Chapter 2
Theory of Outlier Ensembles

Theory helps us to bear our ignorance of facts.
George Santayana

2.1 Introduction

Outlier detection is an unsupervised problem, in which labels are not available with
data records [2]. As a result, it is generally more challenging to design ensemble
analysis algorithms for outlier detection. In particular, methods that require the use
of labels in intermediate steps of the algorithm cannot be generalized to outlier
detection. For example, in the case of boosting, the classifier algorithm needs to be
evaluated in the intermediate steps of the algorithm with the use of training-data
labels. Such methods are generally not possible in the case of outlier analysis. As
discussed in [1], there are unique reasons why ensemble analysis is generally more
difficult in the case of outlier analysis as compared to classification. In spite of
the unsupervised nature of outlier ensemble analysis, we show that the theoretical
foundations of outlier analysis and classification are surprisingly similar. A number
of useful discussions on the theory of classification ensembles may be found in
[27, 29, 33]. Further explanations on the use of the bias-variance decomposition in
different types of classifiers such as neural networks, support vector machines, and
rule-based classifiers are discussed in [17, 30, 31]. It is noteworthy that the bias-
variance decomposition is often used in customized ways for different types of base
classifiers and combination methods; this general principle is also true in outlier
detection.

Several arguments have recently been proposed on the theory explaining the
accuracy improvements of outlier ensembles. In some cases, incorrect new argu-
ments (such as those in [32]) are proposed to justify experimental results that can
be explained by well-known ideas, and an artificial distinction is made between
the theory of classification ensembles and outlier ensembles. A recent paper [4]
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clarifies these misconceptions and establishes that the theoretical foundations of
outlier analysis are very similar to those of classification. Bias-variance theory
[13, 16, 20, 21] is a well-known result in the classification domain, which explains
the varying causes of error in different classification methods. This chapter will revisit
these results and provide deeper insights behind some of these results. A observation
is that even though labels are unobserved in outlier analysis (unlike classification), it
does not change the basic foundations of bias-variance theory for outlier ensemble
analysis in a significant way. In fact, it was shown in [4] that a minor modifica-
tion of the existing theory for classification ensembles can also be used for outlier
ensembles.

Bias-variance theory characterizes the output of learning processes in terms of
the expected error of an algorithm over a set of randomized instantiations of the
algorithm. It is noteworthy that the applicability of an algorithm on a specific data
set is often dependent on a number of randomized choices, some of which are hidden
and others are visible. For example, the specific choice of the training data is often
achieved through a data collection process that is (often) hidden from the analyst.
Nevertheless, the specific choice of the training data induces a random element into
the accuracy, which is characterized by a component of bias-variance theory. Simi-
larly, the choice of a specific model or the randomized selection of a particular design
choice of the detector is more obviously visible during execution. These random-
ized choices induce errors, which can be defined as random variables. Bias-variance
theory decomposes these randomized errors into two parts, each of which can be
reduced with a specific type of ensemble-centric design. Therefore, a proper under-
standing of the theoretical foundations of outlier ensembles is crucial in designing
accurate algorithms that reduce bias or variance.

Intuitively, the model bias defines the basic “correctness’ of a model. For example,
consider a data set in which all the normal points are distributed on the surface of
a unit sphere in three dimensions. A single outlier is located in the empty central
region of the sphere. In this case, a multivariate extreme value analysis method (e.g.,
distance from centroid) is the worst possible model to use because it is based on a
wrong model of how outliers are distributed. This portion of the error is referred to as
the bias. Now, consider a setting in which we used a 1-nearest neighbor algorithm in
order to score the points. Even though this model will generally provide good results,
itis possible for a particular draw of the data from the base distribution to score some
of the points on the unit sphere as outliers. This is because such points may be isolated
with respect to particular draw, which is regulated by random variance. This portion
of the error is referred to as the variance. Bias-variance theory quantifies the error as
a combination of these two quantities.

Traditionally, bias-variance theory is defined over a random process, which cor-
responds to the selection of training data sets from a base distribution. Although
this view is very useful for explaining several methods like bagging, it is often not
quite as useful for explaining the effectiveness of methods like random-forests. In
fact, random-forests have not been fully explained [12] even today, even though they
are widely recognized to be variance-reduction methods. Therefore, this book will
take a more generalized view of bias-variance theory in which the random process
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is not only allowed to be draws of the training data but also allowed to be random-
ized choices made in the base detector itself. This provides a model-centric view of
bias-variance theory rather than a data-centric view. For the same algorithm, there are
therefore multiple ways in which the bias-variance decomposition can be performed.
These different ways provide different insights into explaining the effectiveness of
the ensemble. We will also explain these differences with a number of simulations on
synthetically generated data sets. It is noteworthy that even though the model-centric
approach for bias-variance decomposition is proposed for outlier ensembles (in this
book), it can be easily extended to classification ensembles, where it has not been
explored previously.

This chapter is organized as follows. In the next section, we provide areview of the
bias-variance trade-off for outlier detection, and its similarity and differences with the
corresponding trade-off in classification. This section will also discuss the effect of
the specific random process used for bias-variance decomposition. The applications
of these theoretical foundations to the outlier detection problem are discussed in
Sect. 2.3. An experimental illustration of bias-variance theory is provided in Sect. 2.4.
The effect of using different types of random processes for performing the bias-
variance decomposition is also described in this section. Section2.5 discusses the
conclusions and summary.

2.2 The Bias-Variance Trade-Off for Outlier Detection

The bias-variance trade-off is often used in the context of supervised learning prob-
lems such as classification and regression. Recent work [4] has shown how a parallel
bias-variance theory can also be developed for outlier detection. Although labels
are not available in outlier detection, it is still possible to create bias and variance
quantifications with respect to an unknown but ideal ground-truth. In other words,
the bias and variance can be quantified as a theoretical construct (with respect to
the unobserved ground-truth) but it cannot be evaluated in practice for a particular
application. This point of view turns out to be useful in adapting supervised ensemble
methods to the unsupervised setting, as long as these methods do not use the ground
truth in their intermediate steps. Furthermore, as we will study in this chapter, the
bias and variance can be roughly quantified on an experimental basis when rare class
labels are used as substitutes for outlier labels in real applications. These relation-
ships between the theoretical foundations of classification ensembles and those of
outlier ensembles were first discussed in [4]. The discussion in this section is based
on this work.

Most outlier detection algorithms output scores to quantify the “outlierness” of
data points. After the scores have been determined, they can be converted to binary
labels. All data points with scores larger than a user-defined threshold are declared
outliers. An important observation about outlier scores is that they are relative. In
other words, if all scores are multiplied by the same positive quantity, or translated
by the same amount, it does not change various metrics (e.g., receiver operating
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characteristic curves [ROC]) of the outlier detector, which depend only on the ranks
of the scores. This creates a challenge in quantifying the bias-variance trade-off
for outlier analysis because the uniqueness of the score-based output is lost. This is
because the ROC provides only an incomplete interpretation of the scores (in terms of
relative ranks). It is possible to work with crisper definitions of the scores which allow
the use of more conventional error measures. One such approach, which preserves
uniqueness of scores, is that the outlier detectors always output standardized scores
with zero mean, unit variance, and a crisp probabilistic interpretation. Note that one
can always apply [1] a standardization step as a post-processing phase to any outlier
detector without affecting the ROC; this also has a natural probabilistic interpretation
(discussed below).

Consider a data instance denoted by Yi, for which the outlier score is modeled
using the training data . We can assume that an ideal outlier score y; exists for this
data point, even though it is unobserved. The ideal score is output by an unknown
function f (Y[), and it is assumed that the scores, which are output by this ideal
function, also satisfy the zero mean and unit variance assumption over all possible
points generated by the base data distribution:

yi =f(X) 2.1)

The interpretation of the score y; is that by applying the (cumulative) standard normal
distribution function to y;, we obtain the relative outlier rank of X; with respect to all
possible points generated by the base data distribution. In a sense, this crisp definition
directly maps the score y; to its (percentile) outlier rank in (0, 1). Of course, in
practice, most outlier detection algorithms rarely output scores exactly satisfying
this property even after standardization. In this sense, f(X;) is like an oracle that
cannot be computed in practice; furthermore, in unsupervised problems, we do not
have any examples of the output of this oracle.

This score y; can be viewed as the analog to a numeric class variable in classi-
fication/regression modeling. In problems like classification, we add an additional
term to the right-hand side of Eq.2.1 corresponding to the intrinsic noise in the
dependent variable. However, unlike classification, in which the value of y; is a part
of the observed data for training points, the value y; in unsupervised problems only
represents a theoretically ideal value (obtained from an oracle) which is unobserved.
Therefore, in unsupervised problems, the labeling noise' no longer remains relevant,
although including it makes little difference to the underlying conclusions.

Since the true model f (-) is unknown, the outlier score of a test point X; can only be
estimated with the use of an outlier detection model g(X;, 2) using base data set 2.
The model g(X;, 2) is only a way of approximating the unknown function f (X;), and

UIf there are errors in the feature values, this will also be reflected in the hypothetically ideal (but
unobserved) outlier scores. For example, if a measurement error causes an outlier, rather than an
application-specific reason, this will also be reflected in the ideal but unobserved scores.
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it is typically computed algorithmically. For example, in k-nearest neighbor outlier
detectors, the function g(X;, &) is defined as follows:

¢(X;, ) = aKNN-distance(X;, Z) + B 2.2)

Here, o and B are constants which are needed to standardize the scores to zero mean
and unit variance. It is important to note that the k-nearest neighbor distance, o, and
B depend on the specific data set 2 at hand. This is the reason that the data set 2 is
included as an argument of g(X;, 2). We note that the above example of g(X;, ) is
only for illustrative in nature and the theoretical results do not assume any particular
form of the outlier score such as a density estimator or a k-nearest neighbor detector.

If the function g(X;, Z) does not properly model the true oracle £ (X;), then this
will result in errors. This is referred to as model bias and it is directly analogous
to the model bias used in classification. For example, the use of k-nearest neighbor
algorithm as g(X;, 2), or a specific choice of the parameter k, might result in the
user model deviating significantly from the true function f(X;). Similarly, if a linear
model is used to separate the outliers and inliers, whereas a nonlinear model is more
appropriate, then it will lead to a consistent error in the scoring process, which
corresponds to the bias. A second source of error is the variance. The variance is
caused by the fact that the outlier score directly depends on the data set & athand. Any
data set is finite, and even if the expected value of g(X;, ) correctly reflects £ (X;),
the estimation of g(X;, 2) with limited data would likely not be exactly correct. In
other words, g()?,- , 9) will not be the same as E [g(z, 2)] over the space of various
random choices of training data sets 2. Therefore, variance is a manifestation of
inconsistent behavior by the algorithm over the space of different random choices
of training data sets in which the same point receives very different scores across
different choices of training data sets.. This phenomenon is caused by the algorithm
adjusting too much to the specific nuances of a data set, and is also sometimes referred
to as overfitting.

Although one typically does not distinguish between training and test points in
unsupervised problems, one can easily do so by cleanly separating the points used for
model building, and the points used for scoring. For example, a k-nearest neighbor
detector would determine the k closest points in the training data for any point X;
in the test data. We choose to demarcate training and test data because it makes
our analysis cleaner, simpler, and more similar to that of classification; however, it
does not change? the basic conclusions. Let & be the training data, and X ... X,
be a set of test points whose (hypothetically ideal but unobserved) outlier scores are
Y1 ...y, Itis assumed that these out-of-sample test points remain fixed over different
instantiations of the training data &, so that one can measure statistical quantities
such as the score variance. We use an unsupervised outlier detection algorithm that

2t is noteworthy that the most popular outlier detectors are based on distance-based methods.
These detectors are lazy learners in which the test point is itself never included among the
k-nearest neighbors at prediction time. Therefore, these learners are essentially out-of-sample meth-
ods because they do not include the test point within the model (albeit in a lazy way).
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uses the function g(-, -) to estimate these scores. Therefore, the resulting scores
of X; ... X, using the training data Z are g(X1, 2) ... g(X,, Z), respectively. The
mean-squared error, or MSE, of the detectors of the test points over a particular
realization 2 of the training data is:

— I o o(X. 2
MSE = - g{yl X, 7)) (2.3)

The expected MSE, over different realizations of the training data, generated using
some random process, is as follows:

I w —
EIMSE] = ~ > Ellyi — 8%, 2)F’] (2.4)

i=1

The different realizations of the training data & can be constructed using any crisply
defined random process. In the traditional view of the bias-variance trade-off, one
might assume that the data set Z is generated by a hidden process that draws it
from a true distribution. The basic idea is that only one instance of a finite data
set can be collected by the entity performing the analysis, and there will be some
variability in the results because of this limitation. This variability will also lead
to some loss in the accuracy over a setting where the entity actually had access to
the distribution from which the data was generated. To the entity that is performing
the analysis, this variability is hidden because they have only one instance of the
finite data set. Other unconventional interpretations of the bias-variance trade-off are
also possible. For example, one might construct each instantiation of & by starting
with a larger base data set 2 and use random subsets of points, dimensions, and
so on. In this alternative interpretation, the expected values of the MSE is computed
over different instantiations of the random process extracting & from %. Finally,
one might even view the randomized process of extracting 2 from %, as a part
of the base detector. This will yield a randomized base detector g(Yi, D), but a
fixed data set Z. Therefore, the random process is now defined with respect to the
randomization in base detector, rather than the training data selection process.
These different interpretations will provide different bias-variance decomposi-
tions of the same (or almost the same) MSE. We will provide specific examples
of the different types of decomposition in a Sect.2.4 with synthetic simulations. It
is important to define the underlying random process clearly in order to properly
analyze the effectiveness of a particular ensemble method. Note that even though
the training data & might have different instantiations because it is generated by a
random process, the test points X . .. X, always remain fixed over all instantiations
of the random process. This is the reason that we chose to demarcate the training
and test data; it allows us to evaluate the effects of changing the training data (with
a random process) on the same set of test points. If the predictions of the same test
points vary significantly over various instantiations of the random process, we say
that the model has high variance. Note that high variance will increase the overall
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error even if the prediction of the test point is accurate in expectation. On the other
hand, if the expected prediction of each test point is inaccurate, we say that the model
has high bias. The basic idea is to decompose the error of the classifier into these
two components. This type of decomposition provides the intuition needed to design
algorithms that can reduce error by reducing one of these components.

The term in the bracket on the right-hand side of Eq.2.4 can be re-written as
follows:

1 < _ _ _
E[MSE] = - ZE[{(yi — ) + FX) — gCG, D)) (2.5)

i=1

Note that we can set (y; — f(X;)) on the right-hand side of aforementioned equation
to 0 because of Eq.2.1. Therefore, the following can be shown:

1< _ _
EIMSE] = — > Elf (X) — ¢ (X, 2)F’] (2.6)
i=1

This right-hand side can be further decomposed by adding and subtracting
E[g(X;, Z)] within the squared term:

1 < — —
EIMSE] =— > EI{f (X) — Elg(X;, 2)11°]
i=1

2 — — — _
+ = DX — Elg (e, DINEI (i, 2)] = Elg(X;, 7))}

i=1

1 « — -,
+— 2 EUER(K: )] = 8 (X, 2)F)

i=1

The second term on the right-hand side of the aforementioned expression evaluates
to 0. Therefore, we have:

1 - — — 1 « — —
E[MSE] = — ZE[{f(Xi) — E[gX;. D)W 1+ - ZE[{E[g(Xi, D - 8X;. D
" i=1 n i=1
1 n . . 5 1 n . . 5
=- Z{f(Xi) —ElgX;, DI + - ZE[{E[g(Xi, D - gXi, D)}
"= =
The first term in the aforementioned expression is the (squared) bias, whereas the
second term is the variance. Stated simply, one obtains the following:

E[MSE] = Bias® + Variance (2.7)
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This derivation is very similar to that in classification although the intrinsic error
term is missing because of the ideal nature of the score output by the oracle. The bias
and variance are specific not just to the algorithm g(X;, 2) but also to the random
process used to create the training data sets 9. Although this random process is
generally assumed to be that of selecting a training data set from a base distribution,
it could, in principle, be any random process such as the randomized algorithmic
choices inside the base detector. The second view is non-traditional, but is more
helpful in explaining the performance of certain types of outlier detectors.

A second issue is about the nature of the assumptions on the scores that were used
at the very beginning of the analysis. Although we did make an assumption on the
scaling (standardization) of the scores, the basic result holds as long as the outputs of
the base detector and oracle have the same mathematical interpretation. For example,
we could very easily have made this entire argument under the assumption that both
the base detector g(X;, 2) and the oracle f(X;) directly output the relative ranks in
(0, 1). In other words, the above arguments are general, and they are not specific
to the use of any particular outlier detector or assuming that outlier detectors are
density estimators.

2.2.1 Relationship of Ensemble Analysis to Bias-Variance
Trade-Off

Ensemble analysis is a way of combining different models in order to ensure that
the bias-variance tradeoff is optimized. In general, one can view the output of a base
detector g(X, Z) as a random variable, depending on a random process over either
the selection of the base data &, or the construction of the detector g(-, -) itself,
which might be randomized. The overall mean-squared error of this random variable
is reduced with respect to the unknown oracle output f (X) by the ensemble process.
This is achieved in two ways:

1. Reducing bias: Some methods such as boosting reduce bias in classification by
using an ensemble combination of highly biased detectors. The design of detectors
is based on the performance results of earlier instantiations of the detector in order
to encourage specific types of bias performance in various components. The final
combination is also carefully designed in a weighted way to gain the maximum
advantage in terms of overall bias performance. However, it is generally much
harder to reduce bias in outlier ensembles because of the absence of ground truth.
Nevertheless, some methods have been designed to heuristically reduce bias in
the context of outlier ensemble analysis [25, 26, 28].

2. Reducing variance: Methods such as bagging, bragging, wagging, and subag-
ging (subsampling) [9-11], can be used to reduce the model-specific variance in
classification. In this context, most classification methods generalize directly to
outlier ensembles. In most of these methods the final ensemble score is computed
as an average of the scores of various detectors. The basic idea is that the average
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of a set of random variables has lower variance. In a sense, many of the variance
reduction methods like bagging try to roughly simulate the process of drawing
the data repeatedly from a base distribution. We will explain this point in greater
detail in later chapters.

The “unsupervised” nature of outlier detection does not mean that bias and variance
cannot be defined. It only means that the dependent variables are not available with
the training data, even though an “abstract,” but unknown ground truth does exist.
However, the bias-variance trade-off does not rely on such an availability o the base
algorithm. None of the steps in the aforementioned computation of mean-squared
error rely on the need for g(X;, ) to be computed using examples of the output of
oracle f(-) on points in Z. This is the reason that variance-reduction algorithms for
classification generalize so easily to outlier detection.

2.2.2 OQut-of-Sample Issues

It is noteworthy that the test points X . .. X, are cleanly separated from the training
data & in the aforementioned analysis, and are therefore out-of-sample with respect
to &. Note that the random process varies the training data sets over different instan-
tiations but the same fixed set X . . . X, of test points is used for each instantiation of
the training data. Even in classification, the bias-variance trade-off is always under-
stood in terms of the performance of the detector on out-of-sample test points that
are fixed over the various instantiations of the training data.

However, in outlier detection, one typically does not distinguish between the
training and test data. A natural question, therefore, arises as to whether this difference
can affect the applicability of the bias-variance trade-off. We argue that even when
the training data is the same as the test data, the bias-variance trade-off still holds
approximately, as long as a leave-one-out methodology is used to construct the outlier
scores. The leave-one-out methodology means that, when scoring a test point X € 2,
one uses only & —{X} to construct the model. Such an approach is common in outlier
detection settings, especially when instance-based methods are used. For example, in
a k-nearest neighbor outlier detector or LOF detector, one typically does not include
the data point itself, while computing the k-nearest neighbors of a data point. In
other words, the outlier scores are almost always determined using a leave-one-out
methodology.

As aresult, the score of each point is computed in out-of-sample fashion, although
each test point is drawn from the same data set . The leave-one-out methodology is
a special case of the cross-validation methodology in classification, in which the data
isdivided into several folds, and one fold is classified using the remaining folds (as the
training data set). In the particular case of leave-one-out, each fold contains exactly
one data point, which is viewed as an extreme case of cross-validation. The cross-
validation methodology is known to estimate the bias and variance characteristics
of the out-of-sample setting very well, especially when the number of folds is large
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(as in the extreme case of leave-one-out). Although there are tiny differences among
the training data sets for various test points, the differences are small enough to
provide an excellent approximation of the bias-variance characteristics of the out-
of-sample setting.

2.2.3 Understanding How Ensemble Analysis Works

The bias-variance trade-off is defined in terms of a random process that creates the
different training data sets. Note that the definition of the random process is crucial
because the bias and variance are statistical quantities derived from this random
process. In fact, for the same algorithm, one might use different random processes
to describe it. Correspondingly, the error of the classifier will be decomposed into
the bias and the variance in many different ways depending on the random process
that is used. Furthermore, the overall error is also different depending on whether on
assumes the availability of the base distribution or not. Traditionally, the bias-variance
trade-off is understood from the perspective of sampling from a true distribution. In
such cases, the errors are computed with respect to the availability of infinite data,
and therefore the effect of finite size of the data is included in the error. In other
types of model-centric random processes, the availability of the base distribution is
not assumed, and therefore the overall error is lower (since it does not include the
portion caused by the finiteness of the data). In order to explain this point, we will
use a specific example.

Consider a mortgage application in which three banks collect data about the trans-
actions of various customers to make predictions about which (outlier) customers
are the ones most likely to default on their mortgage by using® outlier analysis. The
banks collect different types of data about the customers such as their demographics,
their past payment history, their salary, assets, and so on. Therefore, each bank has its
own set of training data which might be different. It is assumed that the training data
of each bank is drawn from the same base distribution, although each bank receives
a different instantiation of the training data. Furthermore, the banks see only their
own instantiation of the training data, and they have no access to each other’s instan-
tiations. Therefore, even though there is an inherent variance in the output over these
instantiations (even if all banks use the same detector), the banks are unable to see
each other’s data sets or results to fully appreciate the nature of this variance.

Consider a setting in which each of the three banks receives a mortgage application
from John. Therefore, John is a test point for which each bank needs to compute the
outlier score using the training data. Note that the training data across the three banks
are different, whereas the test point (John) is the same. This is the general assumption
in the bias-variance setting, where we compute the bias and variance on the same

3In practice, such unsupervised methods are never used in such real-life scenarios. This example
is only for illustrative purposes in order to provide a concrete example of the workings of the
bias-variance trade-off.
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set of test points using training data, which are generated by different instantiations
of the random process. For example, each bank could apply a k-nearest neighbor
outlier detector on its respective training data set to compute the outlier score for
John. Furthermore, let us assume for the purpose of argument that each bank uses
exactly the same value of k to execute the algorithm. In other words, the k-nearest
neighbor distance of John is computed with respect to its training data set to report
an outlier score. Clearly, each bank would receive a different outlier score for John
because of the difference in their training data sets. This difference corresponds to the
variance in the algorithm over different choices of training data sets. For theoretical
purposes, it is assumed that each bank uses the same random process to draw the
training data from the same base distribution. In practice, the banks use some data
collection mechanism to create the training data sets, and therefore the assumption of
drawing from a base distribution is simply a (hidden) theoretical assumption for the
purposes of analysis. The basic idea of variance in the context of a hidden process of
generating the training data sets is illustrated in Fig. 2.1. It is appropriate to consider
this variance as “hidden” in real settings, because each bank would have only one
instance of the training data, and may not notice the fact that some of the error in
their computation of John’s scores is explained by the variability in John’s scores by
other banks. After all, if all banks get very different scores for John with their data
sets, at least some of them are very wrong. In variance-reduction ensemble methods,
the goal is to minimize this hidden variability across the banks, with each entity

BASE
DISTRIBUTION

quv &——= DATA
'f(‘ COLLECTION

DATA SET B
(10,000 PTS)

DATA SET A
(10,000 PTS)

DATA SET C
(10,000 PTS)

P e e e = ———— - L]

I A 4 1

: APPLY 20-NN APPLY 20-NN APPLY 20-NN ! JOHN APPLIES
1 DETECTOR DETECTOR DETECTOR &= FORA

I | AND SCORE JOHN AND SCORE JOHN AND SCORE JOHN MORTGAGE
1

JOHN’S SCORE JOHN'’S SCORE JOHN’S SCORE
BY BANK A BY BANK B BY BANK C
~~—"

DATA-CENTRIC VARIANCE REFLECTS INCONSISTENCY OF JOHN’S SCORES
OVER DIFFERENT RANDOM CHOICES OF TRAINING DATA (DURING COLLECTION)

Fig. 2.1 Hidden variance caused by finite data set size



46 2 Theory of Outlier Ensembles

using only their local instance of the training data (assuming that each entity used
the ensemble on its instance).

The variance in John’s scores depends on the size of the training data sets are
drawn. One can view the available data as a finite resource that affects the variance
in the results. Smaller data sets have a negative impact on the accuracy of the approach
because of larger variance; after all, the variance is a component of the mean-squared
error. For example, if each bank draws a training data of the same small size from
the base distribution (i.e., collects a smaller training data set), the variance of their
scores on John would be larger. On the other hand, if each bank decides to use a
larger size of the training data, then the variance will be much smaller in the scores
of John. In general, when the variance is high, the quality of the scores obtained for
John will be lower because the variance is one of the components of the error. For
example, for bank A, its contribution to the variance is proportional to {g (John, 2)—
Elg(John, 2)1}%. Here, 2" represents the training data of bank A. The expected
score E[g(John, 9)] can be (very roughly) estimated as John’s average score over
the three different banks. The difference between this expected score and the ground-
truth score yields the bias performance. Unfortunately, in unsupervised settings, this
ground-truth is usually not available because of which the bias performance remains
purely a theoretical construct.

The bias often has a significant impact on the quality of the scores obtained
for John. In unsupervised problems, the bias is the most unpredictable part of the
performance that cannot be easily controlled. Consider a setting in which John occurs
together with a small cluster of similar anomalies. This example is illustrated in
Fig.2.2 where 4 outliers occur together in the vicinity of John. Such scenarios are
quite common in real settings; for example a small percentage of mortgage defaulters
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might exhibit their anomalous behavior for the same underlying causes (e.g., low
salary and high indebtedness). The training data for each bank will typically contain
this small cluster, and therefore the choice of the value of k is important for the
k-nearest neighbor detector. If each bank used a small value of £ such as 1, then
they would consistently obtain incorrect outlier scores for John. This is because the
expected score E[g(John, 2)] of the 1-nearest neighbor detector no longer reflects
f(John), when the value of k is set to 1. Given that the training data sets (of size
10,000) of all banks are drawn from the same base distribution, all of them are likely
to contain a small number of training points in the anomalous region populated by
John. Therefore, even through John should be considered an anomaly, it will typically
not be reflected as such with the use of k = 1. This portion of the error {f (John) —
E[g(John, 2)])? corresponds to the (squared) bias. Note that the bias heavily depends
on the data distribution at hand. For example, in the particular case of Fig.2.2, the
use of a small value of k leads to high bias. It is also possible (and relatively easy) to
construct data distributions in which small values of k lead to less bias. For example,
in a data distribution with randomly distributed (but isolated) outliers, small values
of k would be more effective. In a data distribution with anomalous clusters of
varying sizes, different choices of k would exhibit better bias on different points.
This aspect of outlier detection is very challenging because it is often difficult to
tune outlier ensemble algorithms to reduce the bias. Furthermore, it is often more
difficult to predict the bias trends in an unsupervised problem like outlier detection
as compared to classification. When a k-nearest neighbor classifier is used in the
supervised setting, the bias generally increases with the value of k& and the variance
generally reduces. However, in outlier detection (with a k-nearest neighbor detector),
the bias could either increase or decrease with k but the variance almost always
reduces with increasing k. It is noteworthy that it is not always necessary for the bias
and variance trends to be opposite one another even in classification, although such
a trade-off is often observed because of better ability to supervise the tuning of the
algorithm towards a pareto-optimal frontier of the bias-variance trade-off.

How can one reduce the variance in the scores? Consider an ideal theoretical
setting, in which each bank could draw as many training data sets as they wanted from
the base distribution. In such a case, each bank could repeat the process of drawing
training data sets over an infinite number of trials, determine the score for John over
each training data set, and average John’s scores over these different computations.
The result would be that all banks would obtain exactly the same score for John,
and the quality of the score would also be better because the variance component
in the error has dropped to 0. This scenario is shown in Fig.2.3a. However, this
is impossible to achieve in practice, because each bank only has one instantiation
of a finite data set, and therefore one cannot fully simulate the draws from a base
distribution, which is an infinite resource of data. The finite nature of the resource
(training data) ensures that some portion of the variance will always be irreducible.
Therefore, we somehow need a way to make use of this finite resource (data) as
efficiently as possible to minimize the variance. For example, running the detector
once on a data set containing 10,000 points is not the most efficient way of reducing
variance for the resource of 10,000 points. Very often, the quality of the scores
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obtained from using a 20-NN detector on 10,000 points are only marginally better
than those obtained using a 2-NN detector on 1,000 points, and one does not gain
much from increasing the size of the data by 10 times.

In order to reduce the variance more efficiently, we need multiple instantiations of
the training data set, which are derivatives of the original training data instance and
then average the scores from the different instantiations at the very end. By doing
S0, one is roughly trying to simulate the process of drawing the scores from the base
distribution by using the finite resource (data set) available to us. To achieve this goal,
one can divide the data set of 10,000 points into 10 equal parts and then compute
the outlier score of John with respect to each of these 1,000 points. Note that the
value of k can be adjusted to the same relative value to ensure greater similarity
in the two settings. For example, if we use & = 20 with 10,000 points, we can use
k = 2 with 1,000 points. By making this adjustment, the bias performance is roughly
similar in the two cases for an exact k-NN detector. By averaging John’s outlier score
across the 10 runs, the variance is greatly reduced, and the error closely reflects the
bias of using k = 2 on 1000 points (or k = 20 on 10,000 points). Of course, the
variance of an outlier detector with k = 2 on 1,000 sampled training points is greater
than that on an outlier detector with k = 20 on 10,000 sampled training points.
However, using averaging across 10 buckets of 1,000 points is a more efficient way
of reducing variance rather than simply increasing the size of the base data to 10,000
points. As a result, higher-quality results will generally be obtained by the bucketing
approach because the variance of John’s score will be smaller. For example, if all
three banks used this approach to determine John’s outlier score, their scores will
be more similar to one another with the bucketing approach. This is because they
have reduced the variance component of their scores. This scenario is illustrated in
Fig.2.3b. Interestingly, this example is s simple variant of a well-known technique
in classification referred to as subagging [9—11], and it provides a simple idea of
how a variance-reduction scheme works in ensemble analysis. The idea is to use the
finite data set available to us in the most efficient way possible to reduce variability
in the scores caused by the finite nature of the data set. It is noteworthy, that unlike
the case of Fig.2.3a, some part of the variance is irreducible in Fig.2.3b because
we only have access to a finite resource. It is also important to note that this type
of simulation is imperfect because it improves the accuracy in the vast majority
of the cases, but can also occasionally fail in some circumstances. This example
provides an understanding of the type of tricks that one commonly uses in order to
gain accuracy improvements. Since variance reduction is more common in outlier
ensemble analysis, as compared to bias reduction, much of our discussion will be
based on this aspect.
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2.2.4 Data-Centric View Versus Model-Centric View

The aforementioned discussion of the bias-variance trade-off is designed from the
perspective of a random process for choosing the training data set Z. In other
words, the expected values in the bias term %{f X)) —E[ g X, 2)1)? and the variance
term 1 > E[{E[g(X;, 2)] — g(X;, 2)}*] are both computed over various random
choices of training data sets. The basic idea here is that the training data set is cho-
sen from a true distribution by a random process that is hidden from us. This hidden
process induces variability in the scores. Furthermore, we have only one instantiation
of this hidden process, because the analyst (e.g., the bank in the previous section)
has only one instantiation of the data set, and one must reduce the variability in the
scores from this single instantiation. This is a more challenging setting than a case
in which an infinite resource of data, such as the base distribution, is available to
each bank. In the example in the previous section, all three banks were able to make
their outlier scores more similar to one another by using ensembles on their own data
sets (i.e., without using each other’s data sets) with the use of draws from the base
distribution. In the process, the quality of John’s scores typically improves for each
of the three banks because the variance component in the error has been reduced.

A common way in which the variability in the scores is reduced by many ensemble
analysis methods, is by using a random process to construct randomized derivatives
of the data set, and then averaging the scores from these different data sets. One
can view each derivative as a sample from the base distribution, although it does
not represent a theoretically ideal simulation because there will be correlations and
overlaps among these derivative data sets, which would not have occurred if they had
truly been drawn directly from the base distribution. This is the reason that ensemble
analysis only provides imperfect simulations that almost always improve accuracy,
but are not guaranteed to do so.

In our earlier example with the banks, the process of dividing the training data set
into ten segments and then averaging the scores reduces the variability of the output.
A theoretical explanation of this (imperfect) variance reduction process is provided
in Chap.3. However, from the perspective of bias-variance theory and ensemble
analysis, this random process need not be applied to the training data set &. The
randomness could easily be directly injected into the detector g(X;, &) rather than
the data sets. This leads to a model-centric view of the bias-variance trade-off. We
emphasize that this view of bias-variance is unconventional, and we have not seen
it discussed elsewhere. The traditional random process of sampling from a base
distribution is excellent for explaining certain ensemble methods like bagging and
subsampling, but its often not very good at explaining many other types of variance
reduction methods in which the detector is itself randomized.

In practice, there are several ways in which one can use the bias-variance trade-off
from the perspective of an ensemble method:

1. Consider an ensemble method like subsampling in which the training data sets
from drawn from the same base data set %,. How should one view the random
process for analyzing the bias-variance trade-off? In practice, one would need to
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break up the random process into two separate steps. The first random process,
which is hidden, produces a training data set %, from an unknown base distrib-
ution. The second random process of ensembling produces different choices of
training data sets &, each of which is a subset of Z. This is the scenario discussed
in the previous section. This is equivalent to saying that each data set Z is directly
selected from the (hidden) base distribution, although different instantiations of
the data might have overlaps because of the dependencies in the sampling process.
Therefore, the ensemble method simulates the process of generating training data
sets from the base distribution although the simulation is imperfect because of
dependencies among the base detectors caused by the finiteness of the resource
with which we are attempting to perform the simulation.

For methods like subsampling there is an alternative way in which one can view
the random process for the bias-variance trade-off. For example, one can perform
bias-variance analysis under the assumption that the random process generates
the training data directly from %, and simply omit the first step of sampling %
from the base distribution. The use of such a random process results in dividing
the same error into bias and variance in a different way as the case in which we
assume the existence of a base distribution. Furthermore, the overall error is also
different because we no longer have the variability of drawing %, from the base
distribution. We will provide a better understanding of these decompositions later
in this chapter. The main point to keep in mind is that the bias and variance will
depend not only on the choice of the detector g(X;, Z) but also on the random
process to construct the training data sets &. Traditionally, the selection of %
from a base distribution is always assumed in order to capture the variance of the
hidden process that generates a finite data set. Note that this type of randomized
process is relevant to the data-centered ensembles discussed in Chap. 1.

2. The random process injects randomness within the detector g (X;, 2) but the data
set Z is fixed. For example, while using a k-nearest neighbor detector, one might
simply choose the value of k randomly from a range. Therefore, the bias and
variance of a randomized detector is defined by its randomized design choices
over a fixed data set. In such a case, it is important to note that the expectation
E[MSE] of bias-variance theory is no longer over the randomized choices of
training data, but over the randomized choices in model design. For example, a
user might not be certain over the value of k to use, and might guess the choice
of k, which is virtually equivalent to making a random choice within a range.
By modeling k to be drawn randomly from a range of values, the bias-variance
decomposition provides a model-centric variability, which is specific to parameter
choice. However, by ensembling over different values of &, one is able to reduce
this randomness.

This second form of the bias-variance trade-off is unconventional, but it is more
useful for the analysis of model-centered ensembles discussed in Chap. 1. The
key point to understand is that the bias-variance trade-off is designed with respect
to a random process, and this random process can be different, depending on
the kind of ensemble algorithm one is looking at. Furthermore, this form of the
bias-variance trade-off is more general because data-centered ensembles can be
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considered special cases of model-centered ensembles. For example, the data
selection process in bagging can be considered a part of the randomized algo-
rithm g (X, D), where ) is the fixed base data from which the points are selected.
The randomized algorithm g(X;, %) samples the points randomly with replace-
ment, and therefore the data sampling process is part of the detector g. A data-
centric view would be that the algorithm g is deterministic but the data set &
is selected randomly from % in order to run g(z, 2). Furthermore, one can
assume that % is itself selected from an unknown base distribution by a hid-
den process. This is equivalent to saying that the data set & is directly selected
from the (hidden) base distribution, although different instantiations of the data
might have overlaps because of the dependencies in the sampling process. The
data-centric view is more useful in methods like bagging (and its variants like
subagging/subsampling), which reduce the variance resulting from the hidden
process. Therefore, for any given ensemble algorithm, it is important to properly
select the random process that best explains its performance. The model-centric
view is more useful in methods that reduce the uncertainty arising from model
selection choices. An example is the choice of the parameter & in distance-based
algorithms. In fact, different values of kK may be more suitable for different data
points, and the ensemble will often do better than the median performance over
these different choices. Such methods cannot be explained with a data-centric
view. We believe that one of the reasons that methods like random forests have
not been properly explained [12] in supervised settings like classification is that
the literature has generally taken an (inflexible) data-centric view to the bias-
variance trade-off.

It is possible for the random process to choose both the detector g(X;, ) and the
data set &. For example, one might use different choices of the parameter £ in a
distance-based algorithm over different bags of the data.

Variance reduction methods can be explained very easily with the use of the bias-
variance trade-off. The basic idea in all variance reduction algorithms follows the
same framework:

1.

Use a data-centric or model-centric random process to generate randomized out-
puts from various base detectors. For example, one might generate randomized
versions of the data sets (subsets of points or dimensions), or one might generate
randomized versions of the detector g(X;, ). An example of the latter case in
one in which we use random choices of the parameters of the algorithm.
Average the outputs of these base detectors to reduce variance. The basic idea is
that the average of a set of random variables has lower variance than the individual
variables. The variance is best reduced when the outputs of various detectors are
uncorrelated with one another.

This basic idea is invariant across classification and outlier detection, and therefore
virtually all variance-reduction ensembles from classification can be generalized
easily to outlier detection. In particular, many of the natural ensemble methods like
bagging [5], subagging [10] and random forests [6, 18] have corresponding analogs
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in outlier analysis. It is noteworthy that the generation of randomized variants of
the detector has a detrimental effect on the bias, as compared to a fully optimized
algorithm. For example, if one applied a detector to a subset of points or with arandom
choice of the parameters, one might not do as well (in bias performance) as compared
to an algorithm with all the points or specific choices of the parameters. However,
the variance reduction effects of averaging are often sufficient to compensate for
the poorer bias performance of individual components in such settings. In fact, it
is possible (and common) for the ensemble performance to be better than the vast
majority of the base component detectors. This type of performance jump is, however,
not guaranteed and it is sometimes also possible for the ensemble performance to
degrade below the median base performance. Section3.3 of Chap.3 discusses the
circumstances under which such methods can degrade.

Let us try to understand the effect of a model-centered ensemble on the bias-
variance trade-off. The crucial point to understand is that the randomized process
for model-centered ensembles is inherently different from the randomized process
used in the case of data-centered ensembles. We restate the bias-variance trade-off
introduced earlier in this chapter:

1< _ 1< _ _
E[MSE] = - Z{f(X,-) — E[g(Xi, DY + - ZE[{E[g(Xi, D] — gXi, D)
i=1 i=1

2.8)

In the original statement of the bias-variance trade-off, the expectation E[MSE] is
typically computed over different choices of training data sets drawn from a base
distribution. However, in the model-centric point of view, we assume that we have
a set of m alternative models, and we select one of these m alternative models over
the same data set. Therefore, the data set is fixed, whereas the model might be
randomized. For example, the choice of the parameter k in a k-NN detector might
provide one of these alternative models. In this case, the expectation in the bias-
variance trade-off is over the different choices of models. We emphasize that this is
an unconventional view of the bias-variance trade-off and is generally not discussed
elsewhere in the literature. Although it is more general to think of a model-centric
view of the bias-variance trade-off, the expectation in the traditional view of the
bias-variance trade-off is usually computed over different choices of training data
sets. However, a model-centric view of the bias-variance trade-off helps to explain
many types of ensembles, which cannot be easily explained purely by using a data-
centric view. The difference between the model-centric view and data-centric view
of outlier ensembles roughly corresponds to the categorization of ensemble analysis
into data-centric ensembles and model-centric ensembles [1].

Why is this approach to the bias-variance trade-off more general? This is because
one can also understand the data-centric processes of selecting a randomized deriv-
ative of the data set as a special case of this setting. For example, in the case where
John was scored on 10 different randomly drawn partitions of the training data sets,
one can view the randomized process of creating 10 partitions of the data as a part
of the model itself. Therefore the bias and variance is computed over this random
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process of creating the 10 partitions, rather than over random process of drawing
data from a true distribution. In such a case, the variance of John’s score can be
viewed as its expected variation over all possible groupings of the data over a fixed
base training data (without taking into account the additional hidden random process
of drawing the training data). The bias is defined by determining John’s expecta-
tion score over all possible groupings, and they computing the difference between
John’s (unknown) ground-truth score and the expected score. The key here is that
the expectation is over the process of creating the different groupings rather than the
choice of the data set. This distinction is crucial because this different random process
will have a different bias and a different variance. Although the mean-squared error
will always be the same for a particular algorithm, this model-centric decomposition
will provide a different view of the bias and variance, because it is a model-centric
view of the bias-variance trade-off. In other words, one can decompose the error of
a randomized detector into bias and variance in multiple ways, depending on the
kind of random process that one is looking at. Any data-centric ensemble can be
analyzed either from the perspective of a data-centric bias-variance trade-off, or a
model-centric bias-variance trade-off. In the latter case, the process of extracting the
training data is considered a part of the model. However, a model-centric ensemble
can be analyzed only from the perspective of a model-centric bias-variance trade-off.

The model-centric view of the bias-variance trade-off can also handle settings
that cannot be easily handled by the data-centric view. Just as data-centric ensembles
are designed to address the uncertainty in choice of training data sets, model-centric
ensembles are designed to address the uncertainty in the choice of models. The
design choice of a model plays a crucial role in many problems like outlier detec-
tion. In unsupervised problems like outlier detection, there is significantly greater
uncertainty in the design choices of the models, as compared to supervised problems
like data classification. This is because one can use techniques like cross-validation
in classification in order to make important choices, such as the optimal value of k
in a k-nearest neighbor classifier. However, since the ground-truth is not available
in problems like outlier detection, it is impossible to know the optimal value of the
parameter k. Just as the choice of training data set is imposed on the analyst (and
creates some hidden variance), the choice of such model parameters (or other design
choices) creates uncertainty for the analyst. In this case, the analyst has greater con-
trol on selecting such parameters (as compared to training data determination), but
may often set these values in an arbitrary way because of lack of guidance. Such
arbitrary choices (implicitly) result in a kind of variance in the output of the detector
because they might vary with the specific analyst, and one cannot easily view any of
these choices as inherently better than the other in an unsupervised setting. In other
words, all choices of the parameter k within a reasonable range are as good as random
guessing, and the variability caused by this random guessing is not very different
in principle than the variability caused by different random choices of training data
sets.

It is noteworthy that in the data-centric view of outlier ensembles, design-choices
(such as the parameter k) affect the bias of the model over the space of different
randomly selected training data sets (see Fig.2.2). However, in the model-centric
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view, this variability in bias (caused by changing k) is now viewed as a part of
the variance of the randomized model-centric process of selecting k, which can be
reduced with ensemble analysis. It is here that the model-centric view of the bias-
variance trade-off is particularly useful.

In order to understand this point, let us revisit the problem in which John’s mort-
gage application is scored by banks A, B, and C with the use of an outlier detector.
Consider a setting, where the three banks have access to exactly the same training
data set of 10,000 points. Note that this setting is already different form the previ-
ous case because we are no longer assuming that the different banks have different
training data sets drawn from the same base distribution. However, in this case, the
uncertainty is caused by the fact that none of the analysts seem to know what value
of k to use for their k-nearest neighbor detector. For some data sets, a value of 5
might be effective, whereas for others a value of 100 might be effective. Therefore,
there is significant uncertainty about the effect of choosing a particular value of %,
particularly in the context of unsupervised problems in which the specific accuracy
cannot be known even after the fact. As a result, the different analysts use different
values of k for their respective detectors. The result of this approach is that they all
obtain different results, and there is an inherent variability in their results caused by
the specific choice of the parameter k. This variability is shown in the different out-
puts for John in Fig.2.4a. However, it is possible for the analysts to run the detector
over 10 different randomly chosen values of &, and average the performance of the
detector over these choices to reduce the variance. As a result, John’s scores from the
three banks become more similar. Furthermore, the quality of the scores is improved
because of reduced variability. This scenario is shown in Fig.2.4b. It is important
to note that in this model-centric view, the data set is assumed to be fixed, and the
variability is caused because of uncertainty in the specific choice of the model. In
the model-centric view, one is often improving the bias performance of individual
models in the data-centric view by averaging over the variability in the bias over
different randomized models. For example, a specific choice of k has a particular
bias in the data-centric view; however this variability in bias over different choices
of k in the data-centric view is converted to variance in the model-centric view. One
can then reduce this aspect of the variance with the ensemble approach. In practical
settings, this often means that one might be able to obtain better results with the
ensemble scheme, compared to any particular value of k. For example, a value of
k < 4 is clearly suboptimal to discover John as an outlier. It may be possible that
for some other test points, a value of k = 5 may be too large and may therefore
provide incorrect results. By ensembling over a “well-chosen” range of k, it is often
possible to obtain better results than any specific value of the parameter (over all
points). This is because of the variability in performance of different portions of the
data over different values of k. Herein, lies the power of variance reduction in the
model-centric setting. This principle is also related to the notion of reducing rep-
resentational bias [13] of any specific model design by ensembling over different
randomized models. We will discuss this issue in greater detail in Chap. 3.

The differences between data-centric and model-centric views of the bias-variance
trade-off are shown in Fig.2.5. The traditional view, which is the data-centric view,
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Fig. 2.5 Different perspectives on the bias-variance trade-off
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is shown in Fig.2.5a. Here, the expectation E[MSE] (in the bias-variance equation)
is computed over different random choices of training data sets. Since a particular
analyst usually has access to only one training data set and does not have access
to the base distribution, it is generally hard to estimate the bias and variance in
this setting. In other words, the finiteness of the available data causes limitations
in our ability to estimate the bias and variance of a particular model. One typically
reduces variances in such settings by using methods like bagging, which can be
(approximately) viewed as the process of drawing different training data sets from
the same base distribution. By averaging the results from the different draws, one is
able to effectively reduce variance, although the approximate process of performing
the draws leads to significant constraints. A more unconventional view of the bias-
variance trade-off, which is the model-centric view, is shown in Fig.2.5b. Here, the
expectation is computed over different randomized choices of models over the same
training data set. In this case, the expectation is computed over different randomized
choices of models. Note that this process is often directly controlled by the analyst,
and (in most cases) it is not a hidden process outside the control of the analyst.
Therefore, the analyst can actually run the model over different randomized choices
of the model and estimate the bias and variance as follows:

1. The analyst can run the model over a very large number of trials and compute the
expected score over each out-of-sample test instance. The bias of the model is
the difference between the true (ground-truth) scores and the averaged scores. Of
course, since one typically does not have the ground-truth available in problems
like outlier detection, it may often not be possible to compute the bias in practice,
except for some bench-marking settings in which ground-truths are set on the
basis of some assumption.

2. The analyst can determine the variance in the scores over different test instances
relatively easily. Therefore, the variance can be easily computed whether the
ground-truth is available or not.

In unsupervised problems, it is hard to compute the bias in both model-centric and
data-centric settings. However, it is much easier to estimate the variance in most
model-centric settings, unless some part of the random process is hidden from the
analyst. Furthermore, it is also generally much easier to develop variance-reduction
algorithms in the unsupervised setting, as compared to bias-reduction algorithms.

2.3 Examples and Applications of the Bias-Variance
Tradeoff

In the following, we provide a few examples of how the bias-variance trade-off is
used in different settings related to classification, and the corresponding adaptations
to outlier detection. These examples also show that many ideas from classification can
be adapted easily to outlier detection. However, the adaptation is not always a simple
matter because of the unsupervised nature of outlier detection. In general, we will see
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that variance-reduction methods are much easier to adapt to the unsupervised settings,
as compared to bias-reduction methods such as boosting. The main difference among
these methods is in terms of how the combination is constructed in order to reduce
either the bias or the variance. Correspondingly, the accuracy improvements of each
of these methods can be explained with an appropriate definition of the random
process over which the corresponding bias-variance trade-off is defined.

2.3.1 Bagging and Subsampling

Bagging and subsampling are well-known methods in classification for reducing
variance [5, 6, 9—11]. The basic idea is to draw different training data sets from the
same base data by sampling with or without replacement. The predictions over these
different components are averaged to yield the final result. The basic idea in these
methods is to reduce the variance with the averaging process. We describe these two
approaches in some detail below, along with their corresponding effects on bias and
variance:

1. Bagging: In bagging, samples of the data are drawn from a base data set with

replacement, so that a bootstrapped sample is constructed. The bootstrapped sam-
ple typically has the same size as the original data set, although it is not essential
to impose this restriction. Because of the fact that the sampling is performed
with replacement, the sample will contain duplicates, and many points from the
original data set will typically not be included. In particular, when a sample of
size n is drawn from a data set of size n, the probability that a particular data
point is not included is given by (1 — 1/n)" =~ 1/e. A separate classification (or
outlier detection) model is constructed on each of the bootstrapped samples, and
the predictions across different samples are then averaged in order to create a final
score. This basic idea of bagging is discussed in [1].
The basic idea in bagging is to reduce the variance of the prediction. Each individ-
ual detector has roughly similar bias characteristics as the original data. However,
by averaging, it is possible to significantly reduce the variance of the prediction.
As a result, the accuracy of the prediction is improved. The theoretical and intu-
itive arguments for bagging are very similar in the case of classification and outlier
detection. A detailed discussion of bagging together with experimental results is
provided in the variance reduction chapter (Chap.3). To the best of our knowl-
edge, this book provides the first detailed experimental results on bagging in the
context of outlier detection.

2. Subsampling: Subsampling is a straightforward variation of bagging. The app-
roach is also referred to as subagging. In subsampling, samples of the data are
constructed without replacement. Therefore, the sampled data set is much smaller
than the original data set. Note that if we use the same algorithm parameters
over a smaller data set, the subsampled data set is likely to have very different
bias characteristics. Nevertheless, the variance reduction is often likely to more
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significant because the individual ensemble components are more diverse. The
basic idea of subsampling was proposed in [9—11] and it can be generalized triv-
ially to outlier detection with virtually no changes. The first use of subsampling
for outlier detection was proposed in the context of edge subsampling in the
graph domain [3]. Subsampling methods were also sometimes used in the con-
text of efficiency improvements [23], although the accuracy improvements were
only limited with this specific implementation. Subsequent discussions on the
use of subsampling for outlier detection with the use of distance-based detectors
are provided in [4, 32]. However, the work in [32] provides an implementation
of subsampling that has unpredictable bias-centric effects and also provides an
incorrect theoretical explanation. The incorrectness of this reasoning was clari-
fied in [4], and the theoretical foundations for outlier analysis/ensembles were
also established in this work. These foundations were used to propose more accu-
rate and reliable subsampling by varying the subsampling rate [4]. A detailed
discussion of subsampling will also be provided in Chap. 3.

Note that the natural adaptation of the bagging family of techniques from classifi-
cation to outlier detection has also been published in an earlier position paper [1]
on outlier detection. The key idea of subsampling (as it applies to classification)
should be credited to the original subsampling papers [9, 10]. Although subsam-
pling methods were subsequently investigated in [3, 23, 32], a proper explanation
of the effects of subsampling, as it applies to outlier detection, may be found in
[4]. Further exposition of these effects are provided in greater detail in Chap. 3.

Both the methods of bagging and subsampling rely on a random process generat-
ing the ensemble components, and then using a combination method to reduce the
variance of the final output. However, these principles apply to any approach for
randomly perturbing a detector to improve the variance-reduction characteristics of
the method. Bagging and subsampling methods are discussed in detail in Chap. 3.

2.3.2 Feature Bagging

Feature bagging is a method that is used commonly in classification [7, 8, 19, 24]
to create individual ensemble methods with sufficient diversity. The averaging of
the predictions of different ensemble members can reduce (model-centric) variance.
Subsequently, a natural adaptation of the feature bagging method to outlier detection
was proposed in [22].

The basic idea in feature bagging, as it applies to outlier detection, is to sample a
number r between |d/2] and d — 1, where d is the total number of dimensions in the
data. Subsequently, r randomly chosen dimensions are sampled from the underlying
data and the outlier detection algorithm is applied to this r-dimensional projec-
tion. Note that the individual ensemble components in feature bagging often have
deteriorated (model-centric) bias characteristics because of the fact that dimensions
are dropped from the data set. On the other hand, they are somewhat diverse, and
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therefore variance can be reduced by the averaging process. The deteriorated bias
characteristics of feature bagging are somewhat of a concern because they can some-
times affect the final ensemble performance as well. Nevertheless, in most cases, it
has been shown that the use of feature bagging generally improves accuracy. This
improvement in accuracy is attributed to variance reduction. However, one needs to
be careful of using the right random process to describe the bias-variance trade-off
of this ensemble method. In particular, feature bagging can be best explained with
a model-centric random process, even though the the approach seems to be a data-
centric ensemble at first sight. Feature bagging methods are discussed in detail in
Chap. 3. A proper theoretical explanation of feature bagging is also provided in the
same chapter.

2.3.3 Boosting

The boosting method is used popularly in classification [14, 15], but it is harder
to generalize to outlier detection. Boosting uses a combination of highly biased
detectors, so that the final detector has less bias than the individual components. The
basic idea is to create biased data sets in which the misclassified training examples
are given greater weight. The basic assumption is that the errors in the misclassified
examples are caused by instance-specific bias, and weighting them to a larger degree
will result in a training model that will classify them correctly. This is achieved by
using a base detector with low variance, so that most of the error is caused by the
bias component. A weighted combination detector is created to combine the bias
characteristics of various components to create a final detector, which has lower bias
than its individual components.

An important observation about boosting is that it requires the computation of
accuracy on the training examples. The accuracy computation of a classifier requires
the comparison of the predictions with the ground truth. This can often be difficult in
an unsupervised problem like outlier detection. Nevertheless, a number of heuristic
methods can also be used in the context of the outlier detection problem. Such
methods are discussed in Chap. 4.

2.4 Experimental Illustration of Bias-Variance Theory

In this section, we will provide an experimental illustration of bias-variance theory
with the use of a number of synthetic data sets. We will also show the impact of
using ensemble methods on the bias-variance analysis. Since variance reduction is
particularly valuable in the context of bias-variance theory, much of our focus will
be on the effect of ensemble methods on variance. In particular, we will show the
following effects:
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1. We show the effect of methods like subsampling on variance reduction.

2. We show the effect of finiteness of the data set on the limits of data-centric variance
reduction.

3. We show the differences in the data-centric and model-centric view of the bias-
variance trade-off.

These different insights set the stage for introducing the different ensemble methods
discussed in subsequent chapters.

2.4.1 Understanding the Effects of Ensembles
on Data-Centric Bias and Variance

In this section, we will study the effect of ensemble methods like subsampling on
data-centric bias and variance. In this case, the assumption is that the training data
sets are drawn from the same base distribution. The data-centric bias and variance
are only theoretical quantities in real settings (which cannot be actually computed)
because they are based on the variability of drawing training data sets from a base
distribution. In practice, this base distribution is not available to the analyst, but only
a single finite instantiation of the data set is available. This finite instantiation can be
viewed as a finite resource that must be exploited as efficiently as possible to maximize
the benefits of ensemble analysis. Knowing the base distribution is equivalent to
having an infinite resource of data at one’s disposal. Although the data-centric bias
and variance are difficult to quantify in real settings (because of the finiteness of the
data resource), we can still use a synthetic setting in which it is assumed that the
base distribution is known. This synthetic setting can be used to show the effects
of ensemble analysis on various measures of outlier detection accuracy, such as
the rank-wise accuracy, the mean-squared error, bias, and variance. A preliminary
version of these results is available in [4], although this expanded version provides
significantly more insights in terms of data-centric and model-centric analysis.

In order to show the effects of ensemble analysis, we use some simulations with
the subsampling method [3, 4, 9—11, 23, 32] discussed earlier in this chapter. This
approach can be viewed as a variant of the example of scoring mortgage applications
with averaged predictions on randomized partitions of the data. Instead of creating
randomized partitions, we draw random subsamples of the training data, and then
score each point with respect to the subsample whether that point is included in the
subsample or not. The scores of a test point across the different subsamples are then
averaged in order to provide the final outlier score of that point.

The subsampling approach has been used earlier for both classification and outlier
detection. The use of subsampling for classification is discussed in [9-11]. The earli-
est accuracy-centric work on subsampling in outlier detection was done in the context
of edge subsampling for graph data (for detecting edge outliers), and the approach
was also used in the context of efficiency-centric improvements for outlier detection
in multidimensional data [23]. Note that the former implicitly subsamples entries
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in an adjacency matrix, whereas the latter subsamples rows in a multidimensional
data matrix. The approach was also explored for nearest neighbor detectors like
the average k-nearest neighbor detector [4] and the LOF method [4, 32]. The work
in [4] already provides a number of experimental illustrations of bias-variance the-
ory although it does not specifically decompose the error into the bias and variance
components. This section will show some further simulations with synthetic data,
which explain the nature of the bias-variance decomposition discussed in [4].

In the following, we will use some simple synthetic distributions to generate data
sets. One advantage of using synthetic distributions is that we can explicitly test the
effects of drawing truly independent training data sets from from an infinite resource
of data; these independent data sets can be used to properly characterize the bias and
variance performance of training data sets drawn from a particular base distribution.

We used two 1-dimensional locally uniform distributions and a 2-dimensional
distribution with clusters of uniformly distributed points. Consider a data set 2
containing the points X ...X,, with local probability densities f; .. .f,, which are
known from the parameters of the generating distribution. Therefore, these represent
ground-truth scores. Let the corresponding scores output by the outlier detection
algorithm be ry . . . r,,. We say that an inversion has occurred if fj < f> and r; < 1. In
other words, if a data point with a lower probability density (i.e., in a sparse region),
has smaller 1-nearest neighbor distance than a data point in a dense region, then an
inversion is assumed to have occurred. For each of the n - (n — 1) /2 pairs of points
in the data set, we computed a non-inversion credit C(X;, X;) as follows:

fi<fiandr; <
fi>fiandr; > r;
fi<fiandr; > r1; (2.9)
fi>fiandr <7
05 fi=fiorrp=r;

_— = O O

The average non-inversion credit NI(Z) over all pairs of data points in data set & is
defined as follows: o
Zi<j CX;, X/ )

N(2) = nn—1)/2

(2.10)

In other words, this measure computes the fraction of pairs of points in which the
inversion does not occur. Larger values indicate that outliers and inliers will not be
inverted. In the ideal case, when no inversions occur, the the value of NI(2) is 1. A
value of 0.5 would be expected from a random detector. Therefore, the non-inversion
credit provides an intuitive idea of how well a particular detector performs in a given
setting.

Since our primary argument on the effectiveness of subsampling is based on vari-
ance reduction, one of the challenges that we faced in our testing was the effect of
correlations across multiple ensemble components. Because of the overlaps among
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the training data sets from various subsamples, the outlier scores (1-nearest neighbor
distances) from various ensemble components are correlated. As a result, the vari-
ance reduction effects of averaging were curtailed. The problem is that the base data
set is finite, and larger subsamples from a base data set always lead to correlated
detectors. Even though one can view the process of drawing a subsample from the
base data as equivalent to drawing the sample from the base distribution over a single
sample, this is not true over multiple samples in which the finiteness of the base data
comes into play and causes correlated samples. Correlated detectors generally have
a negative effect on any form of variance reduction in ensemble analysis. Further-
more, one cannot meaningfully estimate the bias performance of a particular detector
from a data-centric point of view, if the base distribution is unavailable. If the base
distribution is available, one can use the approach of Fig.2.1a to repeatedly draw
training data sets and average the results to reduce the variance to 0. The remaining
error reflects the bias-performance of the algorithm.

In this section, we simulate the scenario where the base distribution is available.
In effect, the availability of the base distribution provides the resources of an infinite
data set. One can study the effects of such infinite resources on a procedure such as
subsampling to see how much one can improve the performance. In such a case, the
results of any pair of subsamples (drawn from the base distribution) would be truly
independent, and the full effect of variance reduction could be realized because of
the infiniteness of this resource. The original base data & is only used to test the
outlier scores against each such generated model, whereas the training data sets are
generated directly from the base distribution. We also study the limits of this variance
reduction caused by the finite data size available in real settings. As we will show,
a portion of the variance caused by training data variability is always irreducible
in the setting, where a finite data set is used for variance reduction. Therefore, we
generated two different variants of base detectors and ensembles:

1. We constructed the base detectors by drawing subsamples from the original data
set 2. This data set was also used as the test data set, but the 1-NN computation
of each point in the test data 2 was computed only on the subsample of 2.
The average of the 1-NN scores provided the ensemble score. The resulting base
detector was referred to as BASE-F and the ensemble detector was referred to as
ENSEMBLE-F. The “-F” corresponds to the fact that the base data is finite.

2. In this case, the test data set is fixed to the original data set &, but the subsamples
are drawn from an infinite base data set of the same distribution as the test set. This
scenario is simulated by generating the subsamples and the test set from the same
probability distribution. Note that it is not meaningful to talk of sampling “rates”
in this case, because the training data set size is infinite. However, in order to
ensure comparability of results with the finite base data, we defined the sampling
rate of the subsample with respect to the original (test) data set . Note that the
same test data set & is used in both finite and infinite sampling. The resulting base
detector was referred to as BASE-I and the ensemble detector was referred to as
ENSEMBLE-I. The “-I” at the end of the name refers to the fact that subsampling
is performed from a infinite data set. Using an infinite base data has the advantage
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that it allows us to test the performance once the effects of correlation between
base detectors have been removed.

The results in this section used 300 trials. The accuracy of the base detector is
computed by averaging the accuracy over each of these 300 instantiations, whereas
the accuracy of the ensemble approach is computed using the averaged 1-NN score
of the ensemble. We used 300 trials because the accuracy usually leveled out after
this point, and not much advantage was obtained by further increasing the number
of trials.

First, we used a data set & containing 2000 points drawn from locally uniform
distributions in a single dimension. The data distribution is shown in Fig.2.6a. In
this case, the data is distributed in 20 1-dimensional buckets. All 1-dimensional
points in the ith bucket take on uniformly random values in the range (i, i + 1).
The relative number of points in each bucket is a uniform random variable drawn
from (0, 1), and it is illustrated on the Y-axis of Fig.2.6a. Therefore, the lower bars
correspond to regions which are outlier regions in this 1-dimensional data, albeit
uniformly distributed. The values on the Y-axis of Fig.2.6a, are used as the ground-
truth values of f; in Eq.2.9 for the corresponding data points in that bucket. The
1-NN distance is used as r; in Eq.2.9. The fraction of non-inversions (i.e., NI(2))
of the base system (a 1-NN detector) and ensemble systems both for the case of
finite and infinite sampling are illustrated in Fig.2.6b. Note that the performance of
both base detectors improves with the sampling rate, and no advantage was observed
for smaller subsamples. The main improvements were achieved with the use of the
variance reduction impact of the ensemble. The ENSEMBLE-F detector did indeed
perform quite well for smaller subsamples, but the improvements were achieved
because of less correlation among the base components, and therefore better vari-
ance reduction. When the subsample size was exactly equal to the size of the full
data, no performance improvement was observed because of perfect correlations
among the base detectors in ENSEMBLE-F. This is substantiated by the fact that
the performance of the ENSEMBLE-I detector improves with increasing subsample
size, when the correlations are removed. The gap between the two reflects the gap
in variance reduction which arises as a result of increasingly correlated base detec-
tors in ENSEMBLE-F. The performance of ENSEMBLE-I almost always improves
with increasing subsample size, which is a result of the statistical effects of using
more data. We repeated the same experiment with the use of 40 buckets instead of
20 and present the results in Fig.2.6c, d. The results are very similar to the case of
Fig.2.6a, b. Note that some forms of the bias-variance trade-off [17] explicitly take
this correlation into account. This form of the decomposition is referred to as the
bias-variance-covariance decomposition.

We also tested the effects with 2-dimensional locally uniform distributions of 2000
points. In this case, 30 clusters of uniformly distributed squares were generated,
with lower-left corners chosen uniformly at random in (0, 1). Each square had a
side of length 1/15. The relative number of points in each cluster was a uniform
random variable in (0, 1), and it represented the ground-truth value of f; in Eq.2.9.
The corresponding scatter plot is shown in Fig.2.7a. The corresponding effects on
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the non-inversion credit with increasing subsample size are illustrated in Fig.2.7b.
As in the case of the 1-dimensional distributions, the non-inversions reduced with
increasing subsample size. The ensemble based approach ENSEMBLE-F initially
improved with increasing subsample size, and then the performance started reducing
because of increasing correlations among detectors. Here, we have also shown the
effect of increasing the number of ensemble components in Fig.2.7c, d. The former
(Fig.2.7¢) is for the case of the ENSEMBLE-F method with the 2d-distribution,
whereas the latter is for the case of ENSEMBLE-I method with the 2d-distribution.
It is noteworthy that larger subsamples generally level off sooner and no advantage
is observed by increasing the number of ensemble components. Smaller subsamples
initially perform poorly, but because of increasing variance reduction, they can often
perform better with increasing number of ensemble components. However, there
is a limit to this improvement. Subsamples, which are too small, lose too much
information in individual detectors to be effective overall, even with a large number
of components. For example, at the lowest sampling rate of 0.005, each subsample
contained only 10 points, which was not sufficient to meaningfully represent the
30 clusters. Therefore, the ensemble performance at this sampling rate could not
outperform the ensemble performance at higher sampling rates, even after increasing
the number of ensemble components. Note that for the case of ENSEMBLE-I, larger
subsampling rates almost always provided better performance because the ensemble
components were independent, and one could make better use of the greater amount
of data.

2.4.2 Experimental Examples of Bias-Variance
Decomposition

The synthetic nature of the data sets allow us a way to show the bias-variance decom-
position experimentally. In real settings, one can never construct ensemble perfor-
mances like ENSEMBLE-I with a single instance of a finite data set. Although some
sampling methods exist [20] to estimate the bias and variance experimentally for real
data sets, we argue that such methods are too unreliable/approximate to provide any
meaningful insights. This is in part because the base distribution of a real data set
is unavailable and there are correlations among the results from different samples.
However, for synthetic data sets, where one has access to the base distribution, it is
possible to simulate the bias and variance performance very closely.

In the previous section, we used rank-centric measures for test the performance
of ENSEMBLE-I and ENSEMBLE-F. In this section, we will study the more con-
ventional MSE measure because it is relevant to the bias-variance decomposition.
In order to compute the MSE, we do need to standardize both the ground-truth and
the predicted scores for comparability. Therefore, just before the computation of the
MSE, the ground-truth scores and the predicted scores (both for the base and the
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ensembles) are standardized to zero mean and unit variance. In the following, we
will assume that the size of the test data & is ny.

It is important to remember that the bias-variance decomposition depends on the
choice of the random process over which the expected value E[MSE] is computed.
Therefore, we will consider the following two ways of defining the random process:

1. Random Process A (Data-centric): The base distribution is available to the analyst.

We can describe the random process for BASE-I as follows. For a given test data set
2 of size ng, we repeatedly draw samples of size f - ny from the base distribution
in order to compute the scores.
We can describe the random process of BASE-F as follows. The training data of
size n is drawn from the base distribution and then a fraction f sample of size f - ng
is subsampled from it to create the training data. Note that this process is equivalent
to drawing a sample of size f - ny from the base-distribution, although there are
overlaps among the samples drawn for a particular run of subsampling. However,
the bias and variance are computed not over a particular run of subsampling but
over all possible draws of the base data of size ng. This is an important point,
because it makes the bias-variance decomposition of BASE-F and BASE-I very
similar. It is important to note that the variance of the prediction of a given test
point needs to include the variance caused by initially selecting a particular base
data set of size ng from the distribution for subsampling. For example, if one
drew a subsample of fraction f = 1, then the same subsample will be drawn
every time from a particular base data set, but the variance of the prediction of
a test point by BASE-F will still be non-zero because it includes the variance of
drawing a training data set of size ny from the base distribution. In this context, the
variance of predicting each test point, when computed over a very large number
of instantiations of the base data set (followed by subsampling in each case), is
not very different between BASE-F and BASE-I. As we will see later, a portion of
this variance of BASE-F is always irreducible in practice, because of correlations
among subsampled base detectors. This irreducible variance is an artifact of the
fact that an analyst has access to only a single finite instance of this data set, and
there are fundamental limitations to the variance reduction process with this finite
resource.

2. Random Process B (Model-Centric): In this case, it is not assumed that the base
distribution is available. Rather a single finite data set is available, and the random
process of BASE-F is simply that of subsampling this finite data set. Note that the
subsampling is now part of the detector itself, and therefore we have a randomized
detector with a particular bias and variance on a finite data set. The expected
values of the MSE, bias and variance are computed with respect to the random
process implied by the stochastic behavior of this detector. This is the reason that
this way of defining the bias-variance trade-off is referred to as model-centric.
Note that although both BASE-I and BASE-F can be captured by random process
A, only BASE-F can be captured by random process B. Therefore, the former
approach is more general. However, the model-centric approach of bias-variance
decomposition is more valuable in some ensemble settings where one cannot
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relate the variance reduction directly with statistical variations in the training
data, but with the randomized variations in the detector. In some ensembles (such
as the example discussed in this sections), one can use both decomposition, but
the data-centric decomposition provides better insights.

Although we do not distinguish between training and test points in the simulation
of BASE-F, the predictions are still (roughly) similar to the case when training and
test data were different, because distance-based detectors exclude the test point at
hand while computing the nearest neighbors for the prediction. It does cause a small
difference in training data size of a single point; this effect is negligible. Note that
if we draw a different data set &', which is of the same size as the test data & (for
creating the subsampled training data sets), we will get roughly similar results. This
fact is validated by the similar performance of BASE-F and BASE-I in Fig.2.6.

In the following, we will run the process of 1000 trials; our basic assumption is
that 1000 trials are sufficient to stabilize the ensemble performance from a practical
point of view. Therefore, we can roughly estimate these results to be reflective of an
infinite number of trials, which are required for accurately computing quantities like
bias and variance.

We show the performance of both the base and ensemble performance in Fig.2.8.
In this case, we present the results for the 2-dimensional distribution discussed ear-
lier in this section. Note that Fig.2.8a, b are respectively identical to Fig.2.8c, d.
However, they are annotated differently. In Fig. 2.8a, b, the annotation is designed to
show the bias-variance decomposition according to the data-centric setting. The first
observation is that the data-centric bias of BASE-Iis simply the MSE of ENSEMBLE-
I after a large number of trials. This is because ENSEMBLE-I has zero variance after
a large number of subsamples, and all the MSE is simply the bias of its base detector.
It is, however, less obvious why the bias of BASE-F and BASE-I should be the same.
Note that the random process defining BASE-F includes the variance of the initial
step of choosing the base data of size ng, even though we see only one instance
of this finite data set. After this variance is included, the variances of BASE-F and
BASE-I are equivalent to sampling a training data of size f - ng directly from the base
distribution. Furthermore, the expected MSE of BASE-F is also the same as that of
BASE-I, even though there are minor differences in the particular case of Fig. 2.8 due
to statistical fluctuations. In fact, the MSE of BASE-I in Fig. 2.8 reflects the expected
MSE of BASE-F more closely than the specific instantiation of BASE-F in the figure.
This is because BASE-F is constructed using a subset of the test points as the train-
ing data, whereas the data-centric random process assumes that the base detectors
are constructed using a different sample from the same distribution (as in BASE-I)).
Therefore, the data-centric bias, variance, and MSE of both BASE-F and BASE-I
are identical, and are defined completely by the BASE-I and ENSEMBLE-I simula-
tions. Interestingly, both the BASE-F and ENSEMBLE-F simulations are completely
irrelevant for defining the data-centric bias and variance of BASE-F. However, the
ENSEMBLE-F plot is still interesting, in that it shows how much of the variance one
can heuristically reduce, while working within the limitations of a finite resource
(data set). Because of the finiteness of the data set, there are correlations among
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Fig. 2.8 Two different ways of performing the bias-variance decomposition of the same MSE
(data-centric view and model-centric view). One can define the bias-variance decomposition in
any number of ways by choosing the appropriate random process over which the expectation is
computed. An important assumption is that 1000 base detectors are sufficient for stabilization of
ensemble performance, and therefore we are treating the (ensemble) variance to be negligible at
that point
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the base detectors of ENSEMBLE-F, and therefore only a portion of the variance
can be reduced. The portion of the irreducible variance because of intra-detector
correlations are annotated in Fig.2.8a, b.

The bias-variance decomposition with random process B is shown in Fig.2.8c,
d. This model-centric approach can no longer decompose the error of BASE-I since
it starts with a finite data set, and does not assume that the training data sets are
drawn from a base distribution. Therefore, even though the plots of BASE-I and
ENSEMBLE-I are shown in the figure, they are irrelevant from a bias-variance decom-
position perspective. The draws of data from an infinite data set are relevant to the
model-centric random process B. After a large number of trials ENSEMBLE-F is
assumed to have zero variance, and therefore the variance of base BASE-F is simply
the difference between BASE-F and ENSEMBLE-F. The remaining part of the MSE is
the (model-centric) bias. It is interesting to note that the model-centric view does not
provide a particularly satisfactory explanation of variance reduction in this particular
setting of subsampling. However, as discussed in the next chapter, there are indeed
several settings in which the model-centric view provides better insights. For exam-
ple, methods like feature bagging can be better explained from a model-centric view
of variance reduction. Therefore, an appropriate form of the bias-variance trade-off
can be used to justify different types of ensemble methods.

2.5 Conclusions

This chapter introduces the theory of outlier ensembles. The ideas in this chapter
show that the theoretical underpinnings of ensemble analysis for classification are
not very different from those in outlier detection. As a result, many of the existing
ensemble schemes for classification can be generalized directly to outlier detec-
tion. In this chapter, we provide both a data-centric and a model-centric view of
outlier ensembles. These ideas can be used to explain both data-centric and model-
centric outlier ensembles. By designing ensemble methods to reduce either the bias
or the variance or both, one can design more accurate outlier detection methods.
Bias-reduction methods are generally harder to adapt from classification to outlier
detection because of the fact the accuracy needs to be computed in intermediate
steps in most such methods. Accuracy computation requires the knowledge of labels
that are not available in unsupervised settings. On the other hand, variance-reduction
methods can be adapted more easily from classification to outlier detection. The
theoretical ideas discussed in this chapter set the stage to view the rich literature in
classification as a reservoir of ideas, which can be adapted in various ways to the
outlier detection domain.

Exercises

1. Consider a randomized outlier detection algorithm, g()_( , ?), which is almost
ideal in the sense that it correctly learns the function f(X) most of the time.
The value of f(X) is known to be finite. At the same time, because of a small
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bug in the program, the randomized detector g(X, 2) outputs an oo score about
0.00001% of the time. Furthermore, every test point is equally likely to receive
such a score, although this situation occurs only 0.00001% of the time for any
particular test instance. What is the model-centric bias of the bug-infested base
detector g(X, 2)?

2. Would you recommend running the randomized base detector of Exercise 1 mul-
tiple times, and averaging the predictions of the test instance? How about using
the median?

3. Does the data-centric variance of an average k-nearest neighbor outlier detector
increase or decrease with k? What about the bias?
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