
Chapter 2
Hyperhamiltonian Dynamics

In this Chapter we introduce hyperhamiltonian dynamics and study some of the
main features of hyperhamiltonian vector fields [60, 62–65, 120]. In the second
part of the Chapter we will also discuss the notion of canonical transformations in
hyperhamiltonian dynamics (we will see that the natural generalizations of the two
equivalent ways of defining these in Hamiltonian dynamics are not equivalent in
this context) and the relation between hyperhamiltonian vector fields and canonical
transformations, generalizing awell known result in standardHamiltonian dynamics.

2.1 The Hyperhamiltonian Evolution Equations

We start with the definition of the main character in our story, i.e. hyperhamiltonian
dynamics.

Definition 2.1 Given a hyperkahler structure {ω1,ω2,ω3; g} on M we define the
hyperhamiltonian vector field associated to a triple of Hamiltonians {H1,H2,H3}
on M as the vector field

X = X1 + X2 + X3 (2.1)

where each of the Xα is the Hamiltonian vector field associated to Hα via the
symplectic form ωα, see (1.2). That is (with no sum on α)

Xα ωα = dHα. (2.2)

Remark 2.1 Note that as X is the sum of Liouville vector fields, it is also Liouville
itself. �
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18 2 Hyperhamiltonian Dynamics

Let us now consider the case where local coordinates are defined in the open set
U ⊆ M ; then the symplectic forms are represented by matrices K α,

ωα = 1

2
K α

i j dx
i ∧ dx j , (2.3)

and the components f i of the vector field

X = f i (x) ∂i (2.4)

are written as

f i =
3∑

α=1

Mi j
α (∂ jHα) , (2.5)

where we have used the notation

Mα := g−1 Kα g−1 , i.e. Mi j
α = gip K α

pq g
q j . (2.6)

2.2 Hamiltonian versus Hyperhamiltonian Dynamics

A natural question immediately arises upon defining hyperhamiltonian dynamics: is
this really more general than Hamiltonian one? The answer to this is positive, and
can be obtained with little effort, as we show here.

First of all, we note that every Hamiltonian system is trivially hyperhamiltonian:
in the hyperhamiltonian framework, it suffices to set two of the three Hamiltonian
functions Hα equal to zero to recover the standard Hamiltonian case.

On the other hand, let us check that there are systems which are hyperhamiltonian
but cannot be written in Hamiltonian form with respect to any symplectic structure.
In order to show this, we recall a result characterizing such vector fields [78].

Lemma 2.1 (Giordano-Marmo-Rubano) Given a linear vector field

X = Ai
j x

j ∂i ,

if there is k ∈ N such that
Tr(A2k+1) �= 0 ,

then X is not Hamiltonian with respect to any symplectic structure.
The vanishing of Tr(A) corresponds to the condition of zero divergence, which is

also satisfied by hyperhamiltonian flows. Thus in the simplest case we are looking
for cases where

Hα = 1

2
(Dα)i j x

i x j (2.7)
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(with Dα symmetric matrices; in the following we write all indices as lower ones to
avoid confusion with powers) and

A :=
∑

α

Kα Dα

satisfies Tr(A3) = 0.
This is obtained e.g. if [59]

H1 = 1

2
[x21 − x22 + x23 − x24 + 2(x1x4 − x2x3)] ,

H2 = 1

2
(x21 + x22 + x23 + x24 ) ,

H3 = 0 .

Thus we have shown (by explicit example) that:

Lemma 2.2 There are hyperhamiltonian vector fields which are not Hamiltonian
with respect to any symplectic structure.

2.3 Alternative Approach to the Evolution Equations

Our definition of the hyperhamiltonian vector field was as the sum of three Hamil-
tonian vector fields. This is in a way not satisfactory, as such a sum does not appear to
have any intrinsic meaning. It is thus appropriate to devote some page (this section)
to an alternative formulation of the hyperhamiltonian evolution equations which is
free from this drawback.1

To each symplectic form ω we associate a (4n − 2)-form ζ via

ζ := ω ∧ ... ∧ ω (2n − 1 factors) . (2.8)

In particular, to each of the three symplectic forms ωα is thus associated a form ζα.
Moreover, we consider the volume formΩ inM ; recall this can also be expressed,

for each ωα, as

Ω = s

(2n)! ωα ∧ ... ∧ ωα (s = ±1) . (2.9)

1Actually, this was the original definition of hyperhamiltonian vector fields in [60]; our discussion
in this section follows the one provided in that paper.
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Then, given a hypersymplectic structure, i.e. an ordered triple of symplectic forms
ωα, to any triple ofHamiltoniansHα is uniquely associated a vector field X defined by

X Ω = 1

(2n − 1)!
3∑

α=1

dHα ∧ ζα. (2.10)

Using (2.9), this can also be rewritten as

X
3∑

α=1

ωα ∧ ζα = (6n s)
3∑

α=1

dHα ∧ ζα. (2.11)

Note that (2.10) defines X uniquely. On the other hand, it is immediately checked
that the X defined by (2.1) and (2.2) satisfies (2.10). Thus the two definitions of X
are equivalent.

Note also that (2.10) shows at once that X is Liouville, as already remarked right
after Definition2.1.

In the case where the symplectic forms admit a symplectic potential, we can
consider still another formassociated to anyω; recalling the definition of ζ considered
above, and assuming σ is a symplectic potential for ω, we define the (4n − 1)-form

ϕ := σ ∧ ζ . (2.12)

In particular, to each of the ωα is thus associated a (4n − 1)-form ϕα; we will then
define new forms ϕ and ϑ, the latter also involving the time variable t :

ϕ =
3∑

α=1

σα ∧ ζα ; ϑ = ϕ + (6ns)
3∑

α=1

Hα (ζα ∧ dt) . (2.13)

We stress that dϕ is proportional to the volume form Ω , and that dϑ is non singular.
We also stress that this construction is always possible locally; and globally if
H 2(M) = 0. Even when this condition is not satisfied, it will be possible if the
symplectic forms we are considering are exact.

The forms defined in (2.13) allow to provide yet another definition of the hyper-
hamiltonian vector field, now seen as (the spatial component of) a vector field Z
in M̃ = M × R, where the R factor corresponds to the time variable. In fact, one
uniquely identifies Z by

Z dϑ = 0 , Z dt = 1. (2.14)

The second condition just means that we can write

Z = ∂t + Y ,
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where Y is a (possibly time-dependent) vector field onM .With this, the first equation
in (2.14) decomposes (considering terms which contain or do not contain a dt factor)
into two equations, i.e.

Y
∑

α

ωα ∧ ζα = (6ns)
∑

α

dHα ∧ ζα ;

Y
∑

α

dHα ∧ ζα = 0 .
(2.15)

The first of these corresponds to (2.11) and, in view of the uniqueness of X , shows
that in fact Y = X . The second equation in (2.15) is just a consequence of the first
one and thus carries no further information.

Remark 2.2 The hyperhamiltonian dynamics can also be characterized in terms of
a variational principle [62–64]; this is briefly discussed in Appendix B. It turns out
the hyperhamiltonian dynamics defined here is also natural from the point of view of
generalizing (to the quaternionic setting) the description of Hamiltonian dynamics
in terms of complex analysis; this is discussed in [120]. �

2.4 Hyperhamiltonian Flows and Dual Structures

In Sect. 1.5 we have introduced, for a given hyperkahler structure, the notion of dual
hyperkahler structures. Here we consider the hyperhamiltonian dynamics associated
to such dual structures, and (some of) its relations with the dynamics associated to
the given hyperkahler structure.

2.4.1 Dual Hyperkahler Structures and Dual
Hyperhamiltonian Dynamics

Asdiscussed in Sect. 1.5, to any hyperkahler structure are associated one ormore dual
ones, with opposite orientation in M or at least in some of the minimal hyperkahler
components M(k) of the ambient hyperkahler manifold M .

If the hyperkahler structure is characterized by the metric g and the symplectic
forms {ω1,ω2,ω3}, any dual hyperkahler structure has the same metric and its sym-
plectic forms will be denoted by {ω̂1, ω̂2, ω̂3}. The corresponding dual hyperkahler
structure is then determined by g and the ω̂α through the Kahler relation.

If we have a given triple of symplectic forms {ω1,ω2,ω3} and a triple of Hamil-
tonians {H1,H2,H3}, thus defining a hyperhamiltonian dynamical vector field

X =
∑

Xa , Xa ωa = dHa, (2.16)

http://dx.doi.org/10.1007/978-3-319-54358-1_1
http://dx.doi.org/10.1007/978-3-319-54358-1_1
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we can consider a dual hyperhamiltonian vector field

X̂ =
∑

X̂a , X̂a ω̂a = dHa; (2.17)

note this is characterized by the same Hamiltonians Hα and by the dual symplectic
forms ω̂α.

We stress once again that there are many hyperkahler structures dual to any given
one, as there are many duality maps 	. Thus the dual vector field to a given hyper-
hamiltonian vector field is surely not uniquely defined.

Lemma 2.3 For X and X̂ as above, their commutator Z = [X, X̂ ] = f i∂i satisfies

f = (
M̂βH

βMα − MβH
β M̂α

) ∇Hα := Aα ∇Hα . (2.18)

Proof This follows by direct computation.Writing ∂i jHα = Hα
i j for ease of notation,

we have

f i = (
M jk

α (∂kHα)
)

∂ j
(
M̂i�

β (∂�Hb)
) − (

M̂ jk
α (∂kHα)

)
∂ j

(
Mi�

β (∂�Hb)
)

=
(
M̂i�

β Hβ
�j M

jk
α − Mi�

β Hβ
�j M̂

jk
α

)
∂kHα ;

this is just our statement. �
Remark 2.3 Note that Aα is in general not antisymmetric: in fact (using MT = −M ,
M̂T = −M̂ and HT = H )

AT
α = − (M̂αH

βMβ − MαH
β M̂β) ,

and in general AT �= −A. This implies, in particular, that in general Aα is not a
combination of the Mα and/or the M̂α.

On the other hand, if Hα
i j is a multiple of the identity—as in particular in the case

of quaternionic oscillators, to be considered in Chap.5—then by [Mα, M̂β] = 0 we
get [X, X̂ ] = 0. �

2.4.2 Dirac Vector Fields

We have introduced the notion of dual hyperkahler structures, and correspondingly
we have a notion of vector fields which are hyperhamiltonian with respect to dual
hyperkahler structures.

As stressed above, dual structures are originated frommaps preserving the volume
form up to a sign, and reversing the orientation in any number of the minimal hyper-
kahler submanifolds M(k) in which the the hyperkahler manifold M under study can
be decomposed.

http://dx.doi.org/10.1007/978-3-319-54358-1_5
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Definition 2.2 Given a hyperkahler structure J, we say that any vector field which
is hyperhamiltonian w.r.t. either J or any of the dual hyperkahler structures is aDirac
vector field for J.

In the same way as we usually say “hyperhamiltonian vector field” without speci-
fying “w.r.t. the hyperkahler structure J”, we will just speak of “Dirac vector fields”.

This notionwill play a substantial role in our forthcoming discussion. In particular,
while in the standard Hamiltonian case the vector fields which preserve the symplec-
tic structure are all (and only) those which are Hamiltonian—with any Hamiltonian
function—under the given symplectic structure, we anticipate (see Sect. 3.2.4 for
details) that in the hyperhamiltonian case the vector fields which preserve the hyper-
kahler form are not only those which are hyperhamiltonian w.r.t. the given hyper-
kahler structure, but also those which are hyperhamiltonian w.r.t. dual hyperkahler
structures; that is, Dirac vector fields.

Definition 2.3 Given a hyperkahler structure J in (M, g), let Ĵ be the dual hyper-
kahler structure corresponding to a duality map which reverses orientation in each
of the irreducible hyperkahler components of (M, g; J). We say that a vector field
which is the sum of vector fields which are hyperhamiltonian w.r.t. the J and the Ĵ
structures is a strictly Dirac vector field.

2.5 First Integrals, Conservation Laws, and Poisson-like
Brackets

As always when dealing with a dynamics, we are specially interested in conservation
laws and first integrals for the hyperhamiltonian vector field X .

2.5.1 First Integrals

Definition 2.4 A first integral for the vector field X is a smooth function F : M →
R, such that

LX (F) = 0 . (2.19)

Lemma 2.4 The smooth function F : M → R is a first integral for the hyperhamil-
tonian vector field X if and only if the sum of its Poisson brackets with the three
Hamiltonians (each w.r.t. the corresponding symplectic structure) vanishes.

http://dx.doi.org/10.1007/978-3-319-54358-1_3
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Proof The time evolution of a scalar smooth function F : M → R under the
hyperhamiltonian vector field X is, in view of (2.1), given by

LX (F) = X (F) =
∑

α

Xα(F) ; (2.20)

recalling also (2.2) and working in local coordinates, we get

LX (F) =
∑

α

Mi j
α (∂ jHα) (∂i F)

=
∑

α

[(∂i F) Mi j
α (∂ jHα)] =

∑

α

{F,Hα}α ,

where we have denoted by {., .}α the Poisson bracket defined by the symplectic form
ωα. �
Remark 2.4 A special case is of course the one in which these three Poisson brackets
are separately zero, but in general this is not required. �

In Hamiltonian dynamics, given two first integrals F1 and F2, we obtain a new first
integral (which might happen to be trivial or dependent on the first two) by applying
the Poisson bracket, i.e. as

F3 = {F1, F2} .

It is natural to wonder if there is a result of this kind also in the framework of
hyperhamiltonian dynamics; it appears this is not the case, at least if we require to
have the new first integral as a homogeneous bilinear function, independent of the
chosen Hamiltonians, of the derivatives of the known ones.

In fact, any such function can be written as

F3 = (∂i F1) Pi j (∂ j F2) , (2.21)

with P a matrix.
With integration by parts, writing X = f i∂i , and using the assumption X (F1) =

X (F2) = 0, we have

X (F3) = [X (∂i F1)] Pi j (∂ j F2) + (∂i F1) Pi j [X (∂ j F2)]
= [∂i X (F1)] Pi j (∂ j F2) + (∂i F1) Pi j [∂ j X (F2)]

− [
(∂i f

k)(∂k F1) Pi j (∂ j F2) + (∂i F1) Pi j (∂ j f
k)(∂k F2)

]

= − [
(∂i f

k)(∂k F1) Pi j (∂ j F2) + (∂i F1) Pi j (∂ j f
k)(∂k F2)

] ;

note we have already used the condition that F1, F2 are first integrals for X .
If now we write

F i
k = ∂k f

i , (2.22)
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the above reads

X (F3) = − [
(∂k F1)F k

i P
i j (∂ j F2) + (∂i F1) P

i j (FT ) k
j (∂k F2)

]

= − [
(∇F1 · F P∇F2) + (∇F1 · PFT∇F2)

]

= − (∇F1 · (F P + PFT )∇F2
)

. (2.23)

Remark 2.5 One could be tempted to require

F P + P FT = 0 , (2.24)

but this would actually be too much, as discussed in a moment. Moreover, an explicit
computation made with the standard hyperkahler structure in R4 shows that this
condition is satisfied only for P = 0.

In fact, with the standard hyperkahler structure in R4 and P a skew-symmetric
matrix, (2.24) is a homogeneous linear system with six unknowns (the independent
components of P) and six equations (and F P + PFT will in general be nonzero);
then the only solution is P = 0.

Actually, the coefficient matrix (which is a 6× 6 matrix) has a peculiar structure,
being the sum of a symmetric plus a skew-symmetric matrix, the two having non-null
elements in different places. Due to this structure, its determinant is a perfect square,
in fact the square of the sum of products of second derivatives of Hi , each product
having three factors; thus it is always non-zero. �

When requiring (∇F1 · (F P + PFT )∇F2
) = 0 ,

see (2.23) above, we should recall that F1, F2 are first integrals for X , i.e. their
gradients are necessarily orthogonal to the stream lines of X ; on the other hand,
these are determined by the f i and are hence embodied in the matrix F .

Thus we should actually require that

(
ξ · (F P + PFT ) η

) = 0 (2.25)

for all vectors ξ, η orthogonal to the kernel of X . This requirement is weaker than
(2.24).

2.5.2 Conservation Laws

By a conservation law we mean a “conserved form of submaximal degree” (this
corresponds via Hodge duality to a conserved vector, similar to the Runge-Lenz
vector for the Kepler problem), i.e. an object with m = 4n components which is
preserved under X . Rather than seeing this as a vector on M , it is more convenient
to adopt the dual point of view and see it as a differential form. This in turn can be
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a one-form θ ∈ Λ1(M) or, using Hodge duality [123, 124], a form of submaximal
degree, Θ ∈ Λ(4n−1)(M). It turns out that the latter point of view is often somehow
more convenient.

Definition 2.5 A conservation law for the vector field X in the 4n-dimensional
manifold M is a form Θ ∈ Λ(4n−1)(M) such that LX (Θ) = 0.

In particular, given a triple of symplectic structures ωα, to any tripleHα of Hamil-
tonians (which uniquely define a hyperhamiltonian vector field X ) is canonically
associated a conserved form Θ ∈ Λ(4n−1)(M); this is just

Θ :=
∑

α

dHα ∧ ζα . (2.26)

Lemma 2.5 The form Θ is preserved by the vector field X defined by the Hamilto-
nians Hα,

LX (Θ) = 0 . (2.27)

Proof In fact, Θ is obviously closed; thus

LX (Θ) = d(X Θ).

The form of Θ and the equations (2.1), (2.2) yield

(X Θ) = (2n − 1)! [X (X Ω)] = 0 ;

thus a fortiori d(X Θ) = 0 and hence (2.27). �
Remark 2.6 Actually, the construction via Hodge duality canonically associates a
(4n − 1)-form χ to any vector field Y on M ; this is written as

Y Ω = χ. (2.28)

Conversely, this relation associates a vector field Y to any form χ ∈ Λ(4n−1)(M);
that is, there is a map F : Λ(4n−1)(M) → X (M).

Given two forms α,β ∈ Λ(4n−1)(M), we have vector fields Yα = F(α) and
Yβ = F(β) on M . We can then take the commutator of these vector fields, and
consider the form in Λ(4n−1)(M) associated to it, i.e. the form

γ = F−1 ([F(α), F(β)]) . (2.29)

This construction defines a natural (antisymmetric) binary operation {., .} on
Λ(4n−1)(M), so that the above can be rewritten as

γ = {α,β} . (2.30)
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This is just the corresponding of the commutator when considering (both) the duality
between vector fields and one forms, and the Hodge duality between Λ1(M) and
Λ(4n−1)(M). �
Remark 2.7 The construction of the above remark can be used to generate new
conservation laws from known ones. That is, if α and β are conserved (4n − 1)-
forms, then γ = {α,β} is also conserved. In this respect, as mentioned in [60] (see
Sect. 3 in there), {., .} is reminiscent of the Poisson bracket.

It should be stressed, however, that {., .} is just based on standard and Hodge
duality; hence it only uses the metric structure in M and its volume form, and not
the symplectic or hyperkahler structures.

In fact, a vector field Yi is preserved under X if LX (Y ) = 0; but

LX (Y ) = [X,Y ] ;

thus the conservation of γ just amounts to the fact that [X,Yα] = 0 and [X,Yβ] = 0
entail [X, [Yα,Yβ]] = 0. In other words the fact that, for γ as in (2.30), LX (α) =
0 = LX (β) entails LX (γ) = 0 is just a consequence of the Jacobi identity. �

2.5.3 Combining First Integrals and Conservation Laws

If we have a first integral F and a conservation law Ξ ∈ Λ(4n−1)(M), we can readily
produce a new scalar conserved quantity, i.e. a newfirst integral (as in theHamiltonian
case, this might be dependent on the quantities mentioned above, or even turn out to
be trivial).

Lemma 2.6 Let X be a hyperhamiltonian vector field in M, Ω the volume form in
M, Ξ ∈ Λ(4n−1)(M) a conservation law for X, F a conserved quantity for X, and
φ = dF. Then the scalar quantity σ defined by

Ξ ∧ φ = σ Ω (2.31)

is a first integral for X.

Proof In fact, X (F) = 0 can also bewritten as X dF = 0; thusφ := dF ∈ Λ1(M)

is a conserved one-form. As the form Ξ ∧ φ ∈ Λ(4n)(M) is of maximal degree, this
defines indeed a scalar function σ : M → R through (2.31).

Taking into account that X is Liouville, we readily have

LX (Ξ ∧ φ) = X (σ)Ω + σLX (Ω) = X (σ)Ω ; (2.32)
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thus the form Ξ ∧ φ is conserved if and only if X (σ) = 0, i.e. if σ is a first integral
for X . On the other hand, by assumption Ξ and φ are both conserved forms, hence

LX (Ξ ∧ φ) = [LX (Ξ)] ∧ φ − Ξ ∧ [LX (φ)] = 0 . (2.33)

That is, σ defined by (2.31) is indeed a first integral for X . �

2.6 The Hyperkahler Form

2.6.1 General Setting

We have seen above that any hyperhamiltonian vector field is Liouville, i.e. it pre-
serves the volume form Ω on M , see Remark2.1.

On the other hand, each of the Xα, see (2.1) and (2.2), preserves the corresponding
symplectic form2 ωα,

LXα
(ωα) = 0 (α = 1, 2, 3) , (2.34)

but it will in general not preserve the other two symplectic forms, LXα
(ωβ) �= 0

for α �= β. This also means that—except in very special cases, i.e. for very special
choices of the HamiltoniansHα—the hyperhamiltonian vector field X will not pre-
serve the three symplectic forms: the hyperhamiltonian dynamics is in general not
three-holomorphic.

One can and should also consider the hyperkahler four-form

Ψ = 1

2

3∑

α=1

ωα ∧ ωα . (2.35)

Lemma 2.7 Equivalent hyperkahler structures have the same hyperkahler four-
form.

Proof Let us consider a set of different forms ω̃α obtained from the set ωα by an
SO(3) rotation:

ω̃α =
3∑

β=1

Rαβ ωβ . (2.36)

We can compute the hyperkahler four-form, which we will denote by Ψ̃ , based on
these symplectic forms, and show it is just the same as the one based on theωα forms.
In fact,

2And hence is canonical (in the sense of standard Hamiltonian dynamics) for the corresponding
symplectic form.
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Ψ̃ = 1

2

3∑

α=1

ω̃α ∧ ω̃α = 1

2

3∑

α=1

⎛

⎝
3∑

β=1

Rαβωβ

⎞

⎠ ∧
⎛

⎝
3∑

γ=1

Rαγωγ

⎞

⎠

= 1

2

3∑

α,β,γ=1

RαβRαγωβ ∧ ωγ = 1

2

3∑

β,γ=1

δβγωβ ∧ ωγ

= 1

2

3∑

β=1

ωβ ∧ ωβ = Ψ

This concludes the proof. �
Remark 2.8 We have thus shown that Ψ is actually not associated to the given triple
of symplectic form but to the Q-structure these identify. �

In the case of fully decomposable hyperkahler manifolds one can show that if two
hyperkahler structures (induce the same decomposition of the manifold and) have
the same hyperkahler form, then are equivalent. This will be done in the following
subsection.

2.6.2 Hyperkahler Form for Low-Dimensional
Standard Structures

It may be worth giving explicit expression for the standard hyperkahler structures in
R4 and inR8, see Sect. 1.4.3 for the explicit expression of the ωα and ω̂α in this case.

By a trivial computation, we obtain that the hyperkahler forms Ψ (±) for the posi-
tively and negatively oriented standard hyperkahler structure in R4 are

Ψ (±) = ± 3
(
dx1 ∧ dx2 ∧ dx3 ∧ dx4

)
. (2.37)

The situation in R8 is slightly more complex, but also more representative of the
general situation in R4n (this is why we report the explicit formulas below). We will
denote the basis symplectic structures as ω(±±)

α , where the upper indices refer to the
orientation in the two basic four-dimensional blocks. Thus we will have in explicit
terms

ω(++)
1 = dx1 ∧ dx2 + dx3 ∧ dx4 + dx5 ∧ dx6 + dx7 ∧ dx8 ,

ω(++)
2 = dx1 ∧ dx4 + dx2 ∧ dx3 + dx5 ∧ dx8 + dx6 ∧ dx7 ,

ω(++)
3 = dx1 ∧ dx3 + dx2 ∧ dx4 + dx5 ∧ dx7 − dx6 ∧ dx8 ;

ω(+−)
1 = dx1 ∧ dx2 + dx3 ∧ dx4 + dx5 ∧ dx6 − dx7 ∧ dx8 ,

ω(+−)
2 = dx1 ∧ dx4 + dx2 ∧ dx3 + dx5 ∧ dx8 − dx6 ∧ dx7 ,

ω(+−)
3 = dx1 ∧ dx3 + dx2 ∧ dx4 + dx5 ∧ dx7 + dx6 ∧ dx8 ;

http://dx.doi.org/10.1007/978-3-319-54358-1_1


30 2 Hyperhamiltonian Dynamics

ω(−+)
1 = dx1 ∧ dx2 − dx3 ∧ dx4 + dx5 ∧ dx6 + dx7 ∧ dx8 ,

ω(−+)
2 = dx1 ∧ dx4 − dx2 ∧ dx3 + dx5 ∧ dx8 + dx6 ∧ dx7 ,

ω(−+)
3 = dx1 ∧ dx3 − dx2 ∧ dx4 + dx5 ∧ dx7 − dx6 ∧ dx8 ;

ω(−−)
1 = dx1 ∧ dx2 − dx3 ∧ dx4 + dx5 ∧ dx6 − dx7 ∧ dx8 ,

ω(−−)
2 = dx1 ∧ dx4 − dx2 ∧ dx3 + dx5 ∧ dx8 − dx6 ∧ dx7 ,

ω(−−)
3 = dx1 ∧ dx3 − dx2 ∧ dx4 + dx5 ∧ dx7 + dx6 ∧ dx8 .

We will correspondingly write

Ψ (s1s2) = 1

2

3∑

α=1

ω(s1s2)
α ∧ ω(s1s2)

α .

By simple (and rather boring) computations we get the explicit expressions for the
Ψ (s1s2):

Ψ (++) = 3
(
dx1 ∧ dx2 ∧ dx3 ∧ dx4 + dx5 ∧ dx6 ∧ dx7 ∧ dx8

)

+ dx1 ∧ dx2 ∧ dx5 ∧ dx6 + dx1 ∧ dx2 ∧ dx7 ∧ dx8

+ dx1 ∧ dx3 ∧ dx5 ∧ dx7 − dx1 ∧ dx3 ∧ dx6 ∧ dx8

+ dx1 ∧ dx4 ∧ dx5 ∧ dx8 + dx1 ∧ dx4 ∧ dx6 ∧ dx7

+ dx2 ∧ dx3 ∧ dx5 ∧ dx8 + dx2 ∧ dx3 ∧ dx6 ∧ dx7

− dx2 ∧ dx4 ∧ dx5 ∧ dx7 + dx2 ∧ dx4 ∧ dx6 ∧ dx8

+ dx3 ∧ dx4 ∧ dx5 ∧ dx6 + dx3 ∧ dx4 ∧ dx7 ∧ dx8 ;
Ψ (+−) = 3

(
dx1 ∧ dx2 ∧ dx3 ∧ dx4 − dx5 ∧ dx6 ∧ dx7 ∧ dx8

)

+ dx1 ∧ dx2 ∧ dx5 ∧ dx6 − dx1 ∧ dx2 ∧ dx7 ∧ dx8

+ dx1 ∧ dx3 ∧ dx5 ∧ dx7 + dx1 ∧ dx3 ∧ dx6 ∧ dx8

+ dx1 ∧ dx4 ∧ dx5 ∧ dx8 − dx1 ∧ dx4 ∧ dx6 ∧ dx7

+ dx2 ∧ dx3 ∧ dx5 ∧ dx8 − dx2 ∧ dx3 ∧ dx6 ∧ dx7

− dx2 ∧ dx4 ∧ dx5 ∧ dx7 − dx2 ∧ dx4 ∧ dx6 ∧ dx8

+ dx3 ∧ dx4 ∧ dx5 ∧ dx6 − dx3 ∧ dx4 ∧ dx7 ∧ dx8 ;
Ψ (−+) = − 3

(
dx1 ∧ dx2 ∧ dx3 ∧ dx4 − dx5 ∧ dx6 ∧ dx7 ∧ dx8

)

+ dx1 ∧ dx2 ∧ dx5 ∧ dx6 + dx1 ∧ dx2 ∧ dx7 ∧ dx8

+ dx1 ∧ dx3 ∧ dx5 ∧ dx7 − dx1 ∧ dx3 ∧ dx6 ∧ dx8

+ dx1 ∧ dx4 ∧ dx5 ∧ dx8 + dx1 ∧ dx4 ∧ dx6 ∧ dx7

− dx2 ∧ dx3 ∧ dx5 ∧ dx8 − dx2 ∧ dx3 ∧ dx6 ∧ dx7

+ dx2 ∧ dx4 ∧ dx5 ∧ dx7 − dx2 ∧ dx4 ∧ dx6 ∧ dx8

− dx3 ∧ dx4 ∧ dx5 ∧ dx6 − dx3 ∧ dx4 ∧ dx7 ∧ dx8 ;
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Ψ (−−) = − 3
(
dx1 ∧ dx2 ∧ dx3 ∧ dx4 + dx5 ∧ dx6 ∧ dx7 ∧ dx8

)

+ dx1 ∧ dx2 ∧ dx5 ∧ dx6 − dx1 ∧ dx2 ∧ dx7 ∧ dx8

+ dx1 ∧ dx3 ∧ dx5 ∧ dx7 + dx1 ∧ dx3 ∧ dx6 ∧ dx8

+ dx1 ∧ dx4 ∧ dx5 ∧ dx8 − dx1 ∧ dx4 ∧ dx6 ∧ dx7

− dx2 ∧ dx3 ∧ dx5 ∧ dx8 + dx2 ∧ dx3 ∧ dx6 ∧ dx7

+ dx2 ∧ dx4 ∧ dx5 ∧ dx7 + dx2 ∧ dx4 ∧ dx6 ∧ dx8

− dx3 ∧ dx4 ∧ dx5 ∧ dx6 + dx3 ∧ dx4 ∧ dx7 ∧ dx8 .

The net message to be extracted from these fully explicit formulas is that (at
difference with possible, but over-optimistic, expectations) already for n = 2, and
hence a fortiori for general n > 1, there is no simple relation—that is, no relation
amounting just to an overall sign switch—between the hyperkahler forms ofmutually
dual hyperkahler structures.

This also provide evidence (albeit not a formal proof, see below for that) for the
following statement:

Lemma 2.8 Two hyperkahler structures in Euclidean R4n, generating the same
splitting of R4n = R4 ⊕ ... ⊕R4 into R4 invariant subspaces, have the same hyper-
kahler form if and only if they are equivalent.

Proof As we have seen above, any hyperkahler structure in (R4n, δ) can be reduced
to a standard one, i.e. to one which is the direct sum of positively or negatively
oriented one in each of the R4 components.

The statement can be (and was, see above) explicitly checked for n = 1. In the
case n > 1 the only possibility to have non-equivalent structures sharing the same
hyperkahler form is through sign compensations, which was ruled out by our explicit
computation for n = 2. In more formal terms if two hyperkahler structures J1 and
J2 in R4n (with n ≥ 2) share the same hyperkahler form, i.e. (with obvious notation)
Ψ1 = Ψ2 = Ψ , we can just consider the restriction of Jk and Ψk to a R4 subspace,
invariant under Jk . We have seen above that the restrictions of Ψk will coincide if
and only if the restrictions of the Jk are equivalent. Thus if Ψ1 = Ψ2, and hence
their restrictions also coincide for any choice of the R4 subspace, the J1 and J2 are
equivalent in any R4 subspace, and hence for the full R4n space. �

2.7 Hyperkahler and Canonical Maps

It is well known that in the standard Hamiltonian case, Hamiltonian vector fields
generate a one-parameter (local) group of symplectic, i.e. canonical, transformations
[10, 12, 109]; if the vector field is complete, we have a global group.

We will generalize this result (in this case, with substantial differences) to the
hyperhamiltonian case.3 It will actually turn out that there are two generalization of

3The discussion of this Section will follow our paper [68].
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the notion of canonical transformations to the hyperhamiltonian framework; these
will be called canonical and hyperkahler maps. In the next Chap.3 we will discuss
in detail canonical maps, while the study of hyperkahler ones is postponed to the
subsequent Chap.4.

We start by recalling the relevant notions and results in the standard Hamiltonian
case.

2.7.1 Symplectic and Canonical Maps in Standard
Hamiltonian Dynamics

Let (M,ω) be a symplectic manifold (of dimension 2n); we say that a map φ : M →
M is symplectic if it preserves the symplectic form ω, i.e. if

φ∗(ω) = ω . (2.38)

An equivalent characterization is also quite common (we refer e.g. to Sect. 44
of [10] for detail). As well known, by Darboux theorem [10] one can introduce
local coordinates (pa, qa) (for a = 1, ..., n) in a neighborhood U ⊂ M , such that
ω = dpa ∧dqa . Then, one considers local manifolds of minimal dimension on which
ω is non-degenerate; these are two-dimensional and are spanned by qa and pa (with
same a). They are known as Darboux submanifolds and denoted as Ua ; these also
correspond to leaves of the Abelian distribution generated by the Hamiltonian vector
fields associated with canonical coordinates.

Let us consider a given point in U and the manifolds Ua through this. Denote by
ιa the embedding ιa : Ua ↪→ U ⊆ M ; then the restriction ι∗aω of the symplectic
form to Ua provides a volume form Ωa = dpa ∧ dqa (no sum on a) on Ua . Then,
for any two-chain A in U and with πa A the projection of A to Ua ,

∫

A
ω =

∫

A

n∑

a=1

dpa ∧ dqa =
n∑

a=1

∫

A
Ωa =

n∑

a=1

area[πa A] ;

thus preservation of ω is equivalent to preservation of the sum of oriented areas of
projection of any A to Darboux submanifolds. That is, the map φ is canonical if and
only if

n∑

a=1

area[πa A] =
n∑

a=1

area[πa(φA)] .

It should be noted that if we start from a manifold equipped with a Riemannian
metric, passing toDarboux coordinateswill in general not preserve the representation
of the metric tensor in coordinates, i.e. not preserve the (matrix gi j representing the)
metric. Thus this construction is general not viable if one requires preservation of
the metric, as in the Kahler case.

http://dx.doi.org/10.1007/978-3-319-54358-1_3
http://dx.doi.org/10.1007/978-3-319-54358-1_4
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In the case of a Kahler manifold, the symplectic form ω corresponds to a complex
structure J through the Kahler relation (1.14). This satisfies J 2 = −I , and provides
a splitting of T0M (at any point m0 ∈ M) into two-dimensional invariant subspaces;
the volume form Ω defined in M induces volume forms Ωa in each of these, and
ω = ∑

Ωa . Thus again canonical transformations can be characterized as those
satisfying4

n∑

a=1

Ωa =
n∑

a=1

φ∗(Ωa) . (2.39)

Remark 2.9 Note this construction does not make use of Darboux coordinates or
submanifolds, but only of the splitting of TM induced by the action of the complex
structure; moreover, we only consider volume forms. �

2.7.2 Hyperkahler Maps

Let us now pass to consider hyperhamiltonian dynamics. We will first focus our
attention on maps which preserve the Q-structure; as we have seen just above this
amounts to mapping a hyperkahler structure into an equivalent one. We will thus use
the name hyperkahler for such maps (we will also use the name Q-map).

Definition 2.6 Let (M, g; J) be a hyperkahler manifold. We say that the orthogonal
map φ : M → M is hyperkahler—or aQ-map—if it maps the hyperkahler structure
into an equivalent one, i.e. if φ∗ : S → S. It is strongly hyperkahler if it leaves the
three complex structures Jα invariant, φ∗(Jα) = Jα for α = 1, 2, 3.

These also have, of course, a symplectic counterpart:

Definition 2.6’ Let (M, g;ω1,ω2,ω3) be a hypersymplectic manifold. We say that
the orthogonal map φ : M → M is hypersymplectic if it maps the hypersymplectic
structure into an equivalent one, i.e. if φ∗ : S → S. It is strongly hypersymplectic if it
leaves the hypersymplectic structures invariant, i.e. if φ∗(ωα) = ωα for α = 1, 2, 3.

It is easily seen that a map is hyperkahler if and only if it is hypersymplectic
(recall that such maps are required to be orthogonal, i.e. to preserve g).

The two definitions above should be seen as the generalization (from the point of
view of complex and symplectic structures respectively) to the hyperkahler frame-
work of the familiar condition of preservation of the symplectic form, relevant in
Symplectic Geometry and Hamiltonian Mechanics [10, 12, 30, 79, 82, 109].

Remark 2.10 In the standard Hamiltonian dynamics framework, one also considers
the condition to preserve the sum of the oriented areas of projections to the Darboux
submanifolds. In the hyperkahler context, the generalizationof this conditionpresents

4The reader is referred to Arnold [10] (see in particular Sect. 41.E there) for a discussion of the
interrelations between orthogonal, symplectic and unitary transformations.

http://dx.doi.org/10.1007/978-3-319-54358-1_1
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an obvious problem: that is, now there is no analogue of Darboux theorem, and hence
no natural notion of Darboux manifolds. �
Remark 2.11 Note that a Hamiltonian flow (i.e. a hyperhamiltonian flow in which
only one of the three Hamiltonians is non-zero) will generate a one-parameter group
of hyperkahler maps, but these are not strongly hyperkahler. To see this, it suffices
to consider the case with (M, g) = (R4, δ) with standard hyperkahler structure
and H1 = |β|2/2, H2 = H3 = 0. Then ω1 is preserved, while ω2 and ω3 change
according to

ω̃2 = cos(θ)ω2 − sin(θ)ω3, ω̃3 = sin(θ)ω2 + cos(θ)ω3 ;

here θ is an angle, linearly depending on time. Thus the forms ω2,ω3 are rotated in
the plane they span in Q. In other words, the hypersymplectic structure (and hence
the hyperkahler one) is in this case mapped into an equivalent—but different—one.
This shows indeed we have hyperkahler, but not strongly hyperkahler, maps. �

2.7.3 Canonical Maps

The problem mentioned in Remark2.10 is not present for Euclidean hyperkahler
manifolds. In fact, in this case the complex structures (which, as mentioned above,
see Remark 1.6 in Chap. 1, can always be reduced at a single point—and globally
in the Euclidean case—to the standard forms seen in Sect. 1.4.3) provide a natural
splitting of TM = R4n into the sum of R4 subspaces,

R4n = R4
(1) ⊕ ... ⊕ R4

(n) .

We will denote by ιk the embedding of R4
(k) into R4n; thus ι∗k : Λ(R4n) → Λ(R4

(k))

will represent the restriction of forms in Λ(R4n) to the R4
(k) subspace.

Correspondingly, given a symplectic form ω we will write

ω(k) := ι∗k(ω) (k = 1, ..., n) . (2.40)

Note that ι∗k(ω ∧ ω) = ω(k) ∧ ω(k) (no sum on k); this is the volume form Ω(k) in the
R4

(k) subspace.

Remark 2.12 As just recalled, our construction and in particular the splitting of
Tm0M can be done at a single point m0 ∈ M for any manifold, not just Euclidean
ones. The obstacle to an extension of this construction to the general case is not
only that the splitting is ill-defined in any neighborhood, no matter how small, of the
reference point m0: in fact, even at the reference point the splitting is in general not
invariant under the holonomy group, and thus not intrinsic (see also the discussion
in Sects. 2.7.3 and 3.2.3, as well as Appendix A). This problem is of course absent
for the Euclidean case, where the holonomy group reduces to the identity.

http://dx.doi.org/10.1007/978-3-319-54358-1_1
http://dx.doi.org/10.1007/978-3-319-54358-1_1
http://dx.doi.org/10.1007/978-3-319-54358-1_3
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Note also that in this respect any holonomyaction in Sp(1) amounts tomapping the
hyperkahler structure into an equivalent one; and any action in Sp(1)× ...×Sp(1) ⊂
Sp(n), where each of the Sp(1) factors is acting in one of the irreducible hyperkahler
components of Tm0M � R4n = R4 ⊕ ... ⊕ R4 (the splitting being of course that
induced by the J structure, see above) does not alter the splitting of TM = R4n into
the sum of R4 subspaces, hence the Ω(a) four-forms.

In other words, our subsequent discussion will apply not only to the case where
the holonomy group reduces to the identity (as for Euclidean spaces) but will also
apply to the cases where the holonomy group lies in Sp(1) × ... × Sp(1).

This is maybe an appropriate point to also recall that, by the Ambrose-Singer the-
orem [5, 106, 112, 123, 135] (see Appendix A for a statement), the holonomy group
is generated by the curvature of the connection; thus if the Levi-Civita connection
on (M, g) has a curvature form lying in sp(1) × ... × sp(1), we are guaranteed to be
in the case where our discussion applies. �

We are now ready to give our definition of canonical maps for Euclidean hyper-
kahler manifolds, which can be given in two equivalent ways.

Definition 7a Let (M = R4n, g = δ; J) be an Euclidean hyperkahler manifold, with
ιk (k = 1, ..., n) as above, and S the corresponding symplectic Kahler sphere. We
say that the map φ : M → M is canonical for the hyperkahler structure (g = δ; J)
if, for any ω ∈ S and any k = 1, .., n, it satisfies

ι∗k [φ∗(ω ∧ ω)] = ι∗k(ω ∧ ω) ≡ ω(k) ∧ ω(k) . (2.41)

Definition 7b Let (M = R4n, g = δ; J) be an Euclidean hyperkahler manifold, with
ιk (k = 1, ..., n) as above, and let ωα be the symplectic structures associated to the
Ja . The map φ : M → M is canonical for the hyperkahler structure (g = δ; J) if
(with no sum on k), for any α = 1, 2, 3 and k = 1, ..., n,

ι∗k [φ∗(ωα ∧ ωα)] = ι∗k(ωα ∧ ωα) . (2.42)

A stronger notion of canonicity, which implies the previous one, can also be
defined (and was proposed in earlier works of ours [70]), but turns out to be too
restrictive and hence of little use (see Appendix A in [71]); this is given below for
the sake of completeness.

Definition 2.8 Let (M, g; J) be a hyperkahler manifold, and Q the corresponding
symplectic Kahler sphere. We say that the map φ : M → M is strongly canonical
if, for any ω ∈ S, it preserves the form ω ∧ ω, i.e. φ∗(ω ∧ ω) = ω ∧ ω. Equivalently,
if and only if (with no sum on a)

φ∗(ωα ∧ ωα) = ωα ∧ ωα α = 1, 2, 3 .

As mentioned above, it is immediate to check that if a map is strongly canonical
it is also canonical, while the converse is not true.
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Remark 2.13 It is clear that the two notions of canonical and hyperkahler maps (or
Q-maps) proposed here are not equivalent (at difference with the notion holding in
the symplectic or Kahler case which they generalize). In a way,Q-maps preserve the
Q-structure (that is, the hyperkahler form), while canonical ones only preserve the
restriction of this to any irreducible hyperkahler component; moreover, note that we
are not requiring canonical maps to be orthogonal.

Consider e.g. the standardω1 in (R4, δ) (see Sect. 1.4.3): under themap x1 → λx1,
x2 → λx2, x3 → λ−1x3, x4 → λ−1x4, the form ω1 is not preserved (note g is not
preserved as well) nor mapped to a different form in S, but ω1 ∧ ω1 is invariant (the
forms ω2 and ω3 are instead invariant themselves, and a fortiori we get invariance
of ω2 ∧ ω2 and of ω3 ∧ ω3). More generally, a canonical map could even mix the
positively and negatively oriented structures. �
Remark 2.14 Our Definition implies that canonical vector fields preserve the vol-
ume forms Ω(k) = (1/2)(ω(k) ∧ ω(k)) (no sum on k) in the four dimensional R4

(k)

subspaces.5 �
Remark 2.15 A hyperkahler map transform the triple of the ωα into an equivalent
one, and hence preserves the hyperkahler four-form 	 = (1/2)(ω ∧ ω). Obviously
preservation of the form ω∧ω implies preservation of its restriction to any subspace,
and we immediately have that hyperkahler maps are also canonical. The converse
is not true, as shown by the simple explicit example in Remark2.13 above. Note
also that the definition of canonical transformation does not require to preserve the
metric g; canonical maps which are not orthogonal are definitely not Q-maps (the
map considered in Remark2.13 is indeed an example of this case). �

The relation between hyperhamiltonian dynamics and hyperkahler or canonical
transformations will be discussed in detail in the following two Chapters.

Weanticipate thatwehave apartial generalizationof the familiar results holding in
the Hamiltonian case, where any Hamiltonian vector field generates a one-parameter
(local) group of canonical transformations, and any such group admits a Hamiltonian
vector field as generator.

In fact, in the hyperhamiltonian case we will obtain that any hyperhamiltonian
vector field generates a one-parameter (local) groupof canonical transformations, and
that any such group admits a Dirac vector field (rather than a hyperhamiltonian one)
as generator. Moreover—as already stressed—in the hyperkahler case hyperkahler
and canonical transformations (in the sense of the definitions above) are not the same.

Remark 2.17 Finally, we note that Ψ ∧ ...∧Ψ (with n factors) is proportional to the
volume form Ω; thus preservation of Ψ implies, once again, preservation of Ω (the
converse is in general not true).

We will also see that in Euclidean R4 with standard hyperkahler structure, any
divergence-free vector field is a Dirac field. As in this case Ψ is just the volume form
in R4, obviously Dirac fields preserve Ψ . �

5And hence also the volume form Ω = Ω(1) ∧ ... ∧ Ω(n) in R4n .

http://dx.doi.org/10.1007/978-3-319-54358-1_1
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