
Preface

Quick, think about a problem that vexes you. Too easy, right? The only difficulty
you’d likely face is narrowing it down to a singular problem. Now think of another
one. But this time, dig deep into your brain. Think of a problem that keeps you up at
night, one that bothers you day in and day out, one that is seemingly intractable.
Got one? Good, now think about what it is that characterizes this problem. What
makes it hard? Why haven’t you solved it yet?

Lyons (2004) offers the following barriers to solving what he calls systemic
problems:

• Lack of incentives
• Limited resources
• Limited levers to change
• Limited power/authority
• Uncertain outcomes

We may summarize this list as saying that your problem is complex. But what,
exactly, does that mean? What makes a problem complex? Is complexity a binary
characteristic of a problem? That is, is a problem definitively complex or not? Does
the complexity of a problem change throughout its development? These and more
issues lead to perhaps the most fundamental introductory question for us, that is,
how do we define complexity in a manner that is meaningful to us as practitioners
and researchers.

Well, complexity is a loaded term. In fact, the notion of complexity is one that
has been debated for decades in the scientific community and yet, no consensus on
its definition has been reached (Gershenson, 2007; Lloyd, 2001; McShea, 1996;
Mitchell, 2009). Precisely defining what is intended by the term complexity evokes
former US Supreme Court Justice Potter Stewart’s [1915–1985] famous description
of obscenity, I know it when I see it; we know something is complex when we see
it. Of course, from a scientific perspective, this is imprecise and problematic.

Literature abounds with measures proposed for evaluating complexity. We can
measure the complexity of a system using a number of metrics such as Shannon’s

vii



information entropy (Shannon & Weaver, 1949), algorithmic information content
(Chaitin, 1966; Kolmogorov, 1965; Solomonoff, 1964), effective complexity
(Gell-Mann, 1995), logical depth (Bennett, 1986), thermodynamic depth (Lloyd &
Pagels, 1988), statistical complexity (Crutchfield & Young, 1989), hierarchy
(Boulding, 1956; Simon, 1962), a set of predefined characteristics (Cilliers, 1998;
Funke, 1991, pp. 186–187), and a number of other measures (Lloyd, 2001).
Criticisms of these measures range from a lack of intuitive results when using some
measures (information entropy, statistical complexity, and algorithmic information
content) to the lack of a practical means for consistently utilizing other measures
(logical depth, effective complexity, and thermodynamic depth). Mitchell (2009)
discusses the drawbacks of many of these measures and suggests that none have
obtained universal appeal as a practical and intuitive means of measuring the
complexity of a system. McShea (1996) agrees, stating, “…no broad definition has
been offered that is both operational, in the sense that it indicates unambiguously
how to measure complexity in real systems, and universal, in the sense that it can be
applied to all systems” (p. 479). In the absence of a universal measure of com-
plexity, we will investigate two perspectives for defining complexity, namely
characteristic complexity and hierarchical complexity, in an effort to provide some
structure to the concept.

Characteristic Complexity

We may conceive of complexity as being measured by the extent to which a
situation or problem exhibits a number of predefined characteristics. One such set
of characteristics was posed by noted psychologist Joachim Funke (1991,
pp. 186–187) as characterizing complex problem-solving situations:

• Intransparency: Intransparency refers to the lack of availability of information
in our problem. An intransparent problem represents a situation in which all
variables cannot be directly observed. In this case, we may have to infer
information about the underlying state of the system, or too many variables
exist, leading to our selection of only a handful for observation and analysis.

• Polytely: From the Greek words poly and telos meaning many goals. This set of
goals can be thought in many forms. We may have many individuals associated
with our problem, and each harbors their own needs and wants. These interests
are likely not to be directly aligned; thus, they compete for our attention,
requiring trade-offs. Similarly, objectives within our problem are not typically
straightforward. Complex problems involve multiple, conflicting objectives.
Finally, our problem will likely require competition for resources. We do not
have unlimited resources; thus, we are limited in our ability to address our
problem in the most straightforward and effective manner.
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• Complexity: Here, Funke is referring to the number of variables, the connectivity
between these variables, and the nature of their relationship (i.e., linear
vs. nonlinear). Funke (1991) summarizes complexity as:

A complex problem-solving situation is not only characterized by a large number of
variables that have to be considered, but also by their complex connectivity pattern, by the
possibilities to control the system, and by the dynamic aspects of the system. The growing
complexity of situational demands may conflict with the limited capacity of the problem
solver. (pp. 186–187)

• Variable connectivity: A change in one variable is likely to affect the status of
many other variables. Given this high connectivity, consequences are difficult to
predict. That is, there is substantial unpredictability in the behavior of the
problem. Even the most tried-and-true of modeling techniques fail to capture
the behavior of modern problems—events such as Hurricanes Katrina or Sandy,
the housing market crash, and other so-called Black Swans (Talib, 2007). These
unpredictable phenomena go beyond the bounds of our uncertainty analysis
techniques and require us to consider the robustness of our institutions, orga-
nizations, and supporting systems. Considering these phenomena in concert
with shrinking resources, we have a quandary. More resources are required to
plan for unpredictability, yet we lack sufficient resources to address these
concerns completely. Thus, we must make compromises to account for this
inherent contradiction.

• Dynamic developments: There is often considerable time pressure to address
problems before they worsen. Positive changes also occur, but these changes
could lead to further unpredictability. This is complicated by humans’ bias for
action. Most people are uncomfortable with situations that are unresolved. We
want an answer and we want it now. One must simply look at the increase in
information availability over the last decade to understand how the world has
transformed into one demanding instant gratification. No longer are we content to
pull an encyclopedia off our book shelf (that is, if we even own an encyclopedia
anymore) and look up the answer to a question. Instead, we pull out our smart
phone and Google it, expecting an instant answer, and grumbling when our
Internet connection hits a snag. This behavior is problematic when the problems
of substantial complexity are considered. Choosing to act, to get an answer right
now, rather than obtaining additional information, may lead to an inferior choice
based on insufficient information. We must carefully weigh the desire to obtain
more information with our potential for loss and what may have been. To put it
another way, we must choose between getting it right and getting it right now.

• Time-delayed effects: Effects often occur with a time delay. This requires
patience on the part of the individual concerned with the problem. This is in
direct contrast to the need for near-term action discussed in the previous
element.
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To this list, we add two characteristics:

• Significant uncertainty: Complex problems have substantial uncertainty. That is,
there are unknown elements which plague our problem. Some are so-called
known unknowns such as the fact that market demand for a new product is
unknown. These uncertainties come from the variables that are known to exist in
a problem (but that have some level of random behavior associated with them
that can be expressed by probability distributions). These types of uncertainties
are present in any real-world problem due to the inherent variability of the
natural world. So we use probabilistic information to reason about and predict
these phenomena. More difficult to deal with are unknown unknowns such as the
fact that we do not know what our competitors will do. This type of uncertainty
comes from lack of knowledge of the larger system of problems (which we will
later classify as a mess) of which our problem is a part. Will we be instantly
outclassed by our competitors the day our new product is introduced to the
market (or worse, before we even release our product)? To estimate these
uncertainties, we typically turn to experts for their insight. Both sources of
uncertainty, known and unknown unknowns, complicate our problem landscape
but cannot be ignored.

• Humans-in-the-loop: Designing a mechanical system given a set of specifica-
tions may be straightforward, but designing the same system while incorpo-
rating human factors, including elements such as ergonomics, fatigue, and
operator error prevention, is substantially more complex. Once we insert
humans into our problem system, all bets are off, so to speak. In many ways,
humans are the ultimate trump card. They represent the one factor that seem-
ingly ignores all the hard work, all the calculations, all the effort, that has gone
into the development of a solution to our problem. They exploit the one
weakness or vulnerability in our problem system that no amount of simulations,
trial runs, mock-ups, or counter-factuals could have accounted for. They are
intransparent, uncertain, competitive, unpredictable, and have a bias for action,
all factors that we’ve indicated make a problem hard. To boot, they are not
mechanistic; they have feelings and emotions, and difficult problems are often
especially emotional issues. Think about some of the most difficult problems
facing our current society, e.g., health care or higher education; they are highly
emotional topics likely to elicit an emotionally charged response from even the
most level-headed of individuals. Thus, even when we think we have it all
figured out, humans enter the equation and blow it all apart.
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Hierarchical Complexity

Conversely, it may be advantageous for us to think of complexity as existing in a
hierarchical fashion. Jackson (2009) summarizes the work of Boulding (1956) in
creating a nine-level hierarchy for real-world complexity, as shown in Table 1 and
in keeping with the principle of hierarchy (Pattee, 1973).

Each of these levels is of increasing complexity, and each contains emergent
properties not found in the levels below. Thus, in seeking to understand a given
level, we must also understand those levels beneath it, invoking the principle of
recursion (Beer, 1979). Boulding (1956) comments on the maturity of our
knowledge about the levels in his hierarchy:

One advantage of exhibiting a hierarchy of systems in this way is that it gives us some idea
of the present gaps in both theoretical and empirical knowledge. Adequate theoretical
models extend up to about the fourth level, and not much beyond. Empirical knowledge is
deficient at practically all levels. Thus, at the level of the static structure, fairly adequate
descriptive models are available for geography, chemistry, geology, anatomy, and
descriptive social science. Even at this simplest level, however, the problem of the adequate
description of complex structures is still far from solved. (p. 205)

Table 1 A summary of Boulding (1956) hierarchy of complexity (Jackson, 2009, p. S25)

Level Description Example

1 Structures and frameworks which exhibit static behavior and are studied
by verbal or pictorial description in any discipline

Crystal
structures

2 Clockworks which exhibit predetermined motion and are studied by
classical natural science

The solar
system

3 Control mechanisms which exhibit closed-loop control and are studied
by cybernetics

A thermostat

4 Open systems which exhibit structural self-maintenance and are studied
by theories of metabolism

A biological
cell

5 Lower organisms which have functional parts exhibit blue-printed
growth and reproduction, and are studied by botany

A plant

6 Animals which have a brain to guide behavior are capable of learning,
and are studied by zoology

An elephant

7 People who possess self-consciousness know that they know, employ
symbolic language, and are studied by biology and psychology

Any human
being

8 Sociocultural systems which are typified by the existence of roles,
communications and the transmission of values, and are studied by
history, sociology, anthropology, and behavioral science

A nation

9 Transcendental systems, the home of ‘inescapable unknowables’, and
which no scientific discipline can capture

God
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Despite our relative naïveté about the higher levels of the hierarchy, Boulding
(1956) notes that all hope is not lost:

Nevertheless as we move towards the human and societal level a curious thing happens: the
fact that we have, as it were, an inside track, and that we ourselves are the systems which
we are studying, enables us to utilize systems which we do not really understand.
(pp. 206-207)

Thus, even though we may not understand systems at the higher levels of this
hierarchy in the theoretical sense, we can work with, utilize, and make sense
of them. This is absolutely necessary as we attempt to determine the appropriate
opportunity to intervene in a problem system.

So, what is one to do? Well, we could avoid all problems exhibiting one or all
of the characteristics of complexity, existing within Boulding’s hierarchy, or fun-
damentally identified as complex by us as researchers and practitioners. This leaves
a very small, uninteresting subset of the world to deal with. Alternatively, we
suggest that all hope is not lost. We simply need a new way to reason about these
problems that goes beyond the traditional methods we employ. Full disclosure—the
authors of this book are engineers by education. But we’ve worked in industry and
the military for many years and we’ve come to understand that no single discipline
can solve truly complex problems. Problems of real interest, those vexing ones that
keep you up at night, require a discipline-agnostic approach. They require us to get
out of our comfort zone a little bit, to reach across the aisle and embrace those
fundamental concepts of other disciplines that may be advantageous to our effort.
Simply, they require us to think systemically about our problem.

Fundamentally, we need a novel way to address these problems, and more
specifically, to do so systemically, hence the title of this book. It is the hope of the
authors that, after reading this book, readers will gain an appreciation for a novel
way of thinking and reasoning about complex problems that encourages increased
understanding and deliberate intervention. We set out to provide this in a manner
that is not predicated on the reader being either an engineer or a scientist. Indeed,
most of the complex problems vexing us are not engineering or scientific problems,
at least in the strictest sense. Complex problems such as climate change, world
hunger, poverty, and global conflict know no disciplinary boundaries. So, you’ll see
us draw from engineering and science to be sure, but we’ll also draw from
psychology, mathematics, sociology, management, and many other fields in an
effort to develop a robust approach to thinking about and addressing problems. To
support this approach, this book is divided into four major sections: (1) A Frame of
Reference for Systemic Decision Making; (2) Thinking Systemically; (3) Acting
Systemically; and (4) Observing Systemically.

This book is intended for use by practitioners tasked with addressing complex
problems or individuals enrolled in a graduate or advanced undergraduate class.
Given its discipline-agnostic nature, it is just as appropriate for use in a business,
sociology, or psychology course as it is in an engineering or scientific course.
Regarding its instruction, the chapters should be taught in order. Part I provides the
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proper theoretical foundation necessary for Parts II–III. Part II provides a multi-
methodology for thinking systemically about complex problems and problem
systems. Part III provides an approach for acting on the complex problems and
problem systems investigated in Part II. Finally, Part IV discusses observation of
actions undertaken in Part III, and it provides a comprehensive case study
demonstrating the material discussed throughout the text.
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