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Abstract In order to detect network motifs we need to evaluate the exceptional-
ity of subgraphs in a given network. This is usually done by comparing subgraph
frequencies on both the original and an ensemble of random networks keeping cer-
tain structural properties. The classical null model implies preserving the degree
sequence. In this paper our focus is on a richer model that approximately fixes the
frequency of subgraphs of size K — 1 to compute motifs of size K. We propose a
method for generating random graphs under this model, and we provide algorithms
for its efficient computation. We show empirical results of our proposed methodol-
ogy on neurobiological networks, showcasing its efficiency and its differences when
comparing to the traditional null model.
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1 Introduction

Complex networks have been established as essential tools to model and analyze
several real-life systems and problems. A technique that greatly contributed for this
reputation is network motif analysis [15]. Network motifs consist of over-represented
substructures of a network, or subgraphs that appear in a higher number than expected.
This method has been used successfully in many fields of science, such as biology
[22, 23] or sociology [4].

In order to perform a meaningful network motif analysis, it is important to decide
on a definition of what is the expected frequency of a certain subgraph. To do so,
one chooses a determined null model of random graphs and computes the average

M.E.P. Silva (<) - P. Paredes - P. Ribeiro
CRACS & INESC-TEC, DCC-FCUP, Universidade do Porto, Porto, Portugal
e-mail: mepsilva@dcc.fc.up.pt

P. Paredes
e-mail: pparedes @dcc.fc.up.pt

P. Ribeiro
e-mail: pribeiro@dcc.fc.up.pt

© Springer International Publishing AG 2017 17
B. Gongalves et al. (eds.), Complex Networks VIII,
Springer Proceedings in Complexity, DOI 10.1007/978-3-319-54241-6_2



18 M.E.P. Silva et al.

frequency of the given subgraph on this null model. The most used null model is
maintaining the degree sequence of the original network [4, 13, 14, 23]. Other models
have been proposed [3, 15], but here we focus on a new model.

One can think of graph edges as subgraphs of size 2. A natural extension would
therefore be to maintain counts of larger subgraphs. Moreover, certain patterns can
be essentially the consequence of over-represented smaller subgraphs contained in
them. With all of this mind we propose to keep the frequency of subgraphs of size
K — 1 when discovering motifs of size K, aiming towards a much richer null model,
able to really distinguish when a subgraph is really significant by itself and not just
a product of smaller subtopologies. A limited version of this idea for size 4 motifs
was shown in [15], but here we aim for a generic method (that works for any feasible
K) and that is also efficient.

Our main contributions to the stated problem are the following:

e A method that generates random networks using the invariant of subgraphs of
frequency K — 1, up to a certain margin, with an algorithm based on simulated
annealing [10];

e A study of different ways of applying the previous method by using additional
invariants like the classic degree sequence invariant;

e An algorithm, based on [17, 25], that updates the frequency of subgraphs after an
edge addition or removal, which is used in order to compute the frequencies of
subgraphs of size K — 1 that the mentioned method requires;

We analyze our method to show that it is both efficient and accurate. To do
so, we rely on different real complex networks and show that our method obtains
different results when comparing with the classic degree sequence model. We also
show that our frequency update algorithm performs much better than recalculating
all frequencies in every iteration of the generation method.

The rest of this paper is organized as follows. Section2 discusses some prelim-
inaries and background concepts regarding network motif analysis, needed for the
following sections. Section 3 presents our generation method and also show some of
its properties. In Sect. 4 we showcase our frequency updating algorithm and prove its
correctness. Section 5 contains a brief experimental analysis of our proposed methods
and algorithms. Finally we conclude in Sect. 6.

1.1 Related Work

Milo et al. [15] use, as null model, random graphs that maintain the degree sequence
and subgraph count of size K — 1, when calculating motifs of size K. Their imple-
mentation uses a Monte Carlo Metropolis-Hastings algorithm for directed networks
to calculate motifs of size 4, but does not suggest an immediate strategy for undirected
networks or subgraph size greater than 4.

In other related work, Bois and Gayraud in [3] use prior probability to generate
random graphs with a given count of subgraphs, but only present priors for two types
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of directed subgraphs of size 3. Ritchie et al. [21] present an algorithm parametrized
by a degree sequence and a set of subgraphs that generates random graphs with those
parameters. It is based on the matching algorithm [14], whereas our work uses a
Markov chain Monte Carlo method of generation.

We also note that, as far as we know, there is no known method that efficiently
updates subgraph frequencies on an edge addition or removal.

2 Network Motif Finding

2.1 Definition of Network Motif

The concept of motifs as building blocks of networks was first described by Milo et al.
in [15] as patterns of inter-connections occurring in numbers that are significantly
higher than what one would expect. To simplify notation, we will refer to network
motifs simply as motifs.

A determined subgraph is considered significant if its frequency in the original
graph is exceptionally high in comparison with its frequency on random networks
under a certain null model. To assess exceptionality, one computes the probability
that the number of times the subgraph appears on a randomized network is lower
than on the original network and then compares it with a certain threshold P. This
probability can be estimated using Z-scores on a standard normal distribution, by
computing the standardized difference between the observed and expected frequency.

To be classified as a motif, according to the original definition [15], it is also
required to fulfill two other properties. For a given subgraph, let f, be the frequency
of the subgraph on the original network and f, the average frequency of the same
subgraph on random networks with an unspecified null model. The first constraint
is minimal frequency, that is, f, has to have a minimum value of U, to ensure a
quantitative minimum. The second constraint is minimal deviation, that is, f, needs
to be significantly larger than f,, to prevent the detection of motifs that have a small
difference between these two values but have a narrow distribution in the random
networks. This can be stated has f, — f, > D - f,, where D is a proportionality
threshold.

With this information, we can give a formal definition of motif. Given a set of
parameters { P, U, D}, a subgraph of a given graph is considered a motif if:

e P(f, > f,) < P (over-representation)
e f, > U (minimal frequency)
e f,— f, > Df, (minimum deviation)
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2.2 Algorithms for Subgraph Counting

The main primitive of motif finding is counting subgraphs on graphs, which is called
asubgraph census. There are essentially three different ways of doing so: in a network
centric way, which corresponds to counting the occurrences of all subgraphs up to
a certain size K; in a subgraph centric way, which corresponds to counting the
occurrences of a single subgraph; in a set centric way, which corresponds to counting
the occurrences of a set of subgraphs.

The state of the art algorithms that do a generic network centric census are Qua-
teXelero [9] and FaSE [17], which are similar contemporaneous algorithms. Both
build on previous methods [25] that do an enumeration of all subgraphs up to a certain
size K and then perform isomorphism tests on each one using a tool like nauty [11].
By building an intermediate structure (a quaternary tree and a g-trie, respectively)
the number of necessary isomorphism tests is decreased to a multiple of the number
of different types of subgraph present in the network. More recently, some methods
[12, 18] explore combinatorial properties of graphs to achieve algorithms that are
orders of magnitude better than any generic method, but that can only work with
subgraphs up to a certain size (currently up to 5 for undirected graphs [18] and 4 for
directed [12]).

The most well known subgraph centric algorithm is the work by Grochow and
Kellis [8], which efficiently counts the frequency of a single subgraph using a set of
generated symmetry breaking conditions. Finally, there is only one known set centric
algorithm, the work by Ribeiro and Silva [20].

2.3 Random Graphs

The study of random graphs is growing rapidly as a model of complex networks.
Although the research on this topic dates back to the late 1950s, where, in a series of
publications, Paul Erdos and Alfréd Rényi [5, 6] introduce a model, known as Erdos-
Rényi (ER). In this model, each pair of vertices is connected with an independent
probability p. More recently, other models have been proposed that follow closely
characteristics from real world networks. Among these, Watts and Strogatz [24],
propose a model to generate smalls-world graphs, networks whose average path
length grows proportionally to the logarithm of the number of nodes in the network,
and Barabasi-Albert [1] introduce another model for scale-free graphs [2], where the
degree distribution follows a power law.

When focusing on more local properties, random graphs using a given degree
sequence have become one of the most studied models, after their widespread use as
null model for network motifs discovery [13, 15]. There is a multitude of algorithms
to generate this type of graphs, of which we highlight the main two:
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e The switching method [19] uses a Markov chain, starting with an initial network
with the desired degree sequence and carries out a series of Monte Carlo switches
that preserve that sequence.

e The matching algorithm [16] is based on “stubs”. Each vertex is assigned a set of
edge extremities, either incoming or outgoing. For each of these stubs, the vertex
tries to connect with another one with the opposite type of stub.

On their original work, Milo et al. [15] use as null model both the degree sequence
and subgraph frequency of size 3. To achieve this, they use the switching method
to preserve the degree sequence and a Monte Carlo Metropolis-Hastings algorithm
to approximate the subgraph count of the referred size. The frequency vectors are
updated using analytical expressions using the neighbours of the vertices used for
the edge switch.

3 Generation of Random Graphs

In this section, we discuss a generator of random graphs, with the novelty of allow-
ing the random networks to be generated with approximately the same frequency of
subgraphs of size K — 1 as an original network. We also permit the graphs to main-
tain or vary their degree sequence. The generation procedure is split in two phases:
randomization and convergence.

3.1 Randomization

We offer three ways of creating an initial network. The first two employ a Markov
chain edge swapping technique like in [15] and the third is a classical ER model,
with number of edges equal to the number of edges in the original network.

The two Markov chain algorithms we utilize are similar, they both start with a
real network and perform edge switches. The first version, which maintains degree
sequence, given different nodes A, B, C and D, with connections A — B and C —
D, removes these existing connections and adds the new edges, A — D and C — B.
Nodes are selected in a way that ensures the prior inexistence of these two new
connections. We do not distinguish between single and double edges, considering
double edges simply as two independent single ones. The undirected case is easily
generalizable.

The second type of Markov chain edge swap modifies the out-degree sequence of
the network, for directed networks, and both in and out-degree sequences, in undi-
rected networks. Given different nodes A, B and C, we delete the connection A — B
and annex the edge C — B, reducing the out-degree of node A by 1, while incre-
menting C’s by the same amount. As before, nodes are selected with the requirement
that A is connected to B but C is not.
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The difference between the initial graphs produced by these two Markov chain
variants lies in the time taken to converge to the desired subgraph count, the first
version requires a lesser number of iterations. However, both produce graphs with a
similar level of energy. Given two vectors (V; and V,) with the number of appearances
of each type of subgraph, where I" denotes the set of these subgraphs, in two different
networks, we define energy as the distance between these two vectors and calculate
it as:

Z WLi—=Vail
Vit Vo
||

We refer to the energy of a random network as the distance between its vector of
subgraph frequency and the corresponding vector from the original network.

For both Markov chain schemes, we repeat the edge swapping process O(E)
times, where E represents the number of edges in the graph. The constant used is
diverse in the existing literature, so we studied how the energy varies in function of
the number of switches applied to the original network. We observed that a higher
number of switches does not lead to higher energy. It should be noted that energy
is not the sole measure of how well a graph is randomized and a low number of
switches may not cause enough impact on other measures.

3.2 Convergence

After generating the initial network, we start the process of switching edges to obtain
a subgraph count close to that of the real network. The convergence phase stops when
the energy reaches a certain tunable threshold, where energy equal to 0 means that
the subgraph frequencies of the random network and the original network are the
same. In this phase, we use simulated annealing [10].

Simulated annealing is a metaheuristic technique used to approximate the global
optimum of a large search space. On a general case, on each iteration, the heuristic
chooses arandom neighbouring state of the current state and decides probabilistically
between changing to the new state or staying in the current one. This process is
repeated until a global optimum solution is found or a solution that differs from the
optimum less than a given threshold.

In our implementation of the method, the neighbouring state is chosen using the
edge swapping mechanism described previously. If our initial network was obtained
through the ER model or the out-degree changing Markov chain method, the swap
also uses the out-degree changing switch. Otherwise, if the degree sequence was
maintained throughout the randomization process, we only perform the type of switch
that preserves it.

In order to decide if the the new candidate graph is accepted, we use an acceptance
probability function P (e, €', t), where e represents the current graph’s energy, ¢’ the



Network Motifs Detection Using Random Networks ... 23

candidate graph’s energy and ¢ is a parameter that decays over time, called the
temperature. We use the same acceptance function as in the original formulation by
Kirkpatrick et al. in [10], if ¢’ < e, we always accept the transition, otherwise, we
accept it with probability exp( E’t‘)' ).

A feature of simulated annealing is the decreasing temperature over time. This
forces the state to converge to an optimum as, with lower temperature, the probability
of accepting a state with higher energy is lessened. Upon reaching a point in the
computation where the temperature reaches 0, only states with lesser energy are
accepted and the computation eventually stops. The rate at which the temperature

decreases is called the cooling factor of the algorithm.

4 Updating Frequencies of Subgraphs

The main bottleneck of the method described in the previous section is computing
the frequencies of subgraphs in every iteration, to estimate the energy of the current
solution. In [15], an analogous operation was done recounting the frequencies of
subgraphs after each iteration of their algorithm until convergence. Our approach
avoids recomputing all of the frequencies by only considering the subgraphs that are
changed by the addition or removal of a certain edge.

The base of our method is the FaSE [17] algorithm, which we will extend in order
to only count subgraphs that touch a given edge. Firstly, we will briefly describe the
algorithm.

4.1 FaSE Algorithm

The original FaSE algorithm enumerates all connected subgraphs of a given size
K and in the end computes the isomorphism of some of the subgraphs. To avoid
having to compute the isomorphism of all subgraphs, the algorithm partitions sub-
graphs into intermediate classes during the enumeration process. By requiring that
all subgraphs in one of the intermediate classes are isomorphic, in the end we only
need to compute one isomorphism test per class. This is done by encapsulating the
topological features of the enumerating graph in a tree like data structure. Thus, we
can divide the algorithm into two interleaved concepts: the enumeration and a tree
data structure.

Enumeration: The enumeration step can be done using any algorithm that grows
a set of connected vertices. The algorithm from [25], ESU, was chosen since it is
simple, efficient and fulfills all the requirements. We will describe its functioning
since it will be useful for the end of this section.

ESU works by enumerating all size K subgraphs exactly once. It does so by
keeping two ordered sets of vertices: Vi, which represents the partial subgraph that
is currently being enumerated; V,,,, which represents the set of vertices that can be
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added to V; as a valid extension. Each vertex is represented by a label which is unique
and defined between 1 and | V|.

For each vertex v the algorithm repeats the same procedure setting initially V; =
{v} and V., = N(v), where N (v) are the neighbors of v. This procedure starts by
removing one element u of V,,, at a time. For each u, a new V, and Ve/xt are created
and the same procedure is repeated. V] is set to Vs U {u} and o 18 set to Ve
without u and with additionally each element in N,y (u, Vy) with value greater than
V. Nexc(u, Vi) are the exclusive neighbors of u given Vi, that is, the neighbors of
u that are not neighbors of elements in V;. This procedure stops when the size of
V; reaches K, in which case V; contains one occurrence of size K. The addition
of elements in N,..(u, V) along with the u > v, ensure that there is no subgraph
enumerated twice, and it can be proved [25] that this procedure stops and enumerates
all subgraphs.

The tree data structure: During the enumeration process, this data structure
is used to encapsulate information about the subgraph contained in V. Since this
is a recursive procedure, one can use information about the initial content of V;
to build a partial isomorphism representation, that can be complemented on each
vertex insertion in V;. For this, a data structure called a gtrie is used, which is similar
to a prefix tree of subgraphs. Whenever a new vertex is added to V|, one uses the
information of connectivity with the previous elements of V; to generate a label
that identifies the current partial subgraph, which is used as the identifier for the
mentioned intermediate classes.

Figure | summarizes the whole algorithm. The tree on the left represents the
implicit recursion tree ESU creates. The induced g-trie on the right is a visual rep-
resentation of the actual g-trie FaSE creates. More information about the FaSE can
be found in [17].

Induced G-Trie

Subgraph Enumeration

root

{0}‘{123} {1h:{2} {25{34} {344 {4}s

\Z v
{0,1}{2,3} {0.25{3,4} {03},{4} {125{34}  {23%{4} {24}
|

v v F|_+ l
bbbl dd

L1 L2 L3

o<«
e

Fig. 1 Summary of the FaSE algorithm
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4.2 FaSE with Updates

Our method to efficiently update frequency counts works by altering the enumeration
algorithm to count frequencies starting on edges. When adding an edge, the algorithm
first counts all subgraphs that use the edge’s two ends and decrements their frequency.
Afterwards, it adds the new edge and counts all subgraphs that touch that edge. To
remove an edge we do an analogous process. Our method is based on the ESU
algorithm, altering it to start on a given edge.

For a given edge to add, {a, b}, the algorithm first considers as initial sets V; =
{a, b} and V,,; = N(a) U N(b) \ {a, b} and only uses these as initial sets (meaning
it does not recurse on other initial V; and V,,,). The rest of the procedure is similar
to the original ESU algorithm, but the symmetry breaking is removed, that is, when
adding a node u’ to V,,,, there is no comparison with a: if ' belongs to N, (u, Vs)
it will be added to V,,;.

To prove that this method is correct we use the original correction proof of the
ESU algorithm. If a is the minimal node of the graph (that is, for every node v,a < v),
all subgraphs that include a will be enumerated on the first iteration of the algorithm.
For that iteration, if b is the first element of N,,;, then it will be removed and
the next iteration has V; = {a, b} and V,,; = N(a) \ {b} U N, (b, {a}) = N(a) U
N(b) \ {a, b}. Since this is the only recursion path that will include a and b (since b
was the first node to be removed from the initial N,,,), all subgraphs that contain a
and b will be counted on this recursive subtree. Since this is analogous to our method,
its correctness implies the correctness of our method.

S Experimental Evaluation

We apply our techniques to four networks, two of them neurobiological, based
on [23]. The neurobiological networks are directed and represent a macaque visual
cortex, with 30 nodes and 311 connections, and a macaque cortex, with 71 nodes and
746 edges. The other two networks are undirected and represent a social network of
jazz musicians [7], with 198 nodes and 2742 edges, and a geo-spacial network of a
power grid in the United States [24], with 4941 nodes and 6594 edges.

We measure the significance of subgraphs of size K = 4 and K = 5, using the Z-
score metric. For each network and each type of initial random network, we generate
an ensemble of 100 random networks. For the convergence phase, we define our
energy threshold as 5%, if the vectors of subgraphs count differ in 5% or less, we
stop the computation and output the network as it is at that point. We use an initial
temperature of 0.01 and a cooling factor of 0.99. Table 1 presents results for the
mentioned networks, by comparing the Z-score calculated by our methods against
simply maintaining the degree sequence.

Using our generator as null model, the Z-score of the first and second subgraphs
on the macaque cortex and fourth, fifth, seventh and eighth on the macaque visual
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Table 1 Z-score results for some subgraphs in the macaque cortex and macaque visual cortex
networks.

Network K Subgraph | Original | Keep K — 1
Keep Change |ER
Deg. Seq. | Deg. Seq.
Macaque cortex 4 61.20* | —2.29 —0.71 —4.41
182.30% 6.19 247 12.66

—10.17° | 12.01 10.64 15.20

e

Macaque visual cortex |4 (f (f 36.76* | —1.58 —0.63 —2.88
OHOI I 14.63% | —2.29 —2.20 —2.61
m —3.49% | 12.01 4.90 5.40

[@}
5 %ﬁ»‘o 278.57° 4.11 3.85 —0.71

<>0
g/\o\v 117.720 8.79 6.41 1.62

(0L =20)
Power 5 gf 82.83P 4.88 —3.45 2.86
ﬁf —21.57° | —18.25 | —17.65 0.09
Jazz 5 @ 438.35 | 60.47 29.62 15.82
ﬁo —45.84> | —17.31 6.18 70.54

aresult was taken from [23]. Pwas calculated by us, using degree sequence invariance as null model

cortex was significantly lower than the Z-score calculated using solely the degree
sequence as invariant. We speculate that these subgraphs, which are considered over-
represented in the original network by Sporns et al. [23], are simply a consequence of
the prevalence of their induced subgraphs of size K — 1. By preserving the frequency
of the latter, the former become more common in the generated random networks.

On the other hand, subgraphs third and sixth from macaque cortex and macaque
visual cortex respectively, are originally considered under-represented but, under our
generator, can be considered motifs. Note that the Z-score values are similar using
different initial perturbations on the original networks.

On the power network, we show a subgraph of size 5 that was considered a
motif under the previous model, but with our new model, it is not considered over-
represented anymore. The other example for the same network, using a Markov chain
edge swap as the initial network yields a similar Z-score as the original model, but
converging from an ER network produces a significantly different score.

For the jazz network, we present an example where an extremely over-
represented subgraph is still considered a motif under our model. It is the size 5
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Table 2 Average execution time, in seconds, and speedup, of the efficient update in comparison
with the full census, to generate a random network preserving the frequency of subgraphs of size 3
for the neurobiological networks and size 4 for the jazz and power networks

Macaque cortex | Macaque visual | Power Jazz
cortex
Efficient update (s) | 64.85 0.22 239.56 1034.06
Full census (s) 103.58 12.35 4274.47 25102.0
Speedup (xfaster) 1.6 56.1 17.8 24.3

clique and its over-representation can not be simply explained by the number of size
4 cliques. In the other example, each of the models for the initial random network
provides a substantially different Z-score, from being considered under represented
if the Markov chain edge swap process that retains the degree sequence is used, to
being treated as motif if the initial network follows the ER model.

We also study the improvement obtained by efficiently updating subgraph counts.
To this end, Table 2 shows the average execution time, in seconds, for each network,
comparing the efficient update against running a full census after each edge swap.
These tests were run with initial temperature 0.01, cooling factor set to 0.99 and using
the Markov chain edge swap variant that preserves the degree sequence. Subgraph
frequency of size 3 was maintained for the macaque networks and size 4 for the
power and jazz networks.

For the macaque cortex network, in average, each network took nearly twice as
much doing the full census after each edge switch than using our efficient frequency
update. However, for the jazz and power networks, in average, each network was
1 order of magnitude faster using the efficient update technique and the macaque
visual cortex was about 2 orders of magnitude faster.

Clearly, both macaque networks are outliers of efficiency, probably because they
are both small dense networks. Our efficient update method works best for larger
sparse networks, because in this case, on average, the number of subgraphs that
change after a single edge addition or removal is only a small fraction of the total
number of subgraphs. In this sense, the jazz and power networks are better fits
for this model, as are most social networks.

6 Conclusion

We introduced a generator of random graphs that preserves the frequency of sub-
graphs of size K — 1. The generation is split in two phases, where the original
networks first suffers an initial perturbation, via a Markov chain edge swapping tech-
nique or a classic Erdos-Renyi model, and then converges to the desired frequency
up to a difference of percentage threshold, using simulated annealing.

We applied our generator to four real complex networks and compared the signifi-
cance of different subgraphs against results published in [23]. The Z-score calculated
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by using our generator as null model is significantly lower for certain subgraphs of
size K, which can be explained by the prevalence of induced subgraphs of size K — 1.

We also devised a technique to efficiently update the frequency of subgraphs
after an addition or removal of a single edge. In summary, it works by searching
all the subgraphs that touch the edge’s endpoints and updates their frequency. This
technique is critical to the convergence phase of our generator, as it is, on average,
at least 2 times faster and in many cases orders of magnitude faster than running the
full networks census from scratch.
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