
Preface

Both the real-variable theory of function spaces and the boundedness of operators
are always one of the core contents of harmonic analysis, while the Lebesgue spaces
are the basic function spaces. However, due to the need for more inclusive classes
of function spaces than the Lp.Rn/ families from applications, Orlicz spaces were
introduced by Birnbaum-Orlicz in [13] and Orlicz in [154], which is widely used
in various branches of analysis. As the Orlicz spaces, Musielak-Orlicz spaces are
also defined via the growth functions. Compared with the growth functions of
Orlicz spaces, the growth functions of Musielak-Orlicz spaces may vary in both the
spatial variable and the growth variable. Thus, by choosing special growth functions,
Musielak-Orlicz spaces may have subtler and finer structures, which play a key role
in solving the endpoint or the sharp problems of analysis.

The real-variable theory of Hardy spaces on the n-dimensional Euclidean space
R

n was initiated by Stein and Weiss [178] and systematically developed by
Fefferman and Stein in a seminal paper [58]. Since the Hardy space Hp.Rn/ with
p 2 .0; 1� is, especially when studying the boundedness of operators, a suitable
substitute of the Lebesgue space Lp.Rn/, it plays an important role in various fields
of analysis and partial differential equations.

Moreover, Musielak-Orlicz Hardy spaces are also suitable substitutes of
Musielak-Orlicz spaces in dealing with many problems of analysis; see, for
example, [106, 107, 199]. It is worth noticing that some special Musielak-Orlicz
Hardy spaces appear naturally in the study of the products of functions in BMO.Rn/

and H1.Rn/ and the endpoint estimates for the div-curl lemma and the commutators
of Calderón-Zygmund operators with BMO.Rn/ functions.

Recall that a famous result of Charles Fefferman and Elias M. Stein (see [58])
states that BMO.Rn/, the class of functions of bounded mean oscillation introduced
by Fritz John and Louis Nirenberg in 1961 (see [109]), is indeed the dual of the real
Hardy space H1.Rn/ studied by Elias M. Stein and Guido Weiss in 1960 (see [178]).
However, this duality is not like that the dual space of Lp.Rn/ with p 2 .1;1/

is Lq.Rn/ with q 2 .1;1/ and 1=q C 1=p D 1. More precisely, the pointwise
product fg of a function f 2 BMO.Rn/ and a function g 2 H1.Rn/ is not locally
integrable in general. So, a natural question is what we can say about the product
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fg. This question has firstly been considered by Aline Bonami, Tadeusz Iwaniec,
Peter Jones, and Michel Zinsmeister in 2007 (see [15]). Therein, they showed that,
although the product fg is, in general, not in L1.Rn/, however, it can be viewed as
a Schwartz distribution f � g and can be written as a sum of an integrable function
and a Schwartz distribution in the weighted Orlicz-Hardy space H�

w.R
n/ associated

with the Orlicz function

�.t/ WD t

log.e C t/
; 8 t 2 .0;1/;

and the Muckenhoupt weight

w.x/ D 1

log.e C jxj/ ; 8 x 2 R
nI

see [15] for the details. Another motivation for investigating the distribution f � g
comes from dealing with the following operator:

L.f / WD f log jf j; f 2 H1.Rn/;

and a result of Elias M. Stein (see [175]) states that, if f 2 H1.Rn/ and f � 0 in
an open ball B, then f log f 2 L1loc.B/. For every f 2 H1.Rn/, Tadeusz Iwaniec and
Anne Verde [101] showed that f log jf j is a Schwartz distribution.

Also, there are several natural reasons for investigating the distribution f � g.
First, in PDEs we find various nonlinear differential expressions identified by the
theory of compensated compactness; see the seminal work of François Murat [147]
and Luc Tartar [188] and the subsequent developments [53, 54, 89]. New and
unexpected phenomena concerning higher integrability of the Jacobian determinants
and other null Lagrangians have been discovered [71, 96, 97, 102, 144] and used in
the geometrical function theory [8, 95, 103], calculus of variations [98, 182], and
some areas of applied mathematics [143, 146, 231]. Recently a viable theory of the
existence and the improved regularity for solutions of PDEs, where the uniform
ellipticity is lost, has been built out of the distributional div-curl products and
null Lagrangians [89, 99]. Second, these investigations bring us to new classes of
functions, distributions, and measures [100], just to mention the grand Lp-spaces
[79, 97, 170]. Subtler and clever ideas of the convergence in these spaces have
been adopted from probability and measure theory, biting convergence for instance
[11, 12, 22, 231]. Recent investigations of so-called very weak solutions of nonlinear
PDEs [79, 98] rely on these new classes of functions. Thirdly, it seems likely that
these methods will shed some new light on harmonic analysis with more practical
applications.

Recently, Aline Bonami, Sandrine Grellier, and Luong Dang Ky [16] gave an
answer for a question posted by Aline Bonami, Tadeusz Iwaniec, Peter Jones, and
Michel Zinsmeister [15] by showing that there exist continuous bilinear operators
that allow to split the product f � g of a function f 2 BMO.Rn/ and a function
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g 2 H1.Rn/ into an L1.Rn/ part and a part in H�
w.R

n/. Therein, they also showed
that H�

w.R
n/ can be replaced by a Hardy space of Musielak-Orlicz type Hlog.Rn/

associated with the Musielak-Orlicz function

'.x; t/ D t

log.e C t/C log.e C jxj/ ; 8 x 2 R
n; 8 t 2 .0;1/: (�)

Moreover, in some sense, Hlog.Rn/ is the smallest space and could not be replaced
by a smaller space. Indeed, in the setting of holomorphic functions on the upper
half-plane, it has been established very recently that the pointwise product fg of a
holomorphic function f 2 BMOA.CC/ and a holomorphic function g 2 H1

a.CC/ is
in the Musielak-Orlicz Hardy space Hlog

a .CC/ and, conversely, every holomorphic
function in Hlog

a .CC/ can be written as such a product; see [14] for the details.
Observe that the logarithmic terms of ' in .�/ make the corresponding Musielak-
Orlicz Hardy-type space Hlog.Rn/ have subtler and finer structure, compared with
other function spaces (e.g., H�

w.R
n/), which are just the advantage of this space in

solving the aforementioned product problems. Motivated by the study of the product
of functions in BMO.Rn/ and H1.Rn/ in many contexts, the theory of Musielak-
Orlicz Hardy spaces has been introduced, studied, and developed widely in recent
years.

The main purpose of this book is to give a detailed and complete survey of the
recent progress related to the real-variable theory and its applications of Musielak-
Orlicz-type function spaces, which may lay the foundation for further applications
of these function spaces.

To be precise, the whole book consists of eleven chapters. In Chap. 1, we recall
the definition of the growth function and Musielak-Orlicz Hardy spaces H'.Rn/,
which generalize the Orlicz-Hardy spaces of Svante Janson [106] and the weighted
Hardy spaces of Jose García-Cuerva [69] and Jan-Olov Strömberg and Alberto
Torchinsky [181]. Here, ' W R

n � Œ0;1/ ! Œ0;1/ is a function such that '.x; �/ is
an Orlicz function and '.�; t/ is a Muckenhoupt A1 weight. A Schwartz distribution
f belongs to H'.Rn/ if and only if its non-tangential grand maximal function f � is
such that

x 7! '.x; jf �.x/j/

is integrable. We then establish their atomic decomposition. The class of pointwise
multipliers for BMO.Rn/ characterized by Nakai and Yabuta can be seen as the dual
of L1.Rn/ C Hlog.Rn/, where Hlog.Rn/ denotes the Musielak-Orlicz Hardy space
related to the Musielak-Orlicz function ' in .�/. Furthermore, under an additional
assumption on ', we prove that, if T is a sublinear operator and maps all atoms into
uniformly bounded elements of a quasi-Banach space B, then T can uniquely be
extended to a bounded sublinear operator from H'.Rn/ to B.

Chapters 2 through 4 are devoted to establishing some new real-variable char-
acterizations of H'.Rn/ in terms of the vertical or the non-tangential maximal
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functions or the Littlewood-Paley functions or the molecular decomposition. We
also characterize H'.Rn/ via all the first-order Riesz transforms when i.'/

q.'/ >
n�1

n
and via all the Riesz transforms with the order not bigger than m 2 N when
i.'/
q.'/ >

n�1
nCm�1 . Moreover, we also establish the Riesz transform characterizations of

H'.Rn/ by means of the higher-order Riesz transforms defined via the homogenous
harmonic polynomials, respectively, via the odd order Riesz transforms.

In Chap. 5, we recall the Musielak-Orlicz Campanato space L';q;s.Rn/, and, as
an application, we prove that some of them is the dual space of the Musielak-
Orlicz Hardy space H'.Rn/. We also establish a John-Nirenberg inequality for
functions in L';1;s.Rn/, and, as an application, we also obtain several equivalent
characterizations of L';q;s.Rn/, which, in return, further induce the '-Carleson
measure characterization of L';1;s.Rn/.

In Chap. 6, we establish the s-order intrinsic square function characterizations of
H'.Rn/ in terms of the intrinsic Lusin area function S˛;s, the intrinsic g-function
g˛;s, and the intrinsic g�

�-function g�
�;˛;s, which are defined via Lip˛.R

n/ functions
supporting in the unit ball. A '-Carleson measure characterization of the Musielak-
Orlicz Campanato space L';1;s.Rn/ is also established via the intrinsic function.

Chapter 7 is about the weak Musielak-Orlicz Hardy space WH'.Rn/ which
is defined via the grand maximal function. We then obtain its vertical or its
non-tangential maximal function characterizations and other real-variable charac-
terizations of WH'.Rn/, respectively, in terms of the atom, the molecule, the Lusin
area function, the Littlewood-Paley g-function, or g�

�-function.
In Chap. 8, we recall a local Musielak-Orlicz Hardy space h'.Rn/ by the local

grand maximal function and a local BMO-type space bmo'.Rn/ which is further
proved to be the dual space of h'.Rn/. As an application, we prove that the class
of pointwise multipliers for the local BMO-type space bmo�.Rn/, characterized by
E. Nakai and K. Yabuta, is just the dual of

L1.Rn/C hˆ0.Rn/;

where � is an increasing function on .0;1/ satisfying some additional growth
conditions and ˆ0 a Musielak-Orlicz function induced by �. Characterizations of
h'.Rn/, including the atom, the local vertical, or the local non-tangential maximal
functions, are presented. Using the atomic characterization, we prove the existence
of finite atomic decompositions achieving the norm in some dense subspaces of
h'.Rn/, from which we further deduce some criterions for the boundedness on
h'.Rn/ of some sublinear operators. Finally, we show that the local Riesz transforms
and some pseudo-differential operators are bounded on h'.Rn/.

Let s 2 R, q 2 .0;1�, '1; '2 W R
n � Œ0;1/ ! Œ0;1/ be two Musielak-

Orlicz functions that, on the space variable, belong to the Muckenhoupt class
A1.Rn/ uniformly in the growth variable. In Chap. 9, we recall Musielak-Orlicz
Besov-type spaces PBs;�

'1;'2;q.R
n/ and Musielak-Orlicz Triebel-Lizorkin-type spaces

PFs;�
'1;'2;q.R

n/ and establish their '-transform characterizations in the sense of Frazier
and Jawerth. The embedding and lifting properties, characterizations via Peetre
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maximal functions, local means, Lusin area functions, and smooth atomic and
molecular decompositions of these spaces are also presented. As applications, the
boundedness on these spaces of Fourier multipliers with symbols satisfying some
generalized Hörmander condition is obtained. These spaces have wide generality,
which unify Musielak-Orlicz Hardy spaces, unweighted and weighted Besov(-type),
and Triebel-Lizorkin(-type) spaces as special cases.

As an application of Musielak-Orlicz Hardy spaces, in Chap. 10, we prove that
the product (in the distribution sense) of two functions, which are respectively
from BMO.Rn/ and H1.Rn/, may be written as a sum of two continuous bilinear
operators, one from H1.Rn/ � BMO.Rn/ into L1.Rn/ and the other one from
H1.Rn/� BMO.Rn/ into a special Musielak-Orlicz Hardy space Hlog.Rn/. The two
bilinear operators can be defined in terms of paraproducts. As a consequence, we
find an endpoint estimate involving the space Hlog.Rn/ for the div-curl lemma.

Let b be a BMO function. It is well known that the linear commutator Œb;T� of
a Calderón-Zygmund operator T does not, in general, map continuously H1.Rn/

into L1.Rn/. However, Carlos Pérez showed that, if H1.Rn/ is replaced by a
suitable atomic subspace H1

b.R
n/, then the commutator is continuous from H1

b.R
n/

into L1.Rn/. As another application of Musielak-Orlicz-type function spaces, in
Chap. 11, we find the largest subspace H1

b.R
n/ such that all commutators of

Calderón-Zygmund operators are continuous from H1
b.R

n/ into L1.Rn/. Some
equivalent characterizations of H1

b.R
n/ are also given. We also study the commu-

tators Œb;T� for T in a class K of sublinear operators containing almost all important
operators in harmonic analysis. When T is linear, we prove that there exists a bilinear
operatorR WD RT mapping continuously H1.Rn/�BMO.Rn/ into L1.Rn/ such that,
for all .f ; b/ 2 H1.Rn/ � BMO.Rn/, we have

Œb;T�.f / D R.f ; b/C T.S.f ; b//; (��)

where S is a bounded bilinear operator from H1.Rn/�BMO.Rn/ into L1.Rn/ which
is independent of T. In the particular case when T is a Calderón-Zygmund operator
satisfying T1 D 0 D T�1 and b 2 BMOlog.Rn/, a special case of Musielak-Orlicz
BMO spaces, we prove that the commutator Œb;T� maps continuously H1

b.R
n/ into

h1.Rn/. Also, if b is in BMO.Rn/ and T�1 D T�b D 0, then the commutator Œb;T�
maps continuously H1

b.R
n/ into H1.Rn/. When T is sublinear, we prove that there

exists a bounded subbilinear operator R WD RT W H1.Rn/ � BMO.Rn/ ! L1.Rn/

such that, for all .f ; b/ 2 H1.Rn/ � BMO.Rn/, we have

jT.S.f ; b//j � R.f ; b/ � jŒb;T�.f /j � R.f ; b/C jT.S.f ; b//j: (� � �)

The bilinear decomposition (��) and the subbilinear decomposition (���) allow
us to give a general overview of all known weak and strong L1 estimates.

Throughout the book, we always let N WD f1; 2; : : :g, ZC WD N [ f0g and

R
nC1
C WD f.x; t/ W x 2 R

n; t 2 .0; 1/g:
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We also use E0 WD .

n times
‚ …„ ƒ

0; : : : ; 0/ denote the origin of Rn. We use C to denote a positive
constant, independent of the main parameters involved, but whose value may differ
from line to line. Constants with subscripts, such as C(8.3.1), do not change in
different occurrences, where the sub-index (8.3.1) indicates that C(8.3.1) is the first
fixed positive constant in Sect. 8.3. We also use C.˛; ˇ; :::/ to denote a positive constant
depending on the indicated parameters ˛; ˇ; : : :. If f � Cg, we write f . g and, if
f . g . f , we then write f � g. For any set E 	 R

n, we use E{ to denote the set
R

n n E and �E its characteristic function. For any index q 2 Œ1;1�, we denote by q0
its conjugate index, namely, 1=q C 1=q0 D 1. The symbol bsc for any s 2 R denotes
the biggest integer not bigger than s.
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