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Abstract. To the best of increasing robotic vision in 3D conceptual
for recognizing this living world, this paper proposed a 3D recognition
system by combining the local feature and global verification technique.
To approach this, we modified the state-of-art methods and organized it
as a robust hybrid flow. Another contribution to this paper, we release
the finest parameters to the Kinect sensor as well as the dataset. In
the proposed framework, we expect the pre-process can deal with range
filtering, noise reduction, and point cloud refinement. After this, the
captured point cloud is more reliable and better to describe the object
surface. The Second part is focused on recognition and pose estimation.
We here refer two robust methods, SHOT descriptor and Hough Voting,
one for the local feature generation and the other contributes to the
object alignment. Finally, through the ICP to refine the pose matrix, we
remove the false positive while verifying the good instance. Moreover, we
design a keypoint selective mechanism after the hypothesis verification
stage back into local conception.

1 Introduction

The human population growth is rising, and a huge increase in demand on many
products for daily use or consumer electronics is probably inevitable. To face this
problem, the industry needs to produce a large amount of standardized products.
Mass production uses assembly line to make copies of product quickly, which
involves foods, medicine, 3C electronics, apparels and vehicles, etc. Usually a
standard factory contains a modern automobile assembly line, but the machinery
mass production line is very expensive to ensure its products to be successful
output the profit. Due to the high cost of machinery line or partially completed
products not well fitting to the robotic arm, some factories employ tremendous
manpower to work on each individual step. To increase the product yield rate
or produce special material in a factory, employees sometimes need to stay in a
hard strict environment and wear anti-dust cloth in a disinfect or high radiation
exposure zone.

The high labor cost implies the robotic automation is a key prospect to
the growth of manufacturing. Consequently, many research programs focus on
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manufacturing applications. The leading research organization Robotics Virtual
Organization (Robotics VO) in the US and a large cooperative research cen-
ter euRobotics AISBL in Europe are currently developing the new technologies
for industrial manufacturing. The main research topics include accurate indoor
object positioning systems for robotic manipulators (positioning the object),
sensor based safety systems, the interaction between human and robot (machine
vision), higher levels of realism in filtering system (3D segmentation), reactive
planning and controllable in real industrial factory or workshop safety (machine
learning).

This work deals with the problem of object recognition and its 3D pose esti-
mation. It is an important issue on visual servoing and provides the information
for the robotic manipulator to interact with the target object. In the literature,
many 3D recognition techniques have been proposed. The state-of-the-art recog-
nition systems usually adopt two strategies: (1) Use a 2D affine patch dataset
with 2D local features to find the correspondences in 2D scenes or 3D point
clouds [1-4]. (2) Use a 3D point cloud as a model with local/global feature to
find the correspondences in the 3D scene [5-9]. The former is based on 2D invari-
ant local features. It provides the system for recognition from free viewpoints
with non-rigid changes. The benefit of these systems is the model can be gener-
alized into multiple 3D viewpoints which link the features between patches and
the scene. However, the 2D patch cannot represent all possible 3D conception.
The latter is to match the object in a scene by its 3D model. Recent hardware
advance allows direct 3D data acquisition from the real scene, and a variety of
applications can be developed. These systems use 3D features to group corre-
spondences or generated 3D model to indicate the object (the scene might be
2D). By using the SIFT descriptor in a cluttered environment, Hsiao et al. take
different viewpoints of a 3D model and the 2D image of the scene for object
recognition [6]. Their approach shows the robustness on finding the pose matrix,
but at the cost of losing accuracy. Gomes et al. [5] propose a recognition system
for real-time acquisition by extracting the keypoints in different radii for each
level (distance). In [7], Drost et al. vote the matched descriptor in an accumulator
space, and a point pair scheme is designed for reducing the matching computa-
tion requirement. In [8,9], an ideal local pipeline is presented following the steps:
keypoint extraction, description, match, correspondence grouping, absolute ori-
entation, ICP, hypothesis verification. All the steps can be roughly partitioned
into: pre-processing (for the input data grabbed by the sensor), recognition and
pose estimation (including keypoint extraction, description, matching), and post-
processing (refining the pose estimation results and evaluating the final outputs).

The approach presented in this paper is similar to the pipeline based on the
local feature concept, but with a global verification technique and few pre/post
stages. Our system takes a 3D point cloud as input, and assumes the data points
are acquired from a single viewpoint. The model datasets of the objects are built
under the same environment settings. All keypoints are extracted by normal
estimation before SHOT descriptor generation. The local reference frame and
support space are computed for each keypoint. For data matching and pose
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estimation, we use KdTree, FLANN [10] to find the model-scene correspondences
of the keypoint pairs. Hough voting is then performed to derive the pose in terms
of a rotation matrix and a translation vector. The verification step further refines
the pose by ICP, which is able to minimize the mismatch in cluster or occlusion
scenes. Finally, a global hypotheses verification is carried out to minimize the
false positive and maximize the true positive, followed by filtering the outliers
by matched keypoints.

The contribution of this paper contains the formulation and implementation
of robust 3D recognition from the real scenes. 3D features are formulated through
normal estimation and eigen value decomposition (EVD), and the interpretation
is separated into two parts: local feature and global verification. We analyze the
techniques for extracting point features, and categorizing the state-of-the-art
methods using signatures and histograms. Due to the way it works for global
verification through segmentation and clustering, there are differences compared
to the local pipeline. The proposed system architecture in 3D recognition com-
bines the local and global verification to complement the disadvantages. The
experiments show the robustness behavior in an environment containing multi-
ple dissimilar objects without suffering from occlusion or clustered scenes.

2 The Unique Signatures of Histograms

The unique signatures of histograms for surfaces and texture description (SHOT)
extend the exist works from [11-13], which highlight two major approaches
using signatures and histograms. The signature method encodes an invariant
by describing the 3D surface into a neighborhood around a given point. It local-
izes each trait value into coordinate bins, and is highly descriptive due to its
individual localized information in the support area. However, small noise can
potentially perturb the descriptor. In the histogram concept, the trait value is
given according to the specific quantized domain as accumulated count. It is
based on local topological entities which map into a histogram. Compared to
signatures, histograms gain the robustness, but trading the descriptive accuracy
by compressing the trait value into each bin.

For the signature based 3D descriptors, Novatnack and Nishino propose a
method based on geometric scale-space to analyze the scale invariant of a range
image [14]. The feature normal is encode within the support to ensure the local
shape descriptor can be derived and deployed with different global scales. In [15],
it indicates the signature is given by the 3D coordinate of each vertex within a
support in the local reference frame. Continuing the 2D feature point research,
the SIFT descriptor is extended to a hybrid scheme for depth images [16], and
the SURF descriptor is adopted for 3D data to compute Haar wavelets as signa-
ture trait [17]. For the histogram based 3D descriptors, the spin image computes
the 2D image histogram with a volume by measuring a plane spinning around
the surface normal [18]. The same concept is used in local surface patches [19]
and shape indices [20]. In the 3D shape context, a real full local reference frame
that modifies the concept from the spin image and accumulates a 3D histogram
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to each feature points with a radii around the center is then proposed. Point
Feature Histograms (PFH) [21] and Fast Point Feature Histograms (FPTH) [22]
accumulate the 3D information into histogram bins that contain three angu-
lar values with the normal area overlap among relevant points. More recently,
MeshHoG (MH) uses the same hybrid structure as SHOT [23]. It combines the
signature and histogram with a unique local reference frame as well as the color
information.

SHOT descriptor is generated based on an encoded histogram of normal
points, with a local support space. To simulate the inherent signature, a set
of local histogram is computed as a 3D sphere with accumulated support. The
SHOT signature structure accumulated in the 3D grid is aligned with the axes
defined by its local reference frame. Thus, the descriptor performs as a mix-
ture produced by histograms and signatures. In SHOT descriptor, the points
are accumulated into several bins from local histograms according to the angle
between the point normal and local axis. Several coarser bins can be created by
interpolation on normal directions, azimuth planes, elevation planes, and sphere
radii. Since each plane contains descriptive information from the local histogram,
the sphere grid performs a coarse partition with proper units of descriptor. The
sphere grid indicates 32 partitioning volumes from 8 azimuth, 2 elevation, 2 radial
divisions. On the other hand, by combining a proper number of bins from inter-
nal histograms (11 bins), the total descriptor length is 352. In SHOT descriptor,
it is important to avoid boundary effects due to the local histogram.

3 Global Hypotheses Verification

We apply SHOT descriptor to transform feature points to the local reference
frame. 3D Hough voting [8] is then performed after point feature registration. In
general, Hough voting can be a pose estimation stage for the model (off-line) and
the scene. For a reference point C™ in the model coordinates, we can find an
exact match C* in the scene. We give the same EVD process to obtain the local
reference frames for the model and the scene, so we can assume the feature points
in the model is defined as FM with the centroid CM. A vector VX describing

the relationship between FM and C™ can be written as
RS W

For a global vector V/‘é, we can then find a term Rgf 1, representing the

rotation invariant to transform to a local vector V. The relation can be written
as
M M M
V;,L = RG,L ) Vi,G (2)

where Rg 5, is given by

Réy =L, Liy LiZ]" (3)
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Once the rotation matrix from the model and the scene, RMS , is derived,
V °r, can be transformed into the global reference frame, and the equation are
given by

Ve =Riq Vi, +F (4)

Lj.] (5)

3D Hough voting picks one or more object poses which are higher than a
threshold associated with a similar surface in the scene. Global Hypotheses Ver-
ification (GHV) is introduced as an additional step to further verify and reject
false positives (false detection). First, we consider some notations about GHV
after SHOT recognition pipeline. Assume the model set in the library contains m
point clouds, M = {My, ..., M,,}, and a scene point cloud, S. For a general case,
a scene might include several sets of the models. The pose estimation produces
the transformation 7" given by the SHOT pipeline. It relates each model instance
to the scene S with 6 DOFs. A pair (Mp,,Th,), where h; is a subset from the
recognition hypotheses H = {hy,--- ,ha}, is given by the previous recognition
process. In each cue, it tries to determine and minimize the cost function value.
The GHV method is designed to maximize the correct recognition items (TPs)
belonging to the instance set H, and remove the wrong recognition items (FPs).
In addition, a boolean term X = {zg,---,z,} denotes the ICP converges or
not. It considers the case of partial occlusion or rotation in the scene because
the model descriptor might be different from the scene or not fit exactly. In
the occlusion case, a model might not be visible, i.e., self-occlusion or occluded
by the scene parts. We use the binary term X to indicate the corresponding
hypothesis is false or valid (z; = 0/1).

Here we introduce the cues in GHV process and adopted in our implemen-
tation [24].

RGL_[ jx’LS

71,97

Cue (1) Scene Fitting: We assume a model point set M/ has been calculated,
and determine the scene fitting points corresponding to the model points. The
cue is for examining how the points are explained under a threshold based on the
Euclidean distance. For each ICP process, the local fitting measure is given by

wni(P) = d(p,q) (6)

where ¢ represents the model with a pose T and is denoted as ¢ = N(p, M}’ ),
and §(p, q) represents the scene point set obtained from 3D Hough voting and is
defined by

_ lp—=dll, ) _

5(p,q) = ( 2. .t D)(np - 1q), [lp —dll2 < pe (7)
0, elsewhere

We can take §(p, q) as a local alignment of surfaces. Equation (7) checks the

normal direction by (n,,n,), and it is expected to have two normals in the same

direction. If (p, ¢) distance is smaller than a threshold p,, a weight value (0 to 1)
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is assigned according to the normal direction to examine where the scene-model
fitting is accepted. We conclude the contribution of Cue 1 by

Q.(p) = thi (p) - @i (8)

All wp;(p) will be explained if the ICP term z; = 1, and thus Q,(p) > 0. If a
point p € M’ but is not fitted in any scene point set according to Eq. (7), we
denote it as ¢y, .

Cue (2) Multiple Assignment: This cue gives a function for examining the
term in Cue 1 by subtraction. The equation is given as follow:

n

2. sgn(wn, (p)), sgn(wn, (p)) > 1

Ax(p) =< = 9)
0, elsewhere
where
-1, X <0
sgn(X) =<0, X =0 (10)
1, X>0

Cue (3) Cost Function: The cost function concludes Cue 1 and Cue 2 to
increase the number of recognized instances as many as possible. It can be simply
described as

C(X) = fs(X) + A~ far(X) (11)
where A is a constant regularization value, and fg, fas are
fs(X) = (Ax(p) — Qulp)) (12)
peS

n

Far(X) =" |¢n,

n=1

L (13)

4 System Development and Implementation

In the pre-process stage, we capture 3D point cloud data by Kinect V1 and V2
through Kinect SDK 1.8 and 2.0, respectively. According to the sensor depth
range (V1: 1.2-3.5m, V2: 0.5-4.0m), we fix a filter range of 1.8 m to remove
the background points. For uniform down-sampling of the large point cloud, we
set the radius as 0.01 for the model and 0.0125 for the scene. The local features
are extracted by normal estimation and SHOT after the pre-processing stage,
followed by Hough voting for pose estimation. We set the parameters for the local
reference frame radius as 0.08 and the clustering threshold as 10.0. The example
model is extracted from the scene exactly, thus the rotation is an identity matrix
and the translation vector is zero.
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After pose estimation, we fix the pose to minimize the Hough voting errors
by ICP. Due to the inherent property of ICP, there are mis-voted cases caused by
occlusion or the object placed in a pose but different from the model set. In this
cases, we refine the pose from the identity rotation matrix and zero translation
vector. The parameters for ICP maximum number of iteration and correspon-
dence distance are 5 and 0.005, respectively. Note that Hough voting gives a
rough transformation after 5 ICP iterations no matter the pose converges or
not. The global verification process is then carried out after the ICP refinement.
It is used to justify the final pose a good or bad instance.

Figure 1 shows an example of hypothesis verification. An offline model dataset
is displayed on the right. The red, cyan and violet poses indicate the production
of Hough voting, convergence of ICP, and the point correspondences, respec-
tively. The following parameters are used: clutter regularizer, 5.0; inliner thresh-
old, 0.2; clutter radius, 0.015; regularizer value, 3.0; and normal radius: 0.05. The
system verifies the actual (true positive) instance as the green pose. In the final
step, we pick the highest keypoint matched instance as our result. For example,
if there are four instances with matched keypoints M <30, 20,75, 70>, we pick
the highest (75) but also giving a threshold K (say, 15). It means that the num-
ber of matched points under 75 but greater than 60 is still a good instance. All
libraries and codes are built using PCL 1.7.2 [25] on a PC with Intel i7-4790
processor.

Model (white) & keypoints

True positive (instance)

False Instance

Matched keypoints (pink)

False Instance

Fig. 1. An example of global hypothesis verification. (Color figure online)

5 Experiments

To evaluate the proposed technique, three datasets are generated for several
interested scenarios. Five objects (Alien, Bear, Cbox, Crab, Sulley) are included
individually in the occlusion and rotation datasets as shown in Fig.2, and the
cluster dataset contains many objects in the clustered scenes. In the experiments,
the objects are placed at about 1 m away from a fixed viewpoint camera.
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Fig. 2. The test objects used in the experiments. (a) Alien, (b) Bear, (c) Cbox, (d)
Crab, and (e) Sulley.

— Occlusion dataset: In this dataset, we examine the system limitation by
occluding the object with different levels. Five datasets of the scene are col-
lected without any object rotation. Each dataset contains only a single object
and can be described by the percentage of occlusion. The non-occluded point
cloud is used as the benchmark to calculate the occlusion percentage for the
occluded scenes.
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— Rotation dataset: In this dataset, we rotate the object with different angles
but keep the viewpoint still. The scenes only contain a single object without
any occlusion event. The non-rotation scene is used as the benchmark dataset.

— Cluster dataset: In the cluster dataset, additional objects are placed in
the scene. We also investigate the recognition results with different distances
between objects and the scene.

Table 1 shows the occlusion experiment results. Due to the sensor frame rate
and accuracy (including the point cloud density), Kinect V2 generally works
better than Kinect V1. This also illustrates how the system can perform with

Table 1. The occlusion test results with Kinect V1 and V2

Occ. (V1%,V2%)

Kinect V1

Kinect V2

<Reg, Match, GHV> | Corr | <Reg, Match, GHV> | Corr
Alien | (6%, 4%) |<1,1,1> 68 | <1,1,1> 141
(10%, 7%) |<4,1,1> 56 | <1,1,1> 134
(22%, 17%) | <4,1,1> 40 | <1,1,1> 112
(41%, 33%) | <3,0,1>* 31 | <1,1,1> 62
(53%, 51%) | False <1,1,1> 25
Bear | (5%, 12%) | <1,1,1> 107 | <1,1,1> 224
(11%, 21%) | <1,1,1> 109 | <1,1,1> 136
(21%, 30%) | <1,1,1> 76 | <1,1,1> 72

(28%, 47%) | False False

(48%, 53%) | False False
CBox | (11%, 15%) | <2,1,2> 73 | <1,1,1> 116
(23%, 23%) | <1,1,1> 47 [ <1,1,1> 94
(33%, 33%) | <1,1,1> 42 1 <1,1,1> 53
(39%, 42%) | False <1,1,1> 34

(50%, 55%) | False False
Crab | (7%, 11%) | <1,1,1> 94 |<1,1,1> 63
(15%, 19%) | <1,1,1> 56 | <1,1,1> 44

(24%, 30%) | False False

(34%, 40%) | False False

(52%, 50%) | False False
Sulley | (7%, 6%) | <1,1,1> 134 | <1,1,1> 222
(14%, 12%) | <1,1,1> 80 | <2,1,1> 151
(24%, 29%) | <1,1,1> 64 | <1,1,1> 99
(34%, 40%) | False <1,1,1> 58

(50%, 54%) | False False

?In this case, <3,0,1>, the system gives 3 Reg instances but without any true

positives. It also verifies a wrong instance as a good result.
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Fig. 3. (a) Alien fails to match in the occlusion dataset. (b) An example of Crab scene
dataset.

a noisy or incomplete point cloud input. We expect the occlusion experiment
to have the following specification: (1) The system can keep recognizing an
object until it is occluded by a specific percentage. (2) Once the system recog-
nizes an object successfully, the triplet <Reg, Match, GHV> should be at least
(Reg > GHV > Match = 1), where <Reg>: recognized instance, <Match>:
true matched, <GHV>: instance verified successfully in global hypothesis ver-
ification, and Corr: correspondences of the recognized instance. (3) The corre-
spondence keypoint belongs to good instances should decrease till the system
reaches its limitation.

Some special cases in the occlusion dataset are given as follows. In Alien V1,
the object is occluded by 41% and the system gives <3,0,1>. Three recognized
instances are found, with no true positives but a good verification. This is due to
V1 sensor can only sense a model without the z-axis information, so the system
treats it as a flat surface. On the other hand, Alien V1 dataset outputs more
recognized instances than the V2 dataset. In Crab dataset, the object can only
be recognized while the occluded region is no more than 20%. This is because
the Crab dataset can only show the front view surface less than other datasets.
Figure 3 illustrates the special cases in Alien V1 and Crab datasets.

In Bear dataset, the column Corr of Kinect V1 gives similar values for 5%
and 11% of occlusion. This is due to the infrared sensor accuracy. In CBox
dataset, the system gives the output <2,1,2> for 11% of occlusion. This is caused
by two flat areas of the model surface, so that several instances are obtained
by the Hough voting process but only one good instance is verified. In Sulley
dataset, Kinect V2 gives <2,1,1> output for 12% of occlusion. It indicates that
one recognized instance is bad and filtered out by the verification stage. To
summarize, the proposed technique is able to recognize the object and filter out
bad instances for the occlusion dataset. Moreover, Kinect V2 shows the best
results in the point cloud noise reduction and provides almost all <1,1,1> for
the match triplet.

In the rotation experiment, we expect the object can be recognized by the
system after it is rotated. Let the front view be defined as the 90° direction, and
the object is rotated to the left or the right by every 20°. Without the Kinect
sensor noise, the correspondences for recognizing the instances should decrease
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Fig. 4. (a) The case of Alien V1 50° fails to recognize. (b) The example of Alien V2 50°.

Table 2. The rotation test results with Kinect V1 and V2

Rotate degree | Kinect V1 Kinect V2
<Reg, Match, GHV> | Corr | <Reg, Match, GHV> | Corr

Alien |70° <5,1,1> 72 | <1,1,1> 130
50° <5,0,1> 38 | <1,1,1> 87
30° <1,0,0> 29 | <1,1,1> 48
110° | <6,1,1> 72 | <1,1,1> 149
130° | <8,1,1> 46 | <1,1,1> 113
150° | <2,1,0> 45 | <1,1,1> 104

CBox | 70° <1,1,1> 60 | <1,1,1> 144
50° | <1,1,1> 71 | <1,1,1> 116
30° <2,1,2> 51 | <1,1,1> 60
110° | <1,1,1> 142 | <1,1,1> 97
130° | <1,1,1> 53 | <1,1,1> 42
150° | False False

Crab |70° <1,1,1> 105 | <1,1,1> 112
50° False <1,1,1> 51
30° False <1,1,1> 26
110° | False <1,1,1> 141
130° | False <1,1,1> 54
150° | False False

Sulley | 70° | <1,1,1> 107 | <1,1,1> 261
50° <1,1,1> 59 | <1,1,1> 146
30° <1,1,1> 28 | <1,1,1> 60
110° | <1,1,1> 108 | <1,1,1> 302
130° | <1,1,1> 72 | <1,1,1> 208
150° | <1,1,1> 39 | <1,1,1> 123

* Bear dataset cannot be recognized by the system in this experiment.
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when the rotation angle is increased. Some fail cases are as follows. In Alien V1
dataset, the object surface is incomplete due to the Kinect V1 sensor accuracy
issue. Particularly, the system gives an erroneous output <5,0,1> for the rotation
angle of 50°. In Bear and Crab datasets, the objects can not be recognized using
Kinect V1. Furthermore, Bear dataset fails with Kinect V2 either, and thus the
results are not shown in the table. This is mainly due to the self-occlusion of
the tall object during rotation which makes the surface more difficult to model.
Figure4 shows the recognition results of the Alien scene at 50° captured by
Kinect V1 and V2.

In general, as illustrated in Table 2, Kinect V2 gives better recognition results
than V1 due to the noise issue mentioned in the occlusion experiment. Thus,
there are more recognition instances shown in Alien V1 dataset. In the rotation
experiment, the difficulty is to deal with the vanishing and emerging parts of the
object surface. Although some Kinect V1 datasets give good recognition results,
the instances are estimated by ICP with a verification process, and more system
computation is required.

In the last experiment, we set up three clustered scenes with all objects
placed randomly in front of the camera, as shown in Fig.5. The objective is
to recognize Alien, Bear, CBox, Sulley in a scene. The objects in Scene 1 are
placed with more occlusion, Scene 2 contains fairly separated objects, and Scene
3 describes an extremely clustered environment. Table 3 shows the results of
Cluster dataset, where Alien and Sulley are recognized with good verification.
Alien in the clustered scenes is almost not occluded by other objects, but Sulley
is placed at different locations with variable revelation. Notice that, for CBox
object, Scene 3 shows more surface than Scene 1 but the system gives false

Fig. 5. The dataset with clustered scenes, (a) Scene 1, (b) Scene 2, (c) Scene 3.
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Table 3. Cluster dataset test results using Kinect V2 only.

Cluster scene | Kinect V2
<Reg, Match, GHV> | Corr

Alien |Scene 1|<1,1,2> 44
Scene 2 | <1,1,1> 78
Scene 3 | <1,1,1> 60

Bear |Scene 1|<1,1,1> 63
Scene 2 | <1,1,1> 112
Scene 3 | False

Cbox |Scene 1| <1,1,1> 43
Scene 2 | <1,1,1> 39
Scene 3 | False

Sulley | Scene 1 | <1,1,2> 75
Scene 2 | <1,1,1> 111
Scene 3 | <1,1,1> 55

output. This is due to left part of CBox cannot be estimated for the distance
from Kinect V2 sensor and only an incomplete model is obtained.

6 Conclusion

In this paper, we propose a structural hybrid technique for the 3D recognition
system. It fully builds using the 3D concept based on local features with global
verification of the output instances. Our system takes a 3D point cloud as input,
and assumes the data points are acquired from a single viewpoint. The model
datasets of the objects are built under the same environment settings. The pro-
posed system architecture in 3D recognition combines the local and global veri-
fication to complement the disadvantages. The experiments show the robustness
behavior in an environment containing multiple dissimilar objects without suf-
fering from occlusion or clustered scenes. Our system is able to adapt in a general
environment and provide better recognition results by verifying good instances
in the experiments. The future work will focus on three major issues of the 3D
recognition techniques, (1) sensor accuracy: to deal with the resolution of the
model and the scene, (2) partial model capability: to increase the recognition
rate with partially acquired scenes, and (3) computation requirement: to apply
GPU on Hough voting and hypothesis verification, which are not supported by
OpenMP.
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