
Chapter 2
Maximal Function Characterizations
of Musielak-Orlicz Hardy Spaces

In this chapter, we establish some real-variable characterizations of H'.Rn/ in terms
of the vertical or the non-tangential maximal functions, via first establishing a
Musielak-Orlicz Fefferman-Stein vector-valued inequality.

2.1 Musielak-Orlicz Fefferman-Stein Vector-Valued
Inequality

This section is devoted to establishing an interpolation theorem of operators, in
the spirit of the Marcinkiewicz interpolation theorem, associated with a growth
function. In what follows, for any non-negative locally integrable function w on
R

n and p 2 .0;1/, the weighted Lebesgue space Lp
w.R

n/ is defined to be the space
of all measurable functions f such that

k f kL
p
w.Rn/ WD

�Z

Rn
j f .x/jpw.x/ dx

� 1=p

< 1:

Theorem 2.1.1 Let p1; p2 2 .0;1/, p1 < p2 and ' be a Musielak-Orlicz function
with uniformly lower type p�

' and uniformly upper type pC
' . If 0 < p1 < p�

' � pC
' <

p2 < 1 and T is a sublinear operator defined on Lp1
'.�;1/.Rn/C Lp2

'.�;1/.Rn/ satisfying
that, for i 2 f1; 2g, all ˛ 2 .0;1/ and t 2 .0;1/,

'.fx 2 R
n W jT. f /.x/j > ˛g; t/ � C.2:1:i/ ˛

�pi

Z

Rn
j f .x/jpi'.x; t/ dx; (2.1)

where C.2:1:i/ is a positive constant independent of f , t and ˛. Then T is bounded
on L'.Rn/ and, moreover, there exists a positive constant C such that, for all
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60 2 Maximal Function Characterizations of Musielak-Orlicz Hardy Spaces

f 2 L'.Rn/,

Z

Rn
'.x; jT. f /.x/j/ dx � C

Z

Rn
'.x; j f .x/j/ dx:

Proof First observe that, for all t 2 .0;1/,

Z

Rn
j f .x/jp'.x; t/ dx < 1 if and only if

Z

Rn
j f .x/jp'.x; 1/ dx < 1:

Thus, the spaces Lp
'.�;t/.Rn/ and Lp

'.�;1/.Rn/ coincide as sets. Now we show that

L'.Rn/ 	
h

Lp1
'.�;1/.R

n/C Lp2
'.�;1/.R

n/
i

:

For any given t 2 .0;1/, we decompose f 2 L'.Rn/ as

f D f�fx2RnW j f .x/j>tg C f�fx2RnW j f .x/j�tg DW f .t/ C f.t/:

Then, by the fact that ' is of uniformly lower type p�
' and p1 < p�

' , we conclude
that

Z

Rn
j f .t/.x/jp1'.x; 1/ dx .

Z

fx2RnW j f .x/j>tg
j f .x/jp1

�

t

j f .x/j
�p�

'

'

�

x;
j f .x/j

t

�

dx

. tp1

Z

Rn
'

�

x;
j f .x/j

t

�

dx < 1;

namely, f .t/ 2 Lp1
'.�;1/.Rn/. Similarly, we have f.t/ 2 Lp2

'.�;1/.Rn/ and hence T. f / is
well defined.

By the fact that T is sublinear and Lemma 1.1.6(ii), we further know that

Z

Rn
'.x; jT. f /.x/j/ dx �

Z 1

0

1

t

Z

fx2RnW jT. f /.x/j>tg
'.x; t/ dx dt

.
Z 1

0

1

t

Z

fx2RnW jT. f /.t/.x/j>t=2g
'.x; t/ dx dt

C
Z 1

0

1

t

Z

fx2RnW jT. f /.t/.x/j>t=2g
� � �

DW I1 C I2:
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On I1, since T is of weak type . p1; p1/ (namely, (2.1) with i D 1), ' is of
uniformly lower type p�

' and p1 < p�
' , it follows that

I1 .
Z 1

0

1

t

� t

2

��p1
Z

Rn
j f .t/.x/jp1'.x; t/ dx dt

�
Z 1

0

1

t1Cp1

Z

fx2RnW j f .x/j>tg
j f .x/jp1'.x; t/ dx dt

�
Z 1

0

1

t1Cp1

Z

fx2RnW j f .x/j>tg
'.x; t/

"
Z j f .x/j

t
p1s

p1�1 ds C tp1

#

dx dt

�
Z 1

0

sp1�1
Z

fx2RnW j f .x/j>sg

Z s

0

'.x; t/

t1Cp1
dt dx ds

C
Z 1

0

1

t

Z

fx2RnW j f .x/j>tg
'.x; t/ dx dt

.
Z 1

0

sp1�1
Z

fx2RnW j f .x/j>sg
'.x; s/s�p�

'

Z s

0

1

t1Cp1�p�

'
dt dx ds

C
Z

Rn
'.x; j f .x/j/ dx

�
Z 1

0

1

s

Z

fx2RnW j f .x/j>sg
'.x; s/ dx ds C

Z

Rn
'.x; j f .x/j/ dx

�
Z

Rn
'.x; j f .x/j/ dx:

Also, from the weak type . p2; p2/ of T (namely, (2.1) with i D 2), the uniformly
upper type pC

' property of ' and pC
' < p2, we deduce that

I2 .
Z 1

0

1

t

� t

2

��p2
Z

Rn
j f.t/.x/jp2'.x; t/ dx dt

�
Z 1

0

1

t1Cp2

Z

fx2RnW j f .x/j�tg
j f .x/jp2'.x; t/ dx dt

�
Z 1

0

1

t1Cp2

Z

fx2RnW j f .x/j�tg
'.x; t/

Z j f .x/j

0

p2s
p2�1 ds dx dt

�
Z 1

0

sp2�1
Z

fx2RnW j f .x/j>sg

Z 1

s

'.x; t/

t1Cp2
dt dx ds

.
Z 1

0

sp2�1
Z

fx2RnW j f .x/j>sg
'.x; s/s�pC

'

Z 1

s

1

t1Cp2�pC

'

dt dx ds
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�
Z 1

0

1

s

Z

fx2RnW j f .x/j>sg
'.x; s/ dx ds

�
Z

Rn
'.x; j f .x/j/ dx:

Thus, T is bounded on L'.Rn/, which completes the proof of Theorem 2.1.1. ut
Let q.'/ be as in (1.13). As a simple corollary of Theorem 2.1.1, together with

the fact that, for any p 2 .q.'/;1/ when q.'/ 2 .1;1/ or when q.'/ D 1 and
' … A1.R

n/, or for any p 2 Œ1;1/ when q.'/ D 1 and ' 2 A1.R
n/, there exists a

positive constant C. p;'/ such that, for all f 2 Lp
'.�;t/.Rn/ and t 2 .0;1/,

'.fx 2 R
n W jMf .x/j > ˛g; t/ � C. p;'/˛

�p
Z

Rn
j f .x/jp'.x; t/ dx;

we immediately obtain the following boundedness of M on L'.Rn/, the details
being omitted.

Corollary 2.1.2 Let ' be a Musielak-Orlicz function with uniformly lower type p�
'

and uniformly upper type pC
' satisfying q.'/ < p�

' � pC
' < 1, where q.'/ is as in

(1.13). Then the Hardy-Littlewood maximal function M is bounded on L'.Rn/ and,
moreover, there exists a positive constant C such that, for all f 2 L'.Rn/,

Z

Rn
'.x;Mf .x// dx � C

Z

Rn
'.x; j f .x/j/ dx:

The space L'.`r;Rn/ is defined to be the set of all f fjgj2Z satisfying

2

4

X

j

j fjjr

3

5

1=r

2 L'.Rn/;

equipped with the (quasi-)norm

kf fjgjkL' .`r;Rn/ WD

�

�

�

�

�

�

�

2

4

X

j

j fjjr

3

5

1=r
�

�

�

�

�

�

�

L' .Rn/

:

We have the following vector-valued interpolation theorem of Musielak-Orlicz
type.

Theorem 2.1.3 Let p1; p2 and ' be as in Theorem 2.1.1 and r 2 Œ1;1�. Assume
that T is a sublinear operator defined on Lp1

'.�;1/.Rn/C Lp2
'.�;1/.Rn/ satisfying that, for
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i 2 f1; 2g and all f fjgj 2 Lpi
'.�;1/.`r;Rn/, ˛ 2 .0;1/ and t 2 .0;1/,

'

0

B

@

8

ˆ
<

ˆ
:

x 2 R
n W

2

4

X

j

jT. fj/.x/jr

3

5

1
r

> ˛

9

>
=

>
;

; t

1

C

A

� Ci˛
�pi

Z

Rn

2

4

X

j

j fj.x/jr

3

5

pi
r

'.x; t/ dx; (2.2)

where Ci is a positive constant independent of f fjgj, t and ˛. Then there exists a
positive constant C such that, for all f fjgj 2 L'.`r;Rn/,

Z

Rn
'

0

B

@x;

2

4

X

j

jT. fj/.x/jr

3

5

1=r
1

C

A dx � C
Z

Rn
'

0

B

@x;

2

4

X

j

j fj.x/jr

3

5

1=r
1

C

A dx:

Proof For all f fjgj 2 L'.`r;Rn/ and x 2 R
n, let

nj.x/ WD fj.x/

Œ
P

j j fj.x/jr�1=r
when

2

4

X

j

j fj.x/jr

3

5

1=r

¤ 0;

and nj.x/ WD 0 otherwise. Then Œ
P

j jnj.x/jr�1=r D 1 for all x 2 R
n. Consider the

operator

A.g/ WD
2

4

X

j

jT.gnj/jr

3

5

1=r

;

where g 2 Lp1
'.�;1/.Rn/C Lp2

'.�;1/.Rn/. Then, for all g1; g2 2 Lp1
'.�;1/.Rn/C Lp2

'.�;1/.Rn/

and x 2 R
n, by the sublinear property of T and the Minkowski inequality, we know

that

A.g1 C g2/.x/ D
2

4

X

j

jT..g1 C g2/nj/.x/jr

3

5

1=r

�
8

<

:

X

j

	jT.g1nj/.x/j C jT.g2nj/.x/j

r

9

=

;

1=r
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�
2

4

X

j

jT.g1nj/.x/jr

3

5

1=r

C
2

4

X

j

jT.g2nj/.x/jr

3

5

1=r

D A.g1/.x/C A.g2/.x/:

Thus, A is sublinear. Moreover, by (2.2), we further conclude that, for all i 2 f1; 2g,
˛ 2 .0;1/, t 2 .0;1/ and g 2 Lp1

'.�;1/.Rn/C Lp2
'.�;1/.Rn/,

'.fx 2 R
n W jA.g/.x/j > ˛g; t/ D '

0

B

@

8

ˆ
<

ˆ
:

x 2 R
n W

2

4

X

j

jT.gnj/.x/jr

3

5

1=r

> ˛

9

>
=

>
;

; t

1

C

A

. ˛�pi

Z

Rn

2

4

X

j

jgnj.x/jr

3

5

pi=r

'.x; t/ dx

. ˛�pi

Z

Rn
jg.x/jpi'.x; t/ dx;

which implies that A satisfies (2.1). Thus, if let g WD Œ
P

j j fjjr�1=r , from Theo-
rem 2.1.1, we deduce that

Z

Rn
'

0

B

@x;

2

4

X

j

jT. fj/.x/jr

3

5

1=r
1

C

A dx D
Z

Rn
'.x; jA.g/.x/j/ dx

.
Z

Rn
'.x; jg.x/j/ dx

.
Z

Rn
'

0

B

@x;

2

4

X

j

j fj.x/jr

3

5

1=r
1

C

A dx;

which completes the proof of Theorem 2.1.3. ut
By using Theorem 2.1.3 and [7, Theorem 3.1(a)], we immediately obtain the

following Musielak-Orlicz Fefferman-Stein vector-valued inequality. We point out
that, to apply Theorem 2.1.3, we need r 2 .1;1�, the details being omitted.

Theorem 2.1.4 Let r 2 .1;1�, ' be a Musielak-Orlicz function with uniformly
lower type p�

' and upper type pC
' , q 2 .1;1/ and ' 2 Aq.R

n/. If q.'/ <
p�
' � pC

' < 1, then there exists a positive constant C such that, for all f fjgj2Z 2
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L'.`r;Rn/,

Z

Rn
'

0

B

@x;

8

<

:

X

j2Z

	

M. fj/.x/

r

9

=

;

1=r
1

C

A dx � C
Z

Rn
'

0

B

@x;

2

4

X

j2Z
j fj.x/jr

3

5

1=r
1

C

A dx:

2.2 Maximal Function Characterizations of H'.Rn/

In this section, we establish some maximal function characterizations of H'.Rn/.
First, we recall the notions of the vertical and the non-tangential maximal functions.

Definition 2.2.1 Let  2 S.Rn/ and

Z

Rn
 .x/ dx D 1: (2.3)

Let f 2 S 0.Rn/. The vertical maximal function �C. f / of f associated to is defined
by setting, for all x 2 R

n,

 �C. f /.x/ WD sup
t2.0;1/

j t � f .x/j (2.4)

and the non-tangential maximal function  �
O. f / of f associated to  is defined by

setting, for all x 2 R
n,

 �
O. f /.x/ WD sup

jx�yj<t
j t � f .y/j: (2.5)

Obviously, for all x 2 R
n, we have

 �C. f /.x/ �  �
O. f /.x/ . f �.x/; (2.6)

where the implicit equivalent positive constants are independent of f and x.
In order to establish the vertical or the non-tangential maximal function charac-

terizations of H'.Rn/, we first establish some inequalities in the norm of L'.Rn/

involving the maximal functions  �
O. f /;  �C. f / and f �.

Theorem 2.2.2 Let ' be a growth function as in Definition 1.1.4 and  as in
Definition 2.2.1. Then there exists a positive constant C, depending only on  ; '
and n, such that, for all f 2 S 0.Rn/,

�

� �
O. f /

�

�

L' .Rn/
� C

�

� �C. f /
�

�

L' .Rn/
(2.7)
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and

k f �kL' .Rn/ � C
�

� �C. f /
�

�

L' .Rn/
: (2.8)

Proof Let f 2 S 0.Rn/ satisfy  �C. f / 2 L'.Rn/. We first show (2.7). Indeed, for any
� 2 .0; 1/, N 2 N sufficiently large and x 2 R

n, let

M�
 ; �;N. f /.x/ WD sup

jx�yj<t< 1
�

j. f �  t/ .y/j
�

t

t C �

�N

.1C �jyj/�N :

Obviously, for all x 2 R
n,

lim
�!0C;N!1

M�
 ; �;N. f /.x/ D  �

O. f /.x/:

We first claim that, for all � 2 .0; 1/, there exists a positive constant C.N; n; ';  /,
depending only on N, n, ' and  , such that

Z

Rn
'

�

x;
M�

 ; �;N. f /.x/

�

�

dx � C.N; n; ';  /

Z

Rn
'

�

x;
 �C. f /.x/

�

�

dx:

(2.9)

To prove this claim, for all x 2 R
n, let

QM�
 ; �;N. f /.x/ WD sup

jx�yj<t< 1
�

t
ˇ

ˇry . f �  t/ .y/
ˇ

ˇ

�

t

t C �

�N

.1C �jyj/�N :

From the proof of [74, (6.4.22)], we deduce that, for any p 2 .0; 1/, � 2 .0; 1/ and
N 2 N, there exists a positive constant C.N; n; ';  / such that, for all x 2 R

n,

QM�
 ; �;N. f /.x/ � C.N; n; ';  /

n

M
�h

M�
 ; �;N. f /

ip�

.x/
o1=p

; (2.10)

where M denotes the Hardy-Littlewood maximal function as in (1.7).
Now, let

E�;N WD
n

x 2 R
n W QM�

 ; �;N. f /.x/ � C0M�
 ; �;N. f /.x/

o

;

where C0 is a sufficiently large constant whose size is determined later. For all
.x; t/ 2 R

nC1
C , let

'p.x; t/ WD '.x; t1=p/:
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By the definition of i.'/, we know that there exists p0 2 .0; i.'// such that, for any
x 2 R

n, '.x; �/ is of lower type p0. It is easy to see that i.'p/ D i.'/
p and, for any

x 2 R
n, 'p.x; �/ is of lower type p0

p . Thus, by taking p sufficiently small, we obtain
q.'p/ < i.'p/, which, together with (2.10), Corollary 2.1.2 and the lower type p0
property of '.x; �/, implies that there exists a positive constant C.'/ satisfying that,
for any � 2 .0; 1/,

Z

.E�;N/{
'

�

x;
M�

 ; �;N. f /.x/

�

�

dx

� C.'/

�

1

C0

�p0 Z

.E�;N/{
'

 

x;
QM�
 ; �;N. f /.x/

�

!

dx

� C.N; n; ';  /

�

1

C0

�p0 Z

.E�;N/{
'p

�

x;
M.ŒM�

 ; �;N. f /�p/.x/

�p

�

dx

� C.N; n; ';  /

�

1

C0

�p0 Z

Rn
'

�

x;
M�

 ; �;N. f /.x/

�

�

dx: (2.11)

By taking C0 in (2.11) sufficiently large so that C.N; n; ';  /. 1C0 /
p0 < 1

2
, we know that

Z

Rn
'

�

x;
M�

 ; �;N. f /.x/

�

�

dx � 2

Z

E�;N

'

�

x;
M�

 ; �;N. f /.x/

�

�

dx:

(2.12)

Moreover, from [74, (6.4.27)], it follows that, for all r < i.'/ and x 2 E�;N ,

M�
 ; �;N. f /.x/ � C.N; n; ';  /

˚

M

	

 �C. f /

r�
.x/
�1=r

;

which, together with (2.12) and an argument similar to that used in the estimate
(2.11), implies that (2.9) holds true.

Now, we finish the proof of Theorem 2.2.2 by using the above claim. Observe
that, for x 2 R

n,

M�
 ; �;N. f /.x/ � 2�N

.1C �jxj/N sup
jx�yj<t< 1

�

j. f �  t/ .y/j
�

t

t C �

�N

DW F�;N.x/:

It is easy to see, for each N and x, F�;N.x/ is increasing to 2�N �
O. f /.x/ as � !

0C, which, combined with (2.9) and the Lebesgue monotone convergence theorem,
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implies that

Z

Rn
'

�

x;
 �

O. f /.x/

�

�

dx � C.N; n; ';  /

Z

Rn
'

�

x;
 �C. f /.x/

�

�

dx:

Here and hereafter, � ! 0C means � > 0 and � ! 0.
In particular, �C. f / 2 L'.Rn/ implies that  �

O. f / 2 L'.Rn/. This, together with
a repetition of the above argument used in the proof of the estimate (2.9) with � WD 0

and N WD 1 in M�
 ; �;N. f / and QM�

 ; �;N. f /, implies that

Z

Rn
'

�

x;
 �

O. f /.x/

�

�

dx � C.n; ';  /

Z

Rn
'

�

x;
 �C. f /.x/

�

�

dx:

This finishes the proof of (2.7).
Now we show (2.8).
For � 2 .0;1/, f 2 S 0.Rn/ and x 2 R

n, let

 �T . f /.x/ WD sup
y2Rn;t2.0;1/

j f �  t.y/j
�

t

jx � yj C t

��

:

Then, from the estimate in [74, p. 51], it follows that, for all � 2 .0;1/, f 2 S 0.Rn/

and x 2 R
n,

f �.x/ .  �T . f /.x/: (2.13)

On the other hand, choose � 2 .n=p;1/ and let r WD n=�. It follows, from the
definition of �

O. f /, that, if z 2 B.y; t/, then j f � t.y/j �  �
O. f /.z/: Since B.y; t/ 	

B.x; jx � yj C t/, it follows that

j f �  t.y/jr � 1

jB.y; t/j
Z

B.y;t/
Œ �

O. f /.z/�r dz .
� jx � yj C t

t

�n

M.Œ �
O. f /�r/.x/:

By this, we conclude that, for all � 2 .n=p;1/, r D n=�, f 2 S 0.Rn/ and x 2 R
n,

Œ �T . f /.x/�r . M.Œ �
O. f /�r/.x/;

which, together with the same argument as that used in (2.11), further implies that

k �T . f /kL' .Rn/ . k �
O. f /kL' .Rn/:

Thus, by this and (2.13), we have k f �kL' .Rn/ . k �
O. f /kL' .Rn/, which completes

the proof of (2.8) and hence Theorem 2.2.2. ut
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From Theorem 2.2.2, we immediately deduce the following vertical and the non-
tangential maximal function characterizations of H'.Rn/, the details being omitted.

Theorem 2.2.3 Let ' be a growth function as in Definition 1.1.4, and  �C and  �
O

as in Definition 2.2.1. Then the followings are mutually equivalent:

(i) f 2 H'.Rn/I
(ii) f 2 S 0.Rn/ and  �C. f / 2 L'.Rn/I

(iii) f 2 S 0.Rn/ and  �
O. f / 2 L'.Rn/:

Moreover, for all f 2 H'.Rn/,

k f kH'.Rn/ � k �C. f /kL' .Rn/ � �

� �
O. f /

�

�

L' .Rn/
;

where the implicit equivalent positive constants are independent of f .

2.3 Notes and Further Results

2.3.1 The main results of this chapter are from [126]. It worth to point out that there
is a gap in the proof of the maximal function characterizations of H'.Rn/ in [126,
Theorem 3.6], and we now fix it in Theorem 2.2.2.

2.3.2 Let A be an expansive dilation. Li et al. [122] introduced the anisotropic Hardy
space of Musielak-Orlicz type, H'

A.R
n/, via the grand maximal function. They then

obtained some real-variable characterizations of H'
A.R

n/ by means of the radial,
the non-tangential, or the tangential maximal functions. Finally, they characterized
these spaces by anisotropic atomic decompositions. They also obtained the finite
atomic decomposition characterization of H'

A.R
n/ and, as an application, they

proved that, for a given admissible triplet .'; q; s/, if T is a sublinear operator
and maps all .'; q; s/-atoms with q < 1 (or all continuous .'; q; s/-atoms with
q D 1) into uniformly bounded elements of some quasi-Banach space B, then T
can uniquely be extended to a bounded sublinear operator from H'

A.R
n/ to B.

2.3.3 Let A WD �.r � ia/ � .r � ia/ C V be a magnetic Schrödinger operator
on L2.Rn/, n � 2, where a WD .a1; a2; : : : ; an/ 2 L2loc.R

n;Rn/ and 0 � V 2
L1loc.R

n/. Da. Yang and Do. Yang [216] established the equivalent characterizations
of the Musielak-Orlicz-Hardy space H'

A.R
n/, defined by the Lusin area function

associated with fe�t2Agt2.0;1/, by means of the Lusin area function associated

with fe�t
p

Agt2.0;1/, the radial maximal functions or the non-tangential maxi-

mal functions associated with fe�t2Agt2.0;1/ and fe�t
p

Agt2.0;1/, respectively. The
boundedness of the Riesz transforms LkA�1=2, k 2 f1; 2; : : : ; ng, from H'

A.R
n/ to

L'.Rn/ was also presented, where Lk is the closure of @
@xk

� ial in L2.Rn/.
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2.3.4 Let n � 3, � be a strongly Lipschitz domain of Rn and L� WD �� C V a
Schrödinger operator on L2.�/ with the Dirichlet boundary condition, where �
is the Laplace operator and the non-negative potential V belongs to the reverse
Hölder class RHq0 .R

n/ for some q0 > n=2. Assume the uniformly critical lower
type index i.'/ of the growth function satisfies i.'/ 2 . n

nCı ; 1�, where ı WD
minf�0; 2 � n

q0
g and �0 2 .0; 1� denotes the critical regularity index of the heat

kernels of the Laplace operator � on �. Chang et al. [36] showed that the heat
kernels of L satisfy the Gaussian upper bound estimates and the Hölder continuity.
They then introduced the geometrical Musielak-Orlicz-Hardy space H';LRn ;r.�/ via
H';LRn ;r.R

n/, the Hardy space associated with LRn WD ��CV onRn, and established
its several equivalent characterizations, respectively, by means of the non-tangential
or the vertical maximal functions or the Lusin area functions associated with L.
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