Chapter 2
Maximal Function Characterizations
of Musielak-Orlicz Hardy Spaces

In this chapter, we establish some real-variable characterizations of H? (R") in terms
of the vertical or the non-tangential maximal functions, via first establishing a
Musielak-Orlicz Fefferman-Stein vector-valued inequality.

2.1 Musielak-Orlicz Fefferman-Stein Vector-Valued
Inequality

This section is devoted to establishing an interpolation theorem of operators, in
the spirit of the Marcinkiewicz interpolation theorem, associated with a growth
function. In what follows, for any non-negative locally integrable function w on
R" and p € (0, 00), the weighted Lebesgue space L (R") is defined to be the space
of all measurable functions f such that

1/p
£ 1l 22, ey := {/Rn |f () ]Pw(x) dx} < 00.

Theorem 2.1.1 Let p;, p2 € (0,00), p1 < p2 and ¢ be a Musielak-Orlicz function
with uniformly lower type p,,; and uniformly upper type p;'. If0O<pi <p, < p;ﬂ' <
p2 < oo and T is a sublinear operator defined on Li;1(~,1)(Rn) + L';z(.’l)(R”) satisfying
that, fori € {1,2}, all a € (0,00) and t € (0, 00),

o(x e R": [T(HW)| > a}.1) < Copa™ /}; VP nd @D

where C3.1) is a positive constant independent of f, t and . Then T is bounded
on LY(R") and, moreover, there exists a positive constant C such that, for all
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Proof First observe that, for all ¢ € (0, 00),
/ | f()|Pe(x,t)dx < oo if and only if / | f@)Pe(x, 1) dx < oo.
Rr Rn

Thus, the spaces LZ(,J) (R") and LZ(,’I)(R”) coincide as sets. Now we show that

YR C [L’;‘(.’l)(R”) + L’;Z(.’l)(R”)] .
For any given ¢ € (0, co), we decompose f € L¢(R") as

I = FXxern: [f=a + X wern: fwi<a = O + fo-

Then, by the fact that ¢ is of uniformly lower type p, and p; < p,,;, we conclude
that

e
) (y)|P1 ) dx < i t i| ¢ ( , |f(x)|) d
/;v @ e Ddx 3 /{xeRn: Lfol> ) £ [lf(x)l LA’ ’

<@ /ngo (x, If(tx)l) dx < o0,

namely, f ¢ Ly, (R"). Similarly, we have fi) € L | (R") and hence T(f) is
well defined.
By the fact that T is sublinear and Lemma 1.1.6(ii), we further know that

°
/ w(x,IT(f)(x)l)dx~/ / @(x, 1) dxdt
R" 0 I Jxerm T(f))|>1}

% 1
< / / o(x, 1) dxdt
0 I Jern: |T(HOW)>1/2}

|
0 I J@ern: (Do @)I>1/2}

=: I] + 12.
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On Iy, since T is of weak type (pi1,p1) (namely, (2.1) with i = 1), ¢ is of
uniformly lower type p,; and p; < p,, it follows that

S|
hS/ /|ﬂwwwuomm
0
P g (r, 1) dudr
/o it /{xeR" @1}

/00 / [f(0)] .
~ o(x, 1) / p1sP' T ds + 1 | dxdt
o P Joern: | p)sa '
o0 s ,t
~/ P 1/ / (pl(f_ )dtdxds
0 {xeRm: |f()|>s} Jo  £TP
o0
+/ / o(x, 1) dxdt
0 {xeR: |f(x)[>1}
o0 | _ s 1
sP / @(x,s)s e / _ _dtdxds
/0 xeR: | £(x)]>s} o 1Py

+ [ ptlsopar

Sl |
- /(; S KXER”C [f(x)]>s} Pl s)drds + /R” o0 [fD dx
~ [ ptlswhan

]Rn

Also, from the weak type (p2, p2) of T (namely, (2.1) with i = 2), the uniformly
upper type p;' property of ¢ and p;ﬂ' < p2, we deduce that

1
ps [ ()" [ o@rends
0
F@IP (1) drds
/0 t+p2 /{eR" <

/oo / ‘f(x)| 1
~ o(x, t)/ pasP? T ds dx dt
o M7 Jiern: |po1<n 0
o) 00 Xt
N/ s 1/ / Y00 g s
0 {(xeR": | f(x)]>5} e

o0 + o0 1
5/ sP2~ 1/ @(x,s)s e / 4 drdxds
0 xR | f(x)|>s} s ptpepy
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o |

~/ / ©(x, s) dxds
0 5 J{xeRn: |f(x)|>s}

~ /1; 0 (x| F)]) .

Thus, T is bounded on L¥ (R"), which completes the proof of Theorem 2.1.1. O

Let g(¢) be as in (1.13). As a simple corollary of Theorem 2.1.1, together with
the fact that, for any p € (g(¢), 00) when g(¢) € (1,00) or when g(¢) = 1 and
@ ¢ Aj(R"), or for any p € [1,00) when g(¢) = 1 and ¢ € A (R"), there exists a
positive constant C(, ) such that, for all f € Li;(,’r) (R™") and ¢t € (0, 00),

Pl R IMFO] > a)) = Cpo™ [ 170 ds

we immediately obtain the following boundedness of M on L¢(R"), the details
being omitted.

Corollary 2.1.2 Let ¢ be a Musielak-Orlicz function with uniformly lower type p,;
and uniformly upper type p;' satisfying q(¢) < p, = p;' < 00, where q(¢) is as in
(1.13). Then the Hardy-Littlewood maximal function M is bounded on L? (R") and,
moreover, there exists a positive constant C such that, for all f € L?(R"),

/ o (e, MF()) dx < C / o (e, LF () di.
Rn Rn

The space L? (£",R") is defined to be the set of all { fj};cz satisfying

1/r
S| errmn.
J

equipped with the (quasi-)norm

1/r
Kl mny = || DA
J LY@
We have the following vector-valued interpolation theorem of Musielak-Orlicz
type.

Theorem 2.1.3 Let p1, p> and ¢ be as in Theorem 2.1.1 and r € [1,00]. Assume
that T is a sublinear operator defined on Li;l(,!l)(R”) + L’;z(.’l)(R”) satisfying that, for
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i€{l,2}andall {f;}; € L"

(p(,’l)(ﬁ’, R"), a € (0,00) and t € (0, 00),

1
r

o JxeR: [ D ITHWI | >ap.t

J

Pi
r

=ca [ |S1gr| et )
J

where C; is a positive constant independent of {fj};, t and a. Then there exists a
positive constant C such that, for all { fj}; € L? (£",R"),

1/r 1/r
[o|x Ciruper w=c [ plx Tigor | | as

Proof For all {fj}; € LY (£",R") and x € R", let

1/r

fi) when Z | i) #0,
J

[, LGV

nj(x) 1=

and n;(x) := 0 otherwise. Then [Zj |n,~(x)|’]1/’ = 1 for all x € R". Consider the
operator

1/r
Ag) = | Y ITGm)l" | .
J

where g € L’;‘(.’l)(R”) + L’;Z(.’l)(R”). Then, for all g, g» € Li;1(~,1)(Rn) + Li;z(,ql)(R”)

and x € R", by the sublinear property of 7 and the Minkowski inequality, we know
that
1/r
Algi +8)(®) = | D IT((g1 + g)n) )"

J
1/r
> IT(@in) @) + |T(gam) )]

J

IA
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1/r 1/r
< | Y@@ |+ | D IT(m) (0]
J J

= A(g1)(x) + A(g2) (x).

Thus, A is sublinear. Moreover, by (2.2), we further conclude that, for all i € {1, 2},
a € (0,00),t€ (0,00)and g € LZ‘(.’I)(R”) + LZZ(.J)(R”),
1/r
pxeR": [A@M|>ah.) =g | 1xeR": | D [T | >ap.t
J

pilr

soc""'/R D lem@| | e n)dx
j

<o / g P (r. 1) dx.
RV!

which implies that A satisfies (2.1). Thus, if let g := [Zz |11/, from Theo-
rem 2.1.1, we deduce that ‘

1/r
Lo|x L@ || = | vt la@@has

s [ ol as

1/r

<[ olx Siger | | o

which completes the proof of Theorem 2.1.3. O

By using Theorem 2.1.3 and [7, Theorem 3.1(a)], we immediately obtain the
following Musielak-Orlicz Fefferman-Stein vector-valued inequality. We point out
that, to apply Theorem 2.1.3, we need r € (1, co], the details being omitted.

Theorem 2.1.4 Let r € (1,00], ¢ be a Musielak-Orlicz function with uniformly
lower type p, and upper type p;', g € (1,00) and ¢ € A;(R"). If q(p) <
P, = p;' < 00, then there exists a positive constant C such that, for all {fj}jcz, €
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L? (€7, R"),

1/r 1/r
/ano x4 Y [MBH®] dng/ano x| D@l dx.

jez jez

2.2 Maximal Function Characterizations of H? (R")

In this section, we establish some maximal function characterizations of H? (R").
First, we recall the notions of the vertical and the non-tangential maximal functions.

Definition 2.2.1 Let € S(R") and

Y(x)dx = 1. (2.3)
Rll

Letf € S'(R"). The vertical maximal function ¥ (f) of f associated to v is defined
by setting, for all x € R",

VI = sup [y xf(x)] 2.4

t€(0,00)

and the non-tangential maximal function Y3 (f) of f associated to v is defined by
setting, for all x € R”,

V() = sup | *f(y)]. 2.5

[x—yl<t

Obviously, for all x € R", we have

YINW = vg(NE) S W), (2.6)

where the implicit equivalent positive constants are independent of f and x.

In order to establish the vertical or the non-tangential maximal function charac-
terizations of H?(R"), we first establish some inequalities in the norm of L?(R")
involving the maximal functions ¥ (f), ¥ (f) and f*.

Theorem 2.2.2 Let ¢ be a growth function as in Definition 1.1.4 and  as in

Definition 2.2.1. Then there exists a positive constant C, depending only on ¥, ¢
and n, such that, for all f € S’'(R"),

13 D o @y = CIVED oo (2.7)
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and
”f* ”LV’(]R”) E C H W-T- (f) ||L¢'(]R”) . (28)

Proof Letf € S'(R") satisfy ¥ (f) € L?(R"). We first show (2.7). Indeed, for any
€ € (0, 1), N € N sufficiently large and x € R”, let

N
M@= s 1l ( ] ) aebd™.

[x—y|<t< l
Obviously, for all x € R”",

lim My y(H) =Yg ().

e—>01T, N—>o0

We first claim that, for all A € (0, 00), there exists a positive constant Cqy, n, . y)»
depending only on N, n, ¢ and v, such that

/n % (x, w’g’;(f)(X)) dx < Cw.n.g.y) /Rn @ (x, Iﬂ+({)(x)) dx.
2.9)

To prove this claim, for all x € R", let

N
M= s o9 v o) (™,

! 1
[x—yl<r<

From the proof of [74, (6.4.22)], we deduce that, for any p € (0, 00), ¢ € (0, 1) and
N € N, there exists a positive constant C(y, ,, ¢, y) such that, for all x € R”,

15, w0 = Covngon (M ([M5.x0] ) 0} (2.10)

where M denotes the Hardy-Littlewood maximal function as in (1.7).
Now, let

Eey = {re R MG (N0 < GM;, v (N}

where Cj is a sufficiently large constant whose size is determined later. For all
(x, 1) € R%F! let

op(x, 1) 1= @(x, 1'7).
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By the definition of i(¢), we know that there exists py € (0, i(¢)) such that, for any
x € R, g(x, -) is of lower type po. It is easy to see that i(¢,) = ’([‘f) and, for any
x € R", g,(x,-) is of lower type ”°. Thus, by taking p sufficiently small, we obtain

q(¢p) < i(gp), which, together with (2.10), Corollary 2.1.2 and the lower type py
property of ¢(x, -), implies that there exists a positive constant C(,) satisfying that,
for any A € (0, co),

ven(H)
v, e,N
PG T
Ly V(D)
< Ciy) (Co) /(EE.N)E @ (Jﬁ A ) dx
1\?” MM, N(DF)(x)
< CW,n e ) (Co) /(E&N)E ©p (x, ‘”’A';V ) dx

1 Po M* . ]
< C.np.v) (CO) /”go (x, v ’:(f)(x)) dx. @2.11)

By taking Cy in (2.11) sufficiently large so that C(y, . ¢, y)( clo P <

v.en(NE) v.en(HE)
v, e,N < X v, e,N »
/n(p(x, Jy )dx_Z/EE.N(p(, ]y )d

2.12)

;, we know that

Moreover, from [74, (6.4.27)], it follows that, for all r < i(¢) and x € E, y,

M e n (D) = Covompoy M [WED]) @}

which, together with (2.12) and an argument similar to that used in the estimate
(2.11), implies that (2.9) holds true.

Now, we finish the proof of Theorem 2.2.2 by using the above claim. Observe
that, for x € R”,

—N

N
s 1m0l (, ], ) = P,

N
6|x|) |,\:—y\<t<él

. 2
Min Nz

It is easy to see, for each N and x, F, y(x) is increasing to 27V Yy (f)x) as e —
07, which, combined with (2.9) and the Lebesgue monotone convergence theorem,
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implies that

VN0 *
/,,q) (X, v ) X ) dxf C(N,n,(p,w) /an) (X, I//+({)(X)) dx.

Here and hereafter, ¢ — 01 means ¢ > 0 and € — 0.

In particular, ¥ (f) € L?(R") implies that ¥5 (f) € L(R"). This, together with
arepetition of the above argument used in the proof of the estimate (2.9) withe := 0
and N := oo in My, . (f) and /\;lf;qe’N(f), implies that

/”90(% 1/fv(){ x)) dx = Conpo) /R,,‘”(x’ I/er()J:)(x)) dr.

This finishes the proof of (2.7).
Now we show (2.8).
For A € (0,00),f € §'(R") and x € R", let

A
vt = s Arewon(, ")

yeRn 1€(0,00)

Then, from the estimate in [74, p. 51], it follows that, for all A € (0, 00), f € S'(R")
and x € R",

@ £ Y7 (NE). (2.13)
On the other hand, choose A € (n/p, o) and let r := n/A. It follows, from the

definition of ¥ (f), that, if z € B(y, 1), then | f x ¥, (y)| < ¥ (f)(2). Since B(y, 1) C
B(x, |x — y| + 1), it follows that

r< 1 £ r |'x_y|+t ! k r
vl = g [ wio@res (U71) masene.

By this, we conclude that, for all A € (n/p,c0), r = n/A,f € S'(R") and x € R”,
W7 (N@I < M5 (NN,

which, together with the same argument as that used in (2.11), further implies that
17 (Dl S 195 ()o@

Thus, by this and (2.13), we have || f*|lze@®) < ¥ (f)llze®e), which completes
the proof of (2.8) and hence Theorem 2.2.2. ]
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From Theorem 2.2.2, we immediately deduce the following vertical and the non-
tangential maximal function characterizations of H? (R"), the details being omitted.

Theorem 2.2.3 Let ¢ be a growth function as in Definition 1.1.4, and 3 and Y,
as in Definition 2.2.1. Then the followings are mutually equivalent:

(i) f € H'(R");
(i) f € S'(R") and ¥ (f) € L# (R");
(iii) f € S'(R") and ¥ (f) € L?(R™).

Moreover, for all f € H?(R"),

I e @y ~ 19 () lle@n ~ ||¥ (f) HL«;(RH),

where the implicit equivalent positive constants are independent of f.

2.3 Notes and Further Results

2.3.1 The main results of this chapter are from [126]. It worth to point out that there
is a gap in the proof of the maximal function characterizations of H*(R") in [126,
Theorem 3.6], and we now fix it in Theorem 2.2.2.

2.3.2 LetA be an expansive dilation. Li et al. [122] introduced the anisotropic Hardy
space of Musielak-Orlicz type, HX (R"), via the grand maximal function. They then
obtained some real-variable characterizations of Hf (R™) by means of the radial,
the non-tangential, or the tangential maximal functions. Finally, they characterized
these spaces by anisotropic atomic decompositions. They also obtained the finite
atomic decomposition characterization of HX(R”) and, as an application, they
proved that, for a given admissible triplet (¢, q,s), if T is a sublinear operator
and maps all (¢, g, s)-atoms with ¢ < oo (or all continuous (¢, g, s)-atoms with
g = oo) into uniformly bounded elements of some quasi-Banach space B, then T
can uniquely be extended to a bounded sublinear operator from Hf (R™) to B.

233 Let A := —(V —ia) - (V —ia) + V be a magnetic Schrodinger operator
on Lz(]R”), n > 2, where a := (aj,az,...,a,) € leoc(R”,R”) and 0 < V €

LllOc (R"). Da. Yang and Do. Yang [216] established the equivalent characterizations
of the Musielak-Orlicz-Hardy space HX (R"), defined by the Lusin area function

associated with {e"zA},e(o,oo), by means of the Lusin area function associated
with {e"‘/A}te(o,oo), the radial maximal functions or the non-tangential maxi-

mal functions associated with {e"zA}te(o,oo) and {e_“/A}te(o,oo), respectively. The
boundedness of the Riesz transforms L;A~"/2, k € {1,2,...,n}, from HX R™) to
L?(R"™) was also presented, where L; is the closure of aik — ia;in L*(R").
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2.3.4 Letn > 3, Q be a strongly Lipschitz domain of R” and L, := —A + V a
Schrodinger operator on L?(§2) with the Dirichlet boundary condition, where A
is the Laplace operator and the non-negative potential V belongs to the reverse
Holder class RH,, (R") for some go > n/2. Assume the uniformly critical lower
type index i(¢) of the growth function satisfies i(¢) € (,}4.1], where § =
min{ g, 2 — q”o} and o € (0, 1] denotes the critical regularity index of the heat
kernels of the Laplace operator A on 2. Chang et al. [36] showed that the heat
kernels of L satisfy the Gaussian upper bound estimates and the Holder continuity.
They then introduced the geometrical Musielak-Orlicz-Hardy space Hy 1., (£2) via
Hy rpn , (R"), the Hardy space associated with Lg: := —A+V on R”", and established
its several equivalent characterizations, respectively, by means of the non-tangential
or the vertical maximal functions or the Lusin area functions associated with L.
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