let i∗ ∈ arg maxi∈U{Rj − (pi + ε)}.
Add (i∗, j) to B.

if B = ∅ then
Halt with current allocation X and prices p.

else
Choose (i, j) ∈ B.
xij = 1.
if
∑

l xil > Ni then
pi = pi + ε.
Completely unallocate all bidders j′ �= j such that xij′ > 0.

Output the final pair (X ,p).

1 In an εWE, envy-free-ness is satisfied up to ε.
2 The only difference between our presentation and the original one is that Ni may

exceed 1, so in the final if statement, it may be necessary to unallocate goods from
more than one bidder.
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This algorithm, as stated, generalizes to size-interchangeable CCMMs, except
that at each step of the algorithm we must query bidders for their favorite
bundles at the current prices plus ε, rather than their favorite individual goods.
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