
Online Integration of Fragmented XML
Documents

Handoko1(B) and Janusz R. Getta2

1 Electronic and Computer Engineering Department,
Satya Wacana Christian University, Salatiga, Indonesia

handoko@staff.uksw.edu
2 School of Computer Science and Software Engineering,
University of Wollongong, Wollongong, NSW, Australia

jrg@uow.edu.au

Abstract. Online data integration of large XML documents provides
the most up-to-date results from the processing of user requests issued
at a central site of heterogeneous multi-database system. The fragments
of large XML documents received from the remote sites are continuously
combined with the most current state of integrated documents. Online
integration of fragmented XML documents has a positive impact on per-
formance of entire online data integration system.

This paper presents the online integration procedures for the fragments
of large XML documents. We propose a new model of data for fragmented
XML documents and we define a set of operations to manipulate the frag-
ments. A new optimisation procedure presented in the paper finds the
smallest core of each new fragment that can be integrated with the docu-
ments available at a central site. We show that processing of the smallest
cores of XML fragments significantly reduces overall processing time.

Keywords: Data integration · Online algorithm · Fragmented XML
documents · Semistructured data

1 Introduction

The recent growth of wide area networks allows for data integration across many
diverse systems with various data formats at the remote endpoints. In a global
data model approach, a central site in a data integration system breaks down
user requests and sends a number of sub-requests to the remote sites to get
the results. Then, such results are processed by the data integration system
accordingly to the earlier prepared data integration plans.

Online integration is a continuous consolidation of data transmitted over a
network with data already available at a central site. It provides a user with
the most up-to-date results of a query being processed by the system. Online
integration applies online processing algorithms where a smallest unit of data
increment is instantly processed without having entire set of data available [5].

c© Springer International Publishing AG 2017
N.T. Nguyen et al. (Eds.): ACIIDS 2017, Part I, LNAI 10191, pp. 13–23, 2017.
DOI: 10.1007/978-3-319-54472-4 2



14 Handoko and J.R. Getta

In a distributed and heterogeneous multi-database system, the large chunks
of data retrieved at the remote sites are decomposed and sent to a central site as
XML fragments. Then, the incoming XML fragments are combined at a central
site to form the original documents for further processing. In fact, integration of
the fragments can be started immediately if the fragments available at a central
site have enough data to complete the integration process. Hence, it is important
to identify the minimum requirements for processing of XML fragments to allow
processing of a smaller cores of fragments rather than the complete ones. Then,
a modified version of the algorithms described in [5] allows for more efficient
processing of the fragments of XML documents.

The structure of this paper is the following. Section 2 covers the previous
work in an area of integration of fragmented XML documents. The principles
of processing XML fragments are described in Sect. 3. Section 4 covers fragmen-
tation of XML documents, and Sect. 5 describes XML algebraic operations on
fragmented XML documents. In Sect. 6 we describe an online integration algo-
rithm for fragmented XML documents, and Sect. 7 concludes the paper.

2 Previous Work

XML fragmentation improves the performance of query processing through the
decompositions of queries into smaller sub-queries operating in a parallel mode
on the fragments of XML documents. It is achieved as either ad-hoc or structured
fragmentation [7]. Hole-filler is the most popular ad-hoc fragmentation technique.
In this approach, every XML fragment has a unique filler ID and a set of holes
which represent empty places where other fragments could be connected to. A
structure of original document and its fragmentation schema is presented in a
simple DTD named Tag Structure [2]. On the other hand, structured fragmen-
tation follows the rules of the relational model fragmentation [3,6].

XML data stream is a theoretically infinite sequence of XML documents.
Processing of XML data stream is a challenging process because it requires very
efficient algorithms to integrate the most recently received increments with the
already completed results of processing. Most of query processing techniques on
XML data streams are based on XQuery and XPath streaming evaluation [9].
Some of XML stream processing techniques based on XQuery evaluation refer
to XML fragments in the concept of hole-filler [1,2,8]. In addition to hole-filler
model, Bose [2] proposed a query algebra for XQuery on XML stream data.

Fegaras [4] proposed an incremental query processing for a large-scale data-
base called MRQL Streaming. A streaming query is expressed as q(S) where
Si ∈ S and Si : i = 0, . . . , n is a streaming data source. Si contains an initial
dataset and followed by a continuous incremental stream ΔSi in a time interval
Δt. Incremental processing is performed by combining the result query at time
t with results of query on ΔSi, such that h(S � ΔS) = h(S)

⊗
h(ΔS).

⊗
is

a merge function which is implemented as a partitioned join. Online integra-
tion system proposed in [5] performs continuous integration where an incoming
and complete XML document triggers the computations of a data integration
expression.



Online Integration of Fragmented XML Documents 15

3 Principles and Assumptions

We consider a model of data integration where the data increments are trans-
mitted to a central site as the fragments of XML documents. We found in an
earlier work [5] that it is possible to increase performance of an online inte-
gration system when the processing is performed on the smaller cores of XML
fragments. Integration of semistructured data described in this work is based on
the following assumptions. (1) The remote sites have the ability to disassemble
XML documents into XML fragments with the characteristics described in the
next section. (2) XML fragments retrieved at the remote sites are received by a
central site in a random order. (3) Due to a high level of autonomy of the remote
sites, a central site has no impact on the priorities with which the fragments are
retrieved at and sent by the remote sites.

Based on these assumptions, we adopt the following more specific principles
for online data integration process.

1. A fragmented XML document is a set of XML fragments.
2. Every data container located at a central site contains fragmented XML doc-

uments.
3. At a pre-processing stage described in [5], we generate online integration plans

for every user request received by the central site. First, we transform a user
query into a global query expression (f(q1, . . . , qk)). Then, we transform it
into a data integration expression (f(D1, . . . , Dk)) by systematic replacement
of symbol q1, . . . , qk with the data container D1, . . . , Dk. In the next step,
we generate the increment expressions which allow for instant computation
of new data increments of the particular data containers at a central site.
We use the increment expressions obtained earlier to generate the online
integration plans for each data container. The main difference between an
approach described in [5] and this work is online integration performed on
XML fragments instead of complete XML documents.

4. The attributes used in the filter expressions related to data containers are
stored in the adequate lists to find when a set of XML fragments is ready for
processing.

4 Fragmented XML Document

The operations on XML fragments allow us to process incomplete XML docu-
ments and to append their missing parts at the end of integration. Based on an
assumption that every node in an XML document can be identified by a unique
path (i.e. path and index), we define an XML fragment in the following way.

Definition 1. An XML fragment is a tuple 〈xi(mi), o, p,H〉 where xi(mi) is an
XML document that represents a body of the XML fragment. A component o is
the identity of parent XML document the fragment comes from, and p (hook)
is a unique path where the root of XML fragment is located in the parent XML
document. A component H is a set of paths that represents the missing XML
fragments (holes) in xi(mi).



16 Handoko and J.R. Getta

An XML fragment (〈xi(mi), o, p,H〉) has the following characteristics. (1) An
XML fragment body (xi(mi)) is a well-formed XML document. (2) It has a
component (o) to store id of its parent XML document. (3) It has a hook (p)
and a hole component (H) that allow for reconstruction of XML fragments into
the parent XML document. (4) A hook component (p) is represented by a path,
and determines a location of XML fragment in its parent XML document. (5)
There is exactly one XML fragment that includes a root node of the parent XML
document, i.e. its hook="xml". (6) A hole (H) component is a set of paths to
the roots of missing fragments. If H = ∅ then a fragment is complete.

Definition 2. A fragmented XML document is a set of XML fragments
{〈xi(mi), oi, pi, Hi〉 : i = 1, . . . , n}.
Note, that oi does not need to be the same for all fragments in a fragmented
XML document.

Definition 3. Let x(m) = {〈xi(mi), oi, pi,Hi〉 : i = 1, . . . , n} be a fragmented
XML document. A complete XML document is defined as a fragmented XML
document where ∪

i
pi − {"xml"} = ∪

i
Hi.

In the other words, a set of XML fragments is a complete XML document if for
every hole the set includes a respective fragment with a matching hook and the
set also includes a root fragment with a path "xml" where a virtual node "xml"
plays a role of a root node of every XML document.

Example 1. Let x(m) be a fragmented XML document disassembled into six
XML fragments visualised in Fig. 1. The details of the fragments are listed in
Table 1.

Fig. 1. Fragmented XML document.

5 Operations of XML Algebra

The operations on XML algebra belong to one of the following three types
depending on an abstraction level of an operation: (1) operations on XML frag-
ments, (2) operations on fragmented XML documents, and (3) operations on
data containers with fragmented XML documents. A fusion of fragmented XML



Online Integration of Fragmented XML Documents 17

Table 1. The components of XML fragments in Fig. 1

XML

fragment

Origin id Hook Holes

(a) o1="1" p1="xml" H1={"xml/book/title","xml/book/authors",
"xml/book/subject"}

(b) o2="1" p2="xml/book/title" H2={}
(c) o3="1" p3="xml/book/authors" H3={"xml/book/authors/aut id[1]",

"xml/book/authors/aut id[2]"}
(d) o4="1" p4="xml/book/authors/aut id[1]" H4={}
(e) o5="1" p5="xml/book/authors/aut id[2]" H5={}
(f) o6="1" p6="xml/book/subject" H6={}

documents is needed to combine two XML documents where one of them is a
part of the other, see Definition 4 below. The definition assumes that a structure
of each XML document is represented by an Extended Tree Grammar (ETG)[5].

Definition 4. Let G = (Ng, Tg, Ag, Sg, Pg) and H = (Nh, Th, Ah, Sh, Ph) be
ETGs, Ng ∩ Nh 	= ∅, Y be a non terminal symbol, and y ∈ (Ng ∩ Nh). Let
S→xml[id](Y) be a production rule for start symbol in H. Let pg ∈ Pg and
ph ∈ Ph be production rules for a non terminal symbol Y in both ETGs. A
fusion operation on two ETGs is denoted as F = G⊕H and is an operation that
combines G and H, such that F = (N,T,A, S, P ) is an ETG where N = Ng∪Nh,
T = Tg ∪ Th, A = Ag ∪ Ah, and P = Pg ∪ Ph − {pg}.
A hook operation combines two XML fragments which have matching hook and
hole components to form a more complete XML fragment. The operation creates
a new XML fragment where one of the holes in the first argument is filled with
the second argument, see Definition 5 below.

Definition 5. Let 〈xi(mi), oi, pi,Hi〉, 〈xj(mj), oj , pj ,Hj〉 be XML fragments
with ETG G and H respectively. Let oi = oj and pj ∈ Hi. A
hook operation on two XML fragments is defined as 〈xi(mi), oi, pi,Hi〉 ←↩
〈xj(mj), oj , pj ,Hj〉 = 〈xr(mr), or, pr,Hr〉. xr(mr) is an XML fragment result
after a hook operation, or = oi = oj, and pr = pi. Hr = Hi∪Hj −{pj} is a set of
holes after a hook operation. The XML fragment result has an ETG F = G⊕H.

A union of two sets of XML fragments is possible when the sets do not
contain the fragments with the same hook and it is defined in a usual way as
a theoretical set union. At some points of processing, we might want to apply
defragmentation procedure that first uses union operation to group all relevant
fragments in one set and later on it uses hook operation to combine the XML
fragments which have the matching values of hook and hole.

To speed up defragmentation, we sort the XML fragments by their o and
p components. The sorted XML fragments shows that the position of XML
fragments in a fragmented XML document represents their location at the origin
XML document. If the XML fragments are sorted, then for two XML fragments



18 Handoko and J.R. Getta

〈xi(mi), oi, pi,Hi〉 and 〈xj(mj), oj , pj ,Hj〉 where i, j are the element indexes and
i<j, we can perform a hook operation 〈xi(mi), oi, pi,Hi〉 ←↩ 〈xj(mj), oj , pj ,Hj〉
but not the opposite.

Next, we need an efficient algorithm that processes the incoming XML frag-
ments. The algorithm must determine where to place an incoming fragment,
when to combine a fragment into any of existing fragmented documents in the
data containers on input to data integration and materializations containing the
intermediate results of data integration, and how to perform defragmentation
process on the fragmented XML documents.

A minion operation integrates two data containers with fragmented XML
documents, see Definition 6 below.

Definition 6. Let D(G),D(H) be data containers of fragmented XML docu-
ments. Let x(m) ∈ D(G), x(m) = {〈xi(mi), oi, pi,Hi〉 : i = 1, . . . , s} and y(n) ∈
D(H), y(n) = {〈yj(nj), oj , pj ,Hj〉 : j = 1, . . . , t}. Let Oi = {oi : ∃〈xi(mi), oi,
pi,Hi〉 ∈ x(m) : i = 1, . . . , s}, Oj = {oj : j = 1, . . . , t} and Oi ∩ Oj 	= ∅. A
minion (merge-union) operator is defined as D(G) � D(H) = {z(l) : ∃x(m) ∈
D(G), y(n) ∈ D(H), z(l) = x(m) ∪ y(n)}.

We organise the input data containers and processing of incoming fragments
in the following way.

1. Every data container (D) is divided into a bounded data container (Db) and
a rover data container (Dr) (D = Db � Dr). Db is used to store fragmented
XML documents which are ready for processing. Meanwhile, not processed
fragmented XML documents are placed in a rover data container (Dr).

2. A new incoming XML fragment is placed as an element of a fragmented XML
document in a data container Dr according to its original XML document.

3. When a fragmented XML document in Dr satisfies the minimal require-
ments for processing, it is transferred to a bounded data container Db, and
its processing is started.

4. We need an operation on two data containers of fragmented XML document
to combine the fragmented XML documents which have the same identity
in both data containers. For example, such operation is needed at the end
of processing in order to add the unprocessed XML fragments to fragmented
XML document results.

Since we use a concept of fragmented XML document to replace a complete
XML document, most of the XML algebra operators described in [5] are applica-
ble. Nevertheless, XML algebraic operations have to be re-defined. Some XML
algebraic operators require examination of a condition expression (ϕ) on the path
expressions. For complete XML documents, path expressions refer to navigation
paths from the root node of XML documents. Meanwhile, path evaluation on a
fragmented XML document requires a procedure to discover a particular node
in XML fragments which may not have its root element. Below, we redefine the
concepts of selection, join, and antijoin for fragmented XML documents.



Online Integration of Fragmented XML Documents 19

Definition 7. Let D(G) be a data container of fragmented XML docu-
ments, x(m) ∈ D(G), x(m) = {〈xi(mi), o, pi,Hi〉 : i = 1, . . . , n}, and
xf = 〈xi(mi), oi, pi, Hi〉. Selection on D(G) is a unary operator denoted by
σϕ(D(G)) = {x(m) : ∃xf ∈ x(m) (f(xf , ϕ) = true)}, where f(xf , ϕ))
∈ {true, false}, ϕ is a condition expression.

Definition 8. Let x(m) = {〈xi(mi), oi, pi,Hi〉 : i = 1, . . . , n} and y(n) =
{〈yj(nj), oj , pj ,Hj〉 : j = 1, . . . ,m} be fragmented XML documents. Let xf =
〈xi(mi), oi, pi, Hi〉 and yf = 〈yj(nj), oj , pj ,Hj〉. Join operation on fragmented
XML documents is defined as x(m) •ϕ y(n) = x(m) ∪ y(n) : ∃xf ∈ x(m)∃yf ∈
y(n) and f(xf , yf , ϕ) = true. ϕ is a condition expression and f is an evaluation
function such that f(xf , yf , ϕ) ∈ {true, false}.
Definition 9. Let D(G),D(H) be data containers of fragmented XML docu-
ments. Join operation is defined as D(G) ��ϕ D(H) = {z(o) : ∃x(m) ∈
D(G), y(n) ∈ D(H), z(o) = x(m) •ϕ y(n)}.
Definition 10. Let D(G),D(H) be data containers of fragmented XML doc-
uments. Antijoin operator is defined as D(G) ∼ϕ D(H) = {x(m) : x(m) ∈
D(G) and ∀y(n) ∈ D(H)¬∃(x(m) •ϕ y(n))}, where ϕ is a condition expression.

Let Di,Dj ,Dk be data containers for fragmented XML documents. A minion
(merge-union) operation has the following properties.

1. A minion operation is commutative, i.e.(Di � Dj) = (Dj � Di).
2. A minion operation is associative, i.e. Di � (Dj � Dk) = (Di � Dj) � Dk.
3. If a condition ϕ can be evaluated in Di, then minion operation is distributive

over selection operation, i.e. σϕ(Di � Dj) = σϕ(Di) � Dj .
4. If a property for join operation condition ϕ exists in Dj , then minion opera-

tion is distributive over join operation: Di ��ϕ (Dj �Dk) = (Di ��ϕ Dj)�Dk.
5. A minion operation is left and right distributive over union operation, i.e.

Di ∪ (Dj � Dk) = (Di ∪ Dj) � Dk and (Di � Dj) ∪ Dk = (Di ∪ Dk) � Dj .
6. If a condition ϕ can be evaluated in Di, then minion operation is right dis-

tributive over antijoin operation, i.e. (Di � Dj) ∼ϕ Dk = (Di ∼ϕ Dk) � Dj .
7. A minion operation can reduce the antijoin operation, i.e. Di ∼ϕ (Dj �Dk) =

(Di ∼ϕ Dj), if XML fragment Dj contains elements in operation condition
(ϕ) Di ∼ϕ (Dj � Dk) = (Di ∼ϕ Dk) and if XML fragment Dk contains
elements in operation condition ϕ.

6 Online Integration of XML Fragments

Initially, online integration of XML fragments is similar to integration described
in [5]. An incoming XML fragment is placed in a rover data container (Dr)
and it is added to a corresponding fragmented XML document accordingly to
its identity. If an incoming XML fragment does not match to any existing frag-
mented XML document, we create a new fragmented XML document and place
the incoming XML fragment into it. If a fragmented XML document in the



20 Handoko and J.R. Getta

rover data container has enough properties for processing then it is transferred
to a corresponding bounded data container. Incoming data at the bounded data
containers triggers the following processing of a data integration expression.

The online integration system adjusts the pre-processing phase to deal with
XML fragments. The central site is responsible to determine all condition (ϕ)
attributes for all operations, all elements involved in the conditions for every
data container, and all available elements in the fragmented XML documents.
Then, the existing nodes/elements are applied to decide whether a fragmented
XML document has enough properties for further processing.

It may happen that a data container is used several times in a data integration
expression. Therefore, a list of adequate properties is applied.

Example 2. Let f(D1,D2,D3) = (D1 �� D2) ∪ (D3 ∼ D1) be a data integra-
tion expression. A join operation D1 ��(ϕ1∨ϕ2) D2 has two condition expres-
sions as follows: ϕ1 = xml/book/authors/aut id[1]=//aut id and ϕ2 =
xml/book/authors/aut id[2]=//aut id.

XML paths xml/book/authors/aut id[1] and xml/book/authors/
aut id[2] are unique locations of node elements of a fragmented XML doc-
ument. Meanwhile, //aut id is a path of a node element of a fragmented XML
document in the data container D2. Hence, we generate an adequate list as in
the Table 2.

Table 2. An adequate lists of data containers for a data integration expression
f(D1, D2, D3) = (D1 �� D2) ∪ (D3 ∼ D1)

Data

container

Operation Path Opr Path or value

D1 Operation 1 xml/book/authors/aut id[1] = //aut id

D1 Operation 1 xml/book/authors/aut id[2] = //aut id

D2 Operation 1 //aut id = xml/book/authors/aut id

Processing of fragmented XML documents may create fragmented XML doc-
uments at data containers, materializations (Mj), where the fragmented XML
documents have been computed, and remove lists (Ld), where they do not meet
criteria for evaluation of the required condition (ϕ).

6.1 Data Integration Expression

We use a bounded Db
i and rover Dr

i input data containers to save the incoming
fragmented XML documents. As a consequence, a data integration expression
should be transformed in the following way.

1. We replace all data containers Di in a data integration expression with Db
i �

Dr
i , for i = 1 . . . k.



Online Integration of Fragmented XML Documents 21

2. Next, we transform the data integration expression by multiple applications
of minion properties such that all rover data containers are moved to the end
of computation process.

Example 3. A data integration expression for XML fragments.

Consider the following input data containers Di represented as minion of respec-
tive bounded and rover containers Db

i � Dr
i , for i = 1 . . . 6. A data integration

expression (D1 �� (D2 ∼ D3)) ∪ ((D4 �� D5) ∼ D6) is transformed through
systematic replacement of the containers Di with the expressions Db

i � Dr
i and

distribution of minion operation over join, antijoin and union operations.

((Db
1 � Dr

1) �� (D2 ∼ D3)) ∪ ((D4 �� D5) ∼ D6); D1 is replaced with Db
1 � Dr

1

((Db
1 �� (D2 ∼ D3)) � Dr

1) ∪ ((D4 �� D5) ∼ D6)
((Db

1 �� (D2 ∼ D3)) ∪ ((D4 �� D5) ∼ D6)) � Dr
1; D6 is replaced with Db

6 � Dr
6

((Db
1 �� (D2 ∼ D3)) ∪ ((D4 �� D5) ∼ (Db

6 � Dr
6))) � Dr

1

((Db
1 �� (D2 ∼ D3)) ∪ (((D4 �� D5) ∼ Db

6) � Dr
6)) � Dr

1

(((Db
1 �� (D2 ∼ D3)) ∪ ((D4 �� D5) ∼ Db

6)) � Dr
1) � Dr

6

and so on.

At the end we obtain an expression given below.
((((((Db

1 �� (Db
2 ∼ Db

3)) ∪ (Db
4 �� Db

5) ∼ Db
6) � Dr

1) � Dr
2) � Dr

4) � Dr
5) � Dr

6

6.2 Increment Expression

In the next step, we transform a data integration expression into an increment
expression for every data container by applications of XML algebra rules as
described in [5]. A defragmentation process can be performed at the end of
processing because the rover data containers have been moved to the end of
data integration expression.

Example 4. An increment expression generation.
Let δ1 be an increment data at a bounded data container Db

1. The data
integration expression

f(D1, . . . , D6) = (((((Db
1 �� (Db

2 ∼ Db
3)) ∪ ((Db

4 �� Db
5) ∼ Db

6)) � Dr
1) � Dr

2) � Dr
4) � Dr

5

can be transformed as follows:

((((((D1 ∪ δ1) �� (Db
2 ∼ Db

3)) ∪ ((Db
4 �� Db

5) ∼ Db
6)) � Dr

1) � Dr
2) � Dr

4) � Dr
5

((((((Db
1 �� (Db

2 ∼ Db
3)) ∪ (δ1 �� (Db

2 ∼ Db
3))) ∪ ((Db

4 �� Db
5) ∼ Db

6)) � Dr
1) � Dr

2) � Dr
4) � Dr

5

((((((Db
1 �� (Db

2 ∼ Db
3)) ∪ ((Db

4 �� Db
5) ∼ Db

6)) ∪ (δ1 �� (Db
2 ∼ Db

3))) � Dr
1) � Dr

2) � Dr
4) � Dr

5

((((f(Db
1, . . . , Db

6) ∪ (δ1 �� (Db
2 ∼ Db

3))) � Dr
1) � Dr

2) � Dr
4) � Dr

5

((((f(Db
1, . . . , Db

6) ∪ (δ1 �� M1)) � Dr
1) � Dr

2) � Dr
4) � Dr

5M1 = ((Db
2 ∼ Db

3) � Dr
2)

Using the same transformation procedures, we obtain a set of increment
expressions for the rest of data containers.



22 Handoko and J.R. Getta

δ1 : ((((f(Db
1, . . . , D

b
6) ∪ (δ1 �� M1)) � Dr

1) � Dr
2) � Dr

4) � Dr
5

δ2 : ((((f(Db
1, . . . , D

b
6) ∪ (D1 �� (δ2 ∼ D3))) � Dr

1) � Dr
2) � Dr

4) � Dr
5

δ3 : ((((f(Db
1, . . . , D

b
6) ∼ (δ3 ∼ M4)) � Dr

1) � Dr
2) � Dr

4) � Dr
5

δ4 : ((((f(Db
1, . . . , D

b
6) ∪ ((δ4 �� Db

5) ∼ Db
6)) � Dr

1) � Dr
2) � Dr

4) � Dr
5

δ5 : ((((f(Db
1, . . . , D

b
6) ∪ ((Db

4 �� δ5) ∼ Db
6)) � Dr

1) � Dr
2) � Dr

4) � Dr
5

δ6 : ((((f(Db
1, . . . , D

b
6) ∼ (δ6 ∼ M1))) � Dr

1) � Dr
2) � Dr

4) � Dr
5

where M1 = ((Db
2 ∼ Db

3) � Dr
2);M2 = (((Db

1 �� (Db
2 ∼ Db

3)) � Dr
1) � Dr

2);M3 =
(((Db

4 �� Db
5) � Dr

4) � Dr
5);M4 = ((((Db

4 �� Db
5) ∼ Db

6) � Dr
4) � Dr

5)

Finally, the increment expressions are the following.

g1 = (δ1 �� M1); g2 = (D1 �� (δ2 ∼ D3)); g3 = (δ3 ∼ M4); g4 = ((δ4 �� D5) ∼
D6); g5 = ((D4 �� δ5) ∼ D6); g6 = (δ6 ∼ M1)

6.3 Online Integration Plans for XML Fragments

The increment expressions generated from a data integration expression on frag-
mented XML documents are the extensions of processing on complete XML
documents. Therefore, we can utilize the algorithms for online integration plan
and scheduling described in [5]. However, since fragmented XML documents in
the rover data containers have no effect to the rest of computation, we apply
minion operations at the very end of computation process. Fragmented XML
documents in the rover data containers are excluded from computation of data
integration expression until the results are ready to send.

Example 5. Let g2 = (D1 �� (δ2 ∼ D3)) be an increment expression generated
in Example 4. We consider a data increment (δ2) arrives at a data container D2.
Transformation of g2 into an online integration plan d2 is performed as follows.
(1) In the first step, we map an expression (δ2 ∼ D3) into a step Δ1 = (δ2 ∼ D3)
and an expression (D1 �� Δ1) into a step Δ2 = (D1 �� Δ1).
(2) Then, we append Me = (Me ∼ Δ2) to combine the computation results with
the previous final materialization.
(3) Next, we update a data container D2 : D2 = (D2 ∪ δ2).
(4) An intermediate materialization M1 is identified to be affected to update. M1

is a computation result of a data integration expression h1(D2,D3) = (D2 ∼ D3).
Therefore h1(D1,D2) is transformed into an increment expression gM1 = (δ2 ∼
D3). A plan to update M1 is generated as follows: dM1 : ΔM1 = (δ2 ∼ D3);M1 =
(M1 ∪ ΔM1). These steps are appended to the steps produced earlier.

The complete online integration plan for increment expression g2 is a sequence
of operations p1 : Δ1 = (δ2 ∼ D3); p2 : Δ2 = D1 �� Δ1; p3 : Me = (Me ∼
Δ3); p4 : D2 = (D2 ∪ δ2); p5 : ΔM1 = (δ2 ∼ D3); p6 : M1 = (M1 ∪ ΔM1).

Then, we perform minion operations to combine rover data containers with
the final materialization before we send the results to users. A sequence of oper-
ations includes Me = (Me � Dr

1);Me = (Me � Dr
2);Me = (Me � Dr

4);Me =
(Me � Dr

5). Operations to combine rover data containers to the intermediate
materializations are not necessary since we have reached the end of computation
process.



Online Integration of Fragmented XML Documents 23

To increase performance of the online integration system, we apply defragmen-
tation procedure at the very end of computation or only if it is needed. At this
stage, the scheduling algorithms for online integration plans described in [5] are
applicable.

7 Summary and Future Work

Online integration system proposed in this paper optimizes the integration of
large size XML documents by processing the fragments of data increments. Our
approach allows for the dynamic identification of a core within every data incre-
ment and for processing of each increment in a moment when a core is complete
even if an increment itself is not complete yet. It reduces time an increment is
waiting for the processing. Meanwhile, the defragmentation procedures are per-
formed at the end of processing to reduce overall online data integration time.
We provide the formal backgrounds to show that the online data integration
system proposed in the paper is implementable.

A number of interesting research problems remain to be investigated. Online
integration system proposed in this paper is applicable for data integration in
Internet of Things environment, by associating sensor nodes to the data contain-
ers. The first problem is the data structure alignment when the sensors use their
own internal data structures. The second problem is related to the large number
of sensors involved. The last problem involves properties of usually small and
frequently changed data.

References

1. Bose, S., Fegaras, L.: Data stream management for historical XML data. SIGMOD
99(3), 403–422 (2004)

2. Bose, S., Fegaras, L., Levine, D., Chaluvadi, V.: A query algebra for fragmented
XML stream data. In: Lausen, G., Suciu, D. (eds.) DBPL 2003. LNCS, vol. 2921,
pp. 195–215. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24607-7 13

3. Braganholo, V., Mattoso, M.: A survey on XML fragmentation. SIGMOD Rec.
43(3), 24–35 (2014)

4. Fegaras, L.: Incremental query processing on Big Data streams. CoRR,
abs/1511.07846 (2015)

5. Handoko, Getta, J.R.: Dynamic query scheduling for online integration of semi-
structured data. In: 2015 IEEE 39th Annual Computer Software and Applications
Conference (COMPSAC), vol. 3, pp. 375–380, July 2015

6. Ma, H., Schewe, K.-D.: Fragmentation of XML documents. J. Inf. Data Manage.
1(1), 21–33 (2010)

7. Özsu, T.M., Valduriez, P.: Principles of Distributed Database Systems, 3rd edn.
Springer, Heidelberg (2011)

8. Wang, G., Huo, H., Han, D., Hui, X.: Query processing and optimization techniques
over streamed fragmented XML. World Wide Web 11(3), 339–359 (2008)

9. Wu, X., Theodoratos, D.: A survey on XML streaming evaluation techniques. VLDB
J. 22(2), 177–202 (2013)

http://dx.doi.org/10.1007/978-3-540-24607-7_13


http://www.springer.com/978-3-319-54471-7


	Online Integration of Fragmented XML Documents
	1 Introduction
	2 Previous Work
	3 Principles and Assumptions
	4 Fragmented XML Document
	5 Operations of XML Algebra
	6 Online Integration of XML Fragments
	6.1 Data Integration Expression
	6.2 Increment Expression
	6.3 Online Integration Plans for XML Fragments

	7 Summary and Future Work
	References


