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Abstract. Natural images captured in bad weather conditions often suf-
fer from poor visibility. Dehazing, the process of removing haze from a
single input image or multiple images, is a crucial task in image and video
processing, which is quite challenging because the number of freedoms is
lager than the number of observations. In this paper, we propose a novel
method to reduce the block artifacts and halos for single image dehazing,
which replaces the widely used soft matting and contextual regulariza-
tion. We first find some fixed points in a maximum filter and then apply a
Nearest-Neighbor (NN) regularization to recover a smooth transmission
map. Compared with the state-of-the-art single image dehazing methods,
the experimental results on some typical and challenged images demon-
strate that our method can produce a high-quality dehazed image and
recover the fine detail information and vivid color from the image haze
regions.

1 Introduction

Natural images captured in outdoor scenes are often suffered by bad weather
conditions such as air particles, water droplets, fog, haze, smoke, rain or snow. In
such cases, atmospheric phenomena such as haze and fog caused by atmospheric
absorption and scattering will greatly reduce the visibility and quality of the
images captured in the scenes. The light received by camera sensors from the
object in the scene is attenuated along the light propagating direction. The
arriving light is fused with the air-light [1] - the ambient light reflected into
the line of sight by air particles. Vividness, visibility and contrast of a natural
image captured in outdoor under these bad weather conditions are dramatically
degraded, which make it hard to recognize the objects existed in this image
farther away from the camera center. As shown in Fig. 1(a), the degraded image
loses color fidelity and contrast and the distant objects in the image are hard to
be distinguished. As stated in [2], the degradation is spatially variant because the
scattering depends on the distance between the camera and the objects existed
in the scene.

Restoring images captured in outdoor under the bad weather conditions has
caused great interesting in the past decade. Haze removal is quite needed in
c© Springer International Publishing AG 2017
C.-S. Chen et al. (Eds.): ACCV 2016 Workshops, Part I, LNCS 10116, pp. 18–33, 2017.
DOI: 10.1007/978-3-319-54407-6 2



Single Image Dehazing 19

(a) (b) (c)

Fig. 1. An illustration example for our proposed single image dehazing approach:
(a) The input hazy image; (b) Our recovered transmission map; (c) The dehazed image.
(Color figure online)

computer vision applications and commercial/computational photography. First,
removing haze can improve the visibility of the image and correct the color dis-
tortion caused by the air-light. In general, the haze-free image is more visual
friendly. Second, most computer vision algorithms, such as feature detection,
filtering and image analysis, usually assume that the input image is haze-free.
The performance of computer vision algorithms and advanced image editing
ones will be greatly degraded by the low contrast and visibility images. Last,
bad weather conditions will cause traffic accidents due to the poor visibility.
If the haze removing techniques can be efficiently utilized for the car naviga-
tion, the image visibility can be greatly improved and the traffic accidents are
possibly reduced to some extent. However, defogging or haze removal is a very
challenging because the amount of scattering depends on the unknown distances
of the camera and the scene points and the air-light is also unknown. Obvi-
ously, this is a quite ill-posed problem especially when the input is only a single
hazy image. Therefore, those early proposed methods for haze removal rely on
multiple images of the same scene and the additional depth information [3–5].
For example, in [3], the depth discontinuities in the scene and scene structure
were computed by using the changes in intensities of scene points under different
weather conditions. In [4,6], the polarization based methods were proposed to
remove image haze through two images taken with different degrees of polariza-
tion. Kopf et al. [5] developed a depth-based method to dehaze an image by using
the scene depth information, which are directly accessible in the geo-referenced
digital terrain or city models. Although all these methods can produce good
results, but the constrain on input limits the applications of these methods.
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Recently, removing haze from a single image attracted much attention and
made significant progresses due to its wide applications. A lot of single image
haze removal methods have been proposed based on the assumption or stronger
priors. Comparing haze-free images and haze ones, Tan [7] found that the haze-
free images have high contrast than the haze ones. Based on this observation, he
proposed an interesting single image haze removal method by maximizing the
local contrast of the restored image. This method can yield a visually compelling
results. However, the restored image often exists color shift, block artifacts and
significant halos because this method might not be physically valid. Fattal [8]
proposed to remove haze from a color image under the assumption that the
surface texture and the transmission are locally uncorrelated, which is used to
solve the air-light-albedo ambiguity. This method is physical sound and can
yield compelling results. However, it is time-consuming and cannot deal with
the grayscale images. In addition, it could fail to deal with dense-hazy images.
Fattal [9] proposed another method for single-image dehazing, which relies on
pixels of small patches in natural images, which often show a one-dimensional
distribution in the RGB color space. In this method, a local model was proposed
to explain the color-lines in the context of hazy scenes and recovering the scene
transmission by considering the lines’ offset from the origin. A new Markov
random field was described for yielding complete and regularized transmission.

He et al. [2] proposed a novel dark channel prior based dehazing method,
which is a basis of the dark-object subtraction methods [10]. The dark channel
prior means that in most local patches there exists often at least one color (RGB)
channel containing some pixels with very low intensities. With this prior, He et al.
estimated the thickness of haze locally from the dark-channel pixels found within
a local patch. This method is very simple, physically sound and can produce
impressive results even in images with heavy haze. However, it cannot deal with
the sky images quite well because the dark channel pixels are possibly unavail-
able in those bright image regions. In addition, it is time-consuming. Recently, a
lot of methods have been proposed to overcome the weakness of the Dark Chan-
nel Prior (DCP). For example, He et al. [11], Tarel and Hautiere [12] and Tarel
et al. [13] used “median of median filter” and guided filtering to replace soft mat-
ting. Carr and Hartley [14] combined the scene geometry and the dark channel
prior to estimate the transmission, and used the alpha-expansion optimization
technique to recover a smooth transmission map. Gibson and Nguyen [15] pro-
posed a new dark channel prior for removing haze from the image. Unlike the
traditional dark-channel prior that assumes a zero minimal value, the new prior
searches for the darkest pixel in each ellipsoid. Recently, Zhu et al. [16] proposed
a new, simple and powerful prior-color attenuation prior based on statistics of
natural images. A linear model for the scene depth of the fog image with the
color attenuation prior was created to solve the model parameters via supervised
learning. With the resulting depth map, the air-light can be easily recovered. Li
et al. [17] proposed to decompose the simplified dark channel of the hazy image
into a detail layer and a base layer based on edge-preserving decomposition. The
base layer was used to estimate the transmission map for restoring the haze-free
images.
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To effectively remove haze from a single image, some methods based on the
principle of image fusion have been proposed recently. Ancuti et al. [18,19] show
the effectiveness of the fusion-based method for removing haze from a single
input image. The fusion-based method proposed in [19] first pre-processed two
original hazy image inputs by applying a contrast enhancing and a white balance
procedure. Then it blended the resulting inputs by computing three measure-
ments (weight maps). Furthermore, it adopted a multiscale strategy to reduce
the artifacts. This method can produce good results similar to and even bet-
ter than complex state-of-the-art techniques. In contrast, Wang et al. [20] used
a multiscale depth fusion method to recover a haze-free image. A new tech-
nique was proposed to estimate the depth by considering the influence of noise.
They developed an inhomogeneous Laplacian-Markov random field with edge-
preserving and smooth constrains for multiscale depth fusion to estimate a depth
map and produce an improving contrast and vivid color result.

In this paper, we propose to replace the widely used soft matting [2] and con-
textual regularization [21] in estimating the transmission map for haze removal
by first finding some fixed points in a maximum filter and then applying a
Nearest-Neighbor (NN) regularization. Figure 1 shows an illustrative example
for our proposed dehazing method. Experimental results on some typical and
challenged images illustrate that our method can produce a high-quality dehazed
and vivid color image.

2 Background

2.1 Haze Imaging Model

In computer graphics and computer vision, the haze imaging model presented
in [1], which describes the formation of a hazy image, is widely used as following:

I(x) = J(x)t(x) + A(1 − t(x)), (1)

where x is a pixel location, I is the observed haze image, J is the haze free image,
I(x) and J(x) stand for the intensities of the point x in I and J, respectively, A
is the air light (or atmospheric light) of the haze image, and t is the transmission
coefficient, which describes the probability of the light reflecting from object is
not scattered and absorbed by air particles. Recovering a haze free image J from
the observed haze image I is equal to solve A and t from I.

As we can see, the longer light traveling before reaching a camera, the more
scattered and attenuated. Thus, we can express the transmission coefficient t as
follows:

t(x) = e−βd(x), (2)

where d(x) represents the distance between the camera and the scene point cor-
responding to x, and β represents the attenuation coefficient of the atmosphere
(often set to 1). So from Eq. (1), we find that the contribution of the air-light
term A is more important when the observed scene is far away from the camera.
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2.2 Nonlinear Filtering

Nonlinear filtering is often used to get a good bound transmission for each pixel.
There are two kinds of filters: pixel-wise and patch-based. Nishino et al. [22], and
Caraffa and Tarel [23] applied a pixel-wise nonlinear operation to recover a finer
estimation of the transmission map, and then imposed a Markov regularization
using the contextual constrain. The fine estimation prevents from the block
artifacts and halos of the patch-based filter, but more constraints are needed to
recover a high accurate transmission map. The white objects and the farther
objects make it hard to estimate the transmission map accurately. He et al. [2]
applies a patch-based filter to solve the white objects problem. While the patch-
based filter can solve the white object problem, both block artifacts and halos
incurred by the patch-based filter need to be further solved.

2.3 Fixed-Point Theorem

The fixed-point theorem [24] has been proposed for a long time. In mathematics,
a fixed-point theorem is a result saying that a function F will have at least one
fixed point (a point x for which F (x) = x), under some conditions on F that
can be stated in general terms. In this paper, we define the point x as a fixed
one if it satisfies the following equation:

F (x) = x. (3)

2.4 Non-local Principle

Non-local principle has attracted a lot of attention for its broad applications,
such as denoise [25] and matting [26,27]. As stated in [25], the nonlocal principle
is that for a given distorted image, the pixel can be restored by taking a weighted
sum of the pixels that have similar appearance, where the weights are given by
a kernel. In our proposed single image dehazing approach, we apply the similar
principle, but we make some modifications so as to better suit the regularization
problem. These modifications will be described in details in Sect. 3.4.

3 Our Approach

3.1 Atmospheric Light Estimation

There exist a lot of methods to estimate the atmospheric light, i.e., the parameter
A in Eq. (1). He et al. [2] proposed a method to estimate A based on the dark
channel prior. Kim et al. [28] also proposed an approach based on the quadtree
based subdivision, which may be more suitable for our application because the
method proposed by He et al. [2] is based on the dark channel prior, which
is not required in our proposed method. However, we still adopt He et al.’s
method because of its efficiency. We first compute the dark channel prior of a
hazy image. Second we pick up the top 0.1% of the dark channels. Third we
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find out the pixel with highest intensity as the atmospheric light. According
to Eq. (2), when the objects are far away from the camera, the depth is very
large and the transmission of the objects is close to 0. According to the haze
imaging model in Eq. (1), when the transmission is equal to 0, the observed
object intensity in the hazy image is equal to the atmospheric light, i.e.,

I(x) = J(x)t(x) + A(1 − t(x)) = A. (4)

This method also works well when the image doesn’t have pixels at infinite
distance because t in most haze-opaque regions is very small and the influence
of sunlight is so weak that can be ignored.

3.2 Lower Bound of Transmission

In order to get an initial transmission value of some pixel in an image, we rewrite
Eq. (1) as following:

J(x) =
I(x) − A(1 − t(x))

t(x)
. (5)

In the RGB color space, the intensities of the image pixel fall in range [0, 255].
In order to facilitate the calculation, we normlize the intensities into range [0, 1]
correspondingly. In this way, we get the following equation:

0 ≤ I(x) − A(1 − t(x))
t(x)

≤ 1, (6)

which can result in the following two equations:

t1(x) ≥ Ic(x) − Ac

1 − Ac
and t2(x) ≥ 1 − Ic(x)

Ac
, (7)

where the superscript ‘c’ represents one of the RGB channels. The minimum
transmission in the above two inequations are written as:

t̂1(x) =
Ic(x) − Ac

1 − Ac
and t̂2(x) = 1 − Ic(x)

Ac
. (8)

Thus, the lower bound of the transmission can be defined as:

tb(x) = max
(
t̂1(x), t̂2(x)

)
, (9)

which is a special case of the lower bound of the transmission used in [21] with
the parameters C0 = 0 and C1 = 255 as:

tb(x) = min
(

max
(

Ac − Ic(x)
Ac − C0

,
Ac − Ic(x)
Ac − C1

)
, 1

)
. (10)
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3.3 Fixed Points of Filtering

Nonlinear filtering is a popularly used operation to obtain the transmission map
from the chromaticity of a hazy image. In our approach, we use the maximum-
minimum filter as used in [21] to get a transmission as:

t̃(x) = min
y∈Ω(x)

max
z∈Ω(y)

t(z), (11)

where Ω(x) and Ω(y) represent local patches centered at the points x and y,
respectively.

Based on the dark channel prior proposed by He et al. [2], we can esti-
mate the transmission value of each pixel. Then, a rough transmission map can
be recovered via the maximum-minimum filtering. To recover a more accurate
transmission map, we first need to find the stable points whose transmission val-
ues are more accurate. The fixed-point theorem can be used to find such these
stable points. For a given pixel x in a hazy image, if we apply the maximum-
minimum filter on x with its lower bound transmission value tb(x), x is a fixed
point if the following condition is satisfied:

F (tb(x)) = tb(x), (12)

where the function F stands for the maximum-minimum filter. Figure 2 shows an
example of fixed points found with two different filter patch sizes, from which we
can observe that the use of a smaller patch size will generate more fixed points.

(a) (b) (c)

Fig. 2. An example of fixed points extracted from the input hazy image (a) with two
different filter patch sizes, 7 × 7 (b) and 17 × 17 (c).

3.4 Nearest-Neighbor Regularization

Figure 3 shows two hazy images with their corresponding transmission maps,
from which we can observe that the transmission map is very smooth except
abrupt depth jumps. As mentioned before, the dehazing problem is severely
under-constrained. Therefore, we need to introduce some assumptions on the
natural transmission map. As stated before, the non-local principle considers a
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Fig. 3. Hazy images in the left and their corresponding transmission maps in the right.

pixel as a liner combination of similar pixels in neighborhood. In the dehazing
context, we consider an assumption that similar pixels have same transmission
value. As stated in [9,21], our assumption is quite reasonable and widely used
in most dehazing methods.

To efficiently measure the similarity between two image pixels, we need to
consider the color similarity and spatial variation and smoothness. Given an
image point x, we define its feature vector for similarity measurement as follows:

f(x) = (R,G,B, λx, λy)�, (13)

where R, G and B represent the intensities of x in three RGB channels, respec-
tively, x and y are the spatial coordinates of x, and λ is balancing factor.

Although we use the same feature as in [27], but dehazing is different from
matting, so for we need to modify the non-local principle widely used for matting.

Fig. 4. The dehazing results with different values of λ: (a) the input hazy image;
(b) fixed points; (c)–(d) the estimated transmission map and the dehazed image with
λ = 1; (e)–(f) the estimated transmission map and the dehazed image with λ = 2;
(g)–(h) the estimated transmission map and the dehazed image with λ = 10.
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(a) (b) (c)

Fig. 5. The dehazed images with the use of the RGB (b) and HSV (c) color spaces
from the input hazy image (a). (Color figure online)

In this paper, we treat the transmission values of fixed points as accuracy and
reasonable, and we propose to recover the transmission values of the remaining
points by finding their nearest neighbours from the set of fixed points based
on the constructed k-d tree with the 5-dimensional feature vectors defined in
Eq. (13). Given the atmospheric light A and the recovered transmission, a haze
free image can be solved using the following equation:

J(x) =
I(x)) − A

t(x)
+ A. (14)

Figure 4 shows the dehazing results with different values of the balancing
factor λ, from which we can observe that the large value of λ will result in a
more smooth transmission map, which is quite consistent with our assumption.

The HSV color space can be alternate of the RGB color space for similarity
measurement. Figure 5 shows the dehazed images with the RGB and HSV color
spaces, respectively, from which we observe that some hazy image regions cannot
be clearly removed with the use of the HSV color space. By contrast, the RGB
color space will produce a better dehazed image. So, the RGB color space is used
in our method.

3.5 Our Dehazing Framework

The framework of our proposed single image dehazing method is summarized in
Algorithm 1.
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Algorithm 1. Our proposed single image dehazing framework.
Input: The hazy image.
Output: The haze free image.
1: Compute the atmospheric light A using Meng et al.’method;
2: Compute the lower bound of the transmission;
3: Find the fixed points with the maximum-minimum filter;
4: Recover the transmission map by the nearest neighbour (NN) regularization;
5: Recover the haze free image using the atmospheric light A and the recovered trans-

mission map.

4 Experimental Results

In order to evaluate the effectiveness of the proposed dehazing method, we tested
it on a lot of hazy images and compared it with some state-of-the-art meth-
ods [2,5,7–9,12,19]. In all examples presented in this section, we assume the
atmospheric light estimation is given by using the air-light vector A calculated
by [21] or selecting the densest hazy pixel. All the results of other methods come
from the Fattal’s homepage1.

4.1 Tests on Typical Examples

Figure 6 shows the dehazed result on an example image with inhomogeneous fog.
Figure 7 shows the dehazed results on three example images with homogeneous
fog. For these example images we used the patch size 17 × 17 and λ = 2. As
we can see from Figs. 6 and 7, we can observe that our dehazed images present
full details and vivid color information recovered from the fog or hazy images.
As stated in [21], the fog in the image of “Tiananmen” cannot be regarded
as homogeneous. This case often happens due to the large area of sky in the
image. For this hazy image, we use the atmospheric light A selected by manual,
the values were set as [0.7961, 0.7529, 0.6588] for the RGB channels, respectively.
We also draw the same conclusion with [21] that the transmission map represents
the density of the hazes or fogs in the captured image.

4.2 Visual Comparison

We also compared our method with several state-of-the-art methods. Figure 8
illustrates an example with the comparisons between our method and the other
two methods: He et al.’s [2] and Fattal’s [9]. For this example, we used the
parameters with A = [0.53, 0.53, 0.53], the patch size 40×40, and λ = 10. The A
value was used in the Fattal’s work [9]. From Fig. 8, we can see that our method
can restore the finer details and vivid color from the hazy regions.

Figure 9 shows the dehazed result using our method on a heavy hazy image
by comparison with the other two recent methods. From Fig. 9, we can observe

1 Available at http://www.cs.huji.ac.il/∼raananf/projects/dehaze cl/.

http://www.cs.huji.ac.il/~raananf/projects/dehaze_cl/
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Fig. 6. The dehazed result on the “Tiananmen” image using our method: (Left) the
input hazy image; (Middle) the recovered transmission map; (Right) the dehazed image.
(Color figure online)

Fig. 7. The dehazing results on three typical images: (Top) the input hazy images;
(Middle) the recovered transmission maps; (Bottom) the dehazed images. (Color figure
online)

that our result on this heavy hazy image is comparable in terms of visual quality
to those results in [19,29]. For this example, we used the parameters with A =
[0.63, 0.62, 0.62], the patch size 40 × 40, and λ = 10. As we can see from Fig. 9,
the Ancuti et al.’s method [19] and Choi et al.’s method [29] cannot remove the
haze completely. In contrast, our method can restore the detail information and
vivid color well.
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(a) the hazy image (b) He et al.’s (c) the Fattal’s (d) ours

Fig. 8. An illustrative comparison with the He et al.’s and the Fattal’s methods. (Color
figure online)

Input Ancuti et al.’s Choi et al.’s Ours

Fig. 9. An illustrative comparison with the Ancuti et al.’s and the Choi et al.’s
methods.

Figures 10 and 11 show the comparison of our method with the other six state-
of-the-art methods on “ny12” and “ny17” images, respectively, which are widely
used for testing the performance of the dehazing method. Tan’s method [7] can
greatly enhance the image visibility and recover the image details. However, the
colors in the restored images are often over enhanced. Since this method is not a
physical sound and the transmission may thus be underestimated. Tarel et al.’s
method [12] is a filtering based method. Its greatest advantage is real time while
its dehazed images are not quite visual pleased. The Fattal’s method [8] estimates
the transmission based on the sufficient color information. When the haze is
very heavy, the transmission may be wrongly estimated. He et al.’s method is
a statistics based method, it can produce a very good result. But it may be
fail in regions with many depth jumps. Ancuti et al.’s method is a fusion-based
method and can produce a visually pleasing result. For the “ny17” image, in
order to reduce the noise of the result image we restrict the transmission value
between 0.2 and 1, and our result can recover a high quality and rich details
from the hazy image. In order to equally compare the result, we used the value
of A reported in [9].

4.3 Quantitative Comparison

Based on the above results on the “ny12” and “ny17” images, we conducted a
quantitative comparison using the blind assessment of [30]. Hautière et al. [30]
computed the ratio between the gradients of the input image and the restored
one. This method is based on the concept of the visibility level, which is widely
used in lighting areas. Table 1 shows the quantitative comparisons on the “ny12”
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Fig. 10. Comparisons with the state-of-the-art methods on the “ny12” image.

Fig. 11. Comparisons with the state-of-the-art methods on the “ny17” image.

and “ny17” images, in which the indicator “e” represents the newly visible edges
ratio after restoration, the indicator “

∑
” represents the percentage of pixels

which are completely white or dark after restoration, and “r̄” represents the
mean ratio of the gradients at visible edges.

From Table 1, we can observe that all tested methods (including our method)
produce a small value of the indicator r̄, which represents the ratio of the pixels



Single Image Dehazing 31

Table 1. Quantitative comparison on the “ny12” and “ny17” images based on three
indicators, e,

∑
and r̄ used in [30].

Image Tan’s Fattal’s Kopf et al.’s He et al.’s

e
∑

r̄ e
∑

r̄ e
∑

r̄ e
∑

r̄

ny12 −0.14 0.02 2.34 −0.06 0.09 1.32 0.05 0.00 1.42 0.06 0.00 1.42

Tarrel et al.’s Ancuti et al.’s Choi et al.’s Ours

0.07 0.0 1.88 0.02 0.00 1.49 0.09 0.00 1.56 0.06 0.00 1.36

Image Tan’s Fattal’s Kopf et al.’s He et al.’s

ny17 −0.06 0.01 2.22 −0.12 0.02 1.56 0.01 0.01 1.62 0.01 0.00 1.65

Tarrel et al.’s Ancuti et al.’s Choi et al.’s Ours

−0.01 0.0 1.87 0.12 0.00 1.54 0.03 0.00 1.49 0.14 0.00 1.82

being completely white or dark. On the one hand, the indicator e shows that
most methods remove some of the visible edges, Only our method, He et al.’s [2]
and Ancuti et al.’s [19] are positive values of the indicator e for these two test
images. On the other hand, for the indicator

∑
, the measurement [30] yields

small values of the indicator
∑

for our results, which means our method doesn’t
have the problem of over-saturation. The values of our results are close to r̄ = 1,
which show that the local contrast was restored moderately, He et al.’s [2], Kopf
et al.’s [5] and Fattal’s [8] methods also have this feature. In contrast, Tarel et
al.’s [12] and Tan’s [7] methods increase the local contrast too strongly and as a
result these methods have a high values of the indicator r̄. In general the method
with low values of the indicator r̄ show less artifacts and spurious. To the best
of our knowledge, the blind assessment of [30] is the only method designed to
produce a quantitative explanation for defogging operation. The indicators can
give some explanations to the level of restoration and degradation, which can be
used to measure the performance of the dehazing method.

5 Conclusion

Haze removal is an important task in image and video editing and results in a
great challenge for computer vision. In this paper, we proposed a novel method to
reduce the block artifacts and halos for single image dehazing. First, we proposed
a simple method to estimate the transmission for some pixels based on the fixed-
point theorem. Then we introduced a new regularization method based on the
assumption that the transmission map varies smoothly. Experimental results on
some typical and challenged images illustrate that our method can produce good
results comparative to and even better than the more complex state-of-the-art
methods.
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