
  

 

Chapter 2 THE FOUR-FOLD WAY 

 
How to Perceive Complex Mathematical Models and Well-Posed 
Problems 

 
 

 

2.1 PROLOGUE: THE MANAGER AND ANALYST 
DISCUSS THE ORIGINS OF 
MULTIDIMENSIONAL MODELS AND WELL-
POSEDNESS  

“Since complexity has grown so enormously in modern times,” the 
manager commented, “I presume that the motivations to develop techniques 
to manage it are relatively recent.” 

“On the contrary,” replied the analyst, “many of the concepts and 
examples of problem recognition are quite old – ancient even.” 

Consider the old Indian story of the blind men trying to “understand” an 
elephant. Depending on what is touched – the leg, ear, tail, trunk, or tusk – 
the unknown object takes on the attributes of a tree, a leaf, a rope, a snake or 
a spear. Thus, touching an aspect of a complex object is far removed from 
understanding the total integrated concept of “elephant.” 

A more recent story – but still almost 2000 years old – comes from the 
Talmud [5]. According to a commentary on the book of Genesis, on the day 
that the Lord created Man, He took truth and hurled it to the ground, 
smashing it into thousands of jagged pieces. From then on, truth was 
dispersed, splintered into fragments like a jigsaw puzzle. While a person 
might find a piece, it held little meaning until he joined with others who had 
painstakingly gained different pieces of the puzzle. Only then, slowly and 
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deliberately, could they try to fit their pieces of Truth together – to make 
some sense of things. 

Mankind’s yearning to understand the world over the eons has been aided 
by the development of mathematical models. Groups of researchers, 
sometimes spanning centuries contribute their little fragments of data or 
understanding and eventually a general theory emerges. In many cases, the 
consequences of the new theory are unexpected by the original contributors, 
but such is the trust given to mathematics, the unexpected, nonintuitive 
results are accepted given they are mathematically sound. Examples: 

• In the 16th century, Tycho Brahe organized and extended the 
astronomical observations of Copernicus and others into the world’s 
finest set of data on stellar and planetary objects. Johann Kepler 
took this data and formulated his famous three laws of planetary 
motion. Despite his disappointment that planetary orbits were 
elliptical – rather than the circles the Greeks maintained were 
necessary for “celestial perfection” – he convinced himself and the 
scientific world that the ellipse was the correct mathematical form 
for all the orbits in Tycho’s data base.  

• Decades later, Isaac Newton, with his greater mathematical 
understanding, was able to generalize Kepler’s laws into his law of 
universal gravitation – a gigantic intellectual feat which unified the 
laws of the heavens and earth. 

• Centuries later, Albert Einstein provided a refinement of Newton’s 
theory of universal gravitation with his general theory of relativity. 
Alexander Friedmann solved Einstein’s equations and concluded 
that the universe began in a monstrous big bang. This was so against 
Einstein’s instincts that he added a cosmological constant to his 
equations of relativity to remove the possibility of an expanding 
universe or the big bang. However, the rationality of mathematics, 
as well as new data by Hubble and others have established 
Friedmann correct and Einstein has referred to the cosmological 
constant as his greatest blunder. 

So in Man’s quest to understand, mathematical modeling has taken an 
increasingly central role in building theories, and indeed in the scientific 
method itself. The jagged shards of data, incomplete observations and 
subdimensional theories are pieced together rationally – often resulting in 
unexpected conclusions and a deeper view of the world. With the advent of 
modern computer technology, this central importance promises to increase 
far more. 

“You certainly won’t get arguments from most practitioners of science 
and technology about the importance of computers,” remarked the manager, 
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attempting to be agreeable. “What you have said would be obvious to most 
observers.” 

“What is not obvious is that there are many barriers to the future efficient 
use of computers in the modeling of complex system,” rebutted the analyst. 

“I knew you’d say that,” said the manager, remembering the example of 
Chapter 1. “What are these barriers?” 

“First of all,” began the analyst, “with all the increased capability and 
flexibility that the digital computer offers over the analog, there comes a 
subtle but pervasive disadvantage: the model and the computational requests 
placed on it are inextricably intertwined. In almost all cases, the model is 
programmed to execute a specific computational flow, and when asked to 
alter the computation or switch input and output variables on the same 
model, the programmers tend to tell the managers, “can’t be done” or “too 
much trouble, or “can’t you make do with all that I’ve given you?” 

“Amen,” agreed the manager, “I’ve been told that many a time. The 
programmers love to overwhelm you with data to show off their powerful 
computation. Their love of being responsive to your deep needs to 
understand what the model is teaching us is unfortunately much less.” 

Second, until early this century, the general concept of a relation has been 
quite fuzzy and philosophical. Then in 1913, Norbert Wiener [6], before he 
became the father of cybernetics, suggested that the definition of a relation 
be imbedded within set theory – one of the foundations of all mathematics. 
This served to add needed clarity and rigor to the concept of “relation.” 

Third, there was a general expectation that once a model was developed, 
there were no limitations on what computations could be asked of it. Which 
questions are “well posed” and which are not? In 1942, Claude Shannon [7], 
before he became the father of information theory, studied these issues on 
the recently developed mechanical differential analyzer – the most powerful 
computer of its time, analog or digital. He discovered that some of the 
variables desired to be dependant, or output variables – based on the rotation 
of a shaft assigned to that variable – were “free running”, providing no 
useful results. In other cases the entire network of rotating shafts, gear trains 
and integrators would just “lock up” – again providing no useful results. 
These instances of “free running” and “lockup” are directly related to the 
concepts of under constraint and over constraint, which we will discuss later. 

Fourth, as was mentioned in Chapter 1, there is a vast dimensionality gap 
between the cognitive capability of man and machine. Our challenge is to 
make the best partnerships between these cognitive entities. As George 
Gamow [8] related in his charming book, “One, Two, Three, Infinity,” it was 
possible to survive with very limited numerical perceptions during our 
primitive beginnings, but the advent of mathematics, starting with 
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arithmetic, enormously enriched our lives and ability to understand and 
control the world. 

“I can see the issues are not as new as I thought,” admitted the manager. 
“Speaking of all the fathers, you mentioned Gamow – wasn’t he also a 

student of Alexander Friedmann, the father of the big bang theory as well as 
the father of George Friedman, this book’s author?” 

“Almost correct! You continue to amaze me, I should develop more 
respect for you,” beamed the analyst. “Yes, George Friedman’s father was 
Alexander Friedmann, but he was Friedmann the tailor, not Friedmann the 
cosmologist. But let’s proceed to some substance.” 

“OK,” challenged the manager. “I’m ready to enter the mathematical 
world you tell me that is necessary to bring order to this confusion and 
ambiguity. Let’s see if the work will prove to be a worthwhile expenditure of 
intellectual energy.” 

“Fair enough,” agreed the analyst. “In the remainder of this chapter, I 
want to introduce you to the very simplest foundations of set theory and 
graph theory, which will define for us with rigor and clarity the formerly 
vague concepts of relation, well-posed, consistent, allowable computation, 
overconstraint and underconstraint. I believe it will be worth your effort.” 

We will begin our exploration of the foundations of constraint theory by 
presenting four interrelated views of the mathematical model: set theoretic, 
families of submodels, bipartite graph, and constraint matrix. The first and 
second are complete and contain all the model’s detail. The third and fourth 
are metamodels and contain only those abstractions which illuminate the 
model’s structure as it relates to consistency and computability. 

2.2  THE FIRST VIEW: SET THEORETIC 

Definition 1: A set is a collection of elements. A subset is a portion of 
this collection. The number of elements may be finite, such as the planets of 
the solar system, or infinite, such as the points on a line. A set with no 
elements at all is the null set. (Figure 2-1) 

Definition 2: A variable is an abstraction of one of the model’s 
characteristics which the analyst considers essential. Associated with each 
variable is an allowable set of values. (Figure 2-2) 

The set of variables which define the model can have enormous 
flexibility. The variables can be continuous and quantitative, such as force, 
length, or temperature; they can be discrete, such as the variables in Boolean 
Algebra, or the solutions of Diophantine equations; they can be qualitative, 
such as hot, rich, salty or sick; or combinations of these. 
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 Figure 2-1. It all begins with the simple concept of sets, subsets, and the null set. 

 

Figure 2-2. The sets of variables and their allowable values have enormous flexibility. 

Definition 3: The model hyperspace is that multidimensional coordinate 
system formed by all the variables as axes, each of which is orthogonal to all 
the others. (Figure 2-3) This is simply a generalization of Descartes’ 
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unification of geometry and algebra. We will frequently refer to these axes 
as Cartesian coordinates. 

 

Figure 2-3. The Model Hyperspace formed by the orthogonal axes of the variables is a useful 
abstraction, although in general it is impossible to be perceived. 

Definition 4: The product set of a set of variables is the set containing all 
possible combinations of the allowable values of all the variables. In the case 
where all the variables are continuous over an infinite range, the product set 
is merely every point within the hyperspace defined by the set of variables. 
(Figure 2-4) 
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Figure 2-4. The Product Set contains all possible combinations of the allowable sets of the 
variables’ values. 

Definition 5: As suggested by Wiener and amplified by Bourbaki [9] and 
Ashby [10], a relation between a set of variables is defined as that subset 
within the product set of the variables which satisfies that relation. (Figure 2-
5) This relation can be between any number of variables and is not restricted 
to the binary relations of “relation theory.” 

The relations can also have enormous flexibility. They can be linear or 
nonlinear, differential equation, partial differential equations, integral-
differential equations, logical equations, binary, ternary, etc., deterministic 
or probabilistic, inequality relations, or any combination of these. In many 
cases the relations can be represented by data or “truth tables.” 

Definition 6: Since a relation reduces the size of the original product set 
to a smaller, relation set, the relation can be said to constrain or apply a 
constraint to the original product set. (Figure 2-6) 

Now that we have embedded the concept of mathematical models within 
set theory, we will need these four set theoretic operations for further 
developments: (see definitions 7 and 8; Figure 2-7) 
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Figure 2-5. Wiener suggested that a “relation” between variables can be defined as the subset 
within the product set of these variables which satisfies it. This not only provides rigor, but 

permits a tremendous variety of relation types. 

 

 

Figure 2-6. Relations, as well as variables held constant, constrain the product set into a much 
smaller subset. 
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Figure 2-7. Only four operations from set theory are employed for Constraint Theory. 

 
Definitions 7: The union of sets A and B is the set of all points which are 

either in set A or in set B or both. Symbolically: 
 

x ⊂ A∪B if: x ⊂ A or x ⊂ B 
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 The intersection of sets A and B is the set of all points which are in 
both A and B. Symbolically: 
 

x ⊂ A∩B if: x ⊂ A and x ⊂ B 
 

Definitions 8: The projection of set A onto dimension x is the set of 
points within set A with all coordinates except x suppressed. For example, if 
set A is the point (2,4) in the xy plane, then Prx (2,4) = 2 on the x axis only. 
Projection is a dimension reducing operation. Symbolically: 

If A = (2,4) in xy-space   (point) 

PrxA = (x=2) in x-space  (point) 
 

PryA = (y=4) in y-space  (point) 
 

The extension of set A into dimension y is the set of all points within set 
A plus all possible values of the dimension y. For example, if set A is the 
point (2,4) in the xy plane, then Exy(2,4) is the line x=2 where y varies over 
all its possible values. Extension is a dimension increasing operation. 
Symbolically: 

ExyA = (x=2) in xy-space  (line) 
 

ExzA = (x=2)∩(y=4) in xyz-space  (line) 
 

Definition 9: y is a relevant variable with respect to relation φ in xyz 
space means that there exist lines in xyz space parallel to the y axis that are 
neither entirely within nor entirely outside of the relation set. Thus y has an 
effect on φ, or equivalently, the relation φ constrains y. Symbolically: 

 
If: Exy(PrxzAφ) ≠ Αφ,  then y is relevant to φ 

 
Similarly, y is irrelevant with respect to relation φ if: 
 

Exy(PrxzAφ) = Aφ       (Figure 2-8) 
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2.3 THE SECOND VIEW: FAMILY OF 
SUBMODELS 

The set theoretic definition of relation was chosen to provide the firmest 
and broadest mathematical foundation for the work to follow. Unfortunately, 
it cannot also be claimed that this viewpoint is a practical way to describe 
the relation. There are some occasions, such as tabulated or plotted 
functions, when it is necessary to list every point within the relation subset 
exhaustively. In these cases, the relation subset is merely the union of all the 
listed points within the hyperspace of the model. However, in the vast 
majority of mathematical models, far more efficient means are used to define 
the usually infinite number of points comprising the relation subset. 

These efficient means almost invariably involve the concept of 
describing the total model as the intersection or union (or both) of a set of 
submodels or algorithms. (Figure 2-9) This is necessary for at least two 
reasons: First, and more obvious, a practical way of specifying infinite sets is 
required. Second, and deeper, model builders cannot conceive of the entire 
model with their limited perceptual dimensionality and thus attempt to 
construct higher dimensional models by aggregating in some fashion a series 
of lower dimensional submodels. The rules of aggregation employ the union, 
intersection, projection and extension operators defined previously. 

Frequently, a function is specified in a piecewise fashion; for example: 
 

x = 0 when t<0 
x = t2 when t>0 

 
In cases like this, the meaning is that the contribution of these two sets to 

the total model is the union of the sets.  
More frequently, a collection of “simultaneous equations” attempt to 

define the model; for example: 
 

x + y + z = 13 
x - y= 8 

 
In cases like this, the meaning is that the contribution of these two sets to 

the total model is the intersection of the sets. 
In general, the dimensionality of the total model is far greater than any of 

the contributing submodels. Thus, the contributing submodels specify only a 
subset of the total model and, in order for them to be able to intersect in the 
total dimensional space, they must be extended into all the unspecified 
directions. For example, let the total model space be xyz and let the relation 
subset for f1(x,y)=0 be A1 and the relation subset for f2(x,z)=0 be A2. Thus, 
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before these two relations intersect, A1 must be extended in the missing z 
direction, and A2 must be extended in the missing y direction. Defining AΣ as 
the total model relation, then: 

 

Figure 2-8. Relevancy of a variable with respect to a relation can be defined in terms of the 
projection and extension operations. 

AΣ  =  Exz(A1) ∩ Exy (A2) 
 
Now, once the model is constructed in the above fashion, an analyst 

wishes to have a subdimensional “view” – or computational request – of this 
multidimensional relation. In order for him to view the relation – as AV – 
with respect to the xy plane, he must ask for a projection of AΣ onto the xy 
plane. (Figure 2-10). Symbolically: 

 
AV = Prxy(AΣ) 
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Figure 2-9. Total model relations are generated by families of submodels which are combined 
by the union, intersection, extension and projection operations. 

If the analyst wishes to impose additional restrictions on his view, or 
computation, prior to the projection, he may hold any number of variables at 
a constant value. In these cases, the relations corresponding to these 
variables held constant intersect the total model relation prior to the 
application of the projection operation. 
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Figure 2-10. After each generating relation is developed, it is extended into the full 
hyperdimensional space of the total model, forming the relation AΣ, which in turn is projected 
onto the subspace of the computational request, where it can be “viewed” by managers, 
analysts and others interested in learning from the model. 

2.4  THE THIRD VIEW: THE BIPARTITE GRAPH 

Although there exist strong implications of topological structure in 
mathematical models and their computations, neither of the two views 
described above provides topological insight. In order to provide this 
additional insight – as well as allow a right-brain perspective to aid the 
dominantly left-brain views already presented – graph theory will be applied.  
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Definitions 10: A graph is a topological network of points, called 
junctions, or vertexes, and lines connecting some of them, called arcs, or 
edges. A bipartite graph is a special graph having two disjoint sets of 
vertexes, {K} and {N}, such that any edge is only allowed to connect a vertex 
in {K} to a vertex in {N}.  

Definitions 11: A model graph, is a bipartite graph with one set of 
vertexes, called nodes, corresponding to the model’s relations and the other 
set of vertexes, called knots, corresponding to the model’s variables. A knot 
will be connected by an edge to a node only if the corresponding variable is 
relevant to the corresponding relation. As an additional visual aid, nodes will 
be shown as squares and knots will be shown as circles. (Figure 2-11) 

A model graph can be thought of merely as the circuit diagram of a 
computer hookup of the mathematical model: the nodes are function 
generators and the knots are wired connections that permit the values of the 
variables to pass from one function generator to another. Thus, when the 
edges indicate no direction, the bipartite graph represents a model. When the 
edges indicate specific directions, then the bipartite graph represents a 
computation on that model, tracking the flow of computation or constraint 
across the topological structure. 

2.5 THE FOURTH VIEW: THE CONSTRAINT 
MATRIX 

The fourth and final viewpoint of the mathematical model is introduced 
primarily to provide a format amenable to computer processing. As will be 
seen later, however, it also furnishes yet another mathematical perspective 
from which the proof of certain theorems can most easily be made. 

Definitions 12: A constraint matrix is a rectangular array of elements 
that presents exactly the information inherent in a bipartite model graph, but 
is a form that can be easily stored and operated upon by a computer. The 
columns correspond to variables and the rows correspond to relations. An 
element in the ith column and the σth row will be filled if the variable i is 
relevant to the relation σ, and empty if it is not. (Figure 2.12) Compactly 
stated, the rows, columns and elements of the constraint matrix are 
homomorphic to the nodes, knots and edges of the bipartite graph. In order 
to indicate the direction of computational flow, the elements of the constraint 
matrix can take on the values: +1 or -1. 

To further emphasize the essential similarity between the bipartite graph 
and the constraint matrix, Figure 2-13 shows a logical evolutionary transition 
between the two representations. As was stated earlier, both the bipartite 
graph and constraint matrix are “metamodels” and do not contain the full 
model information inherent in the set theoretic and family of submodels 
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versions. Rather, they emphasize the structure and topology important to 
model consistency and computational allowability. 

2.6 MODEL CONSISTENCY AND 
COMPUTATIONAL ALLOWABILITY 

We are now prepared to present rigorous definitions in the area of the 
“well posed problem.” Saying a problem is well posed means that the 
mathematical model is consistent and the computation is allowable. 

Definition 13: A mathematical model is consistent means that its 
multidimensional relation set contains at least one point. Symbolically, 

 
AΣ  ≠  the null set 

 
Definition 14: A computational request made on a model is allowable 

means that the projection of AΣ onto the view space of the computation 
contains at least one point and in addition, each variable involved in the 
computation must be relevant to this projection in the sense of definition 9. 

Thus, if the projection onto the desired subspace that the analyst wants to 
view has been nulled out to no points at all, then the computation, the 
application of variables held constant or even the total model relation has 
been overconstrained. On the other hand, if the projection has variables that 
are not relevant, these variables take on all their possible values, and are 
therefore underconstrained. (Figure 2-14) 

2.7 THE MANAGER AND ANALYST CONTINUE 
THEIR DIALOGUE 

“You started off simply enough,” commented the manager. “What can be 
easier than the definition of sets and their operations? Also, your extension 
of Cartesian coordinates into hyperspace can be grasped by extrapolating 
from what we know of one, two and three dimensional spaces. 

As a teenager, I was inspired by Abbot’s Flatland [11] and Burger’s 
Sphereland [12]. These extensions are interesting philosophically, but do 
they really represent the real world and should they be the basis for applied 
mathematics? I’ve heard professors argue that Descartes himself only was 
thinking of our familiar three dimensional space, not even the four 
dimensions for relativity theory, the eleven dimensions for string theory, and 
certainly not the hundreds of dimensions we need for a modern mathematical 
model.” 
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Figure 2-11. The bipartite graph is a metamodel of the full model which illuminates the 
model’s structural and computational properties. 
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Figure 2-12. The Constraint Matrix is the companion to the bipartite graph and displays 
exactly the same information. It is also a metamodel which contains only that information 

relating to the model’s structural and computational properties. 
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Figure 2-13. Evolutionary transition from the bipartite graph to the constraint matrix. 

 “What do we really know about ‘reality,’” asked the analyst, launching 
into a minor tirade. “Irrational numbers were once thought to be irrational, 
and still bear the label. Negative numbers were once thought to be 
imaginary, but now play an essential role in every walk of science and 
finance. Zero was originally thought to be completely unworthy of serious 
consideration, but we would be crippled if we stuck to the awkward Roman 
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numerals. Imaginary numbers were originally considered as only interesting 
abstractions, but today form the basis of several very practical integral 
transforms and are essential to almost every walk of electrical engineering. 

Then there are loops (which we will consider in Chapter Four). Early in 
control theory, feedback loops were considered impossible, in logic, self-
referential statements were considered illogical, and in decision theory, 
intransitive preferences are still considered irrational.” 

“So, in light of the above, we face this philosophical question: ‘Does 
hyperdimensional space have to correspond to the space-time continuum of 
our universe in order to be useful for the understanding of mathematical 
models?’ I claim the answer is ‘no’ and most mathematicians use as many 
dimensions as they need. Descartes’ crucial intellectual leap was to enrich 
the algebraic relations with geometric concepts; the extrapolation to any 
number of dimensions should be trusted as a straightforward extension.” 

“OK,” agreed the manager, feeling a little over-answered. “Your use of 
the projection and extension operators was less familiar to me and I never 
really thought how families of submodels contributed to the total model. The 
concept that a computational request is really a projection of the total model 
onto a subspace was really beyond my experience. But now I can see the 
value of this construct. The projection operator provides the dimensionally-
limited human an understandable perspective of an inconceivable multi-
dimensional relation.” 

“Or to further extend the lingo that managers like to use,” added the 
analyst, “if you choose the right subdimensional viewspace, you get the ‘best 
angle’ on a complex problem – something you guys are always trying to do.” 

“Figure 2-14 is a good summary of most of the previous ideas. Referring 
to the ancient stories at the beginning of this chapter, the blind men each 
observing the elephant from different aspects form pitifully incomplete 
shards of truth, generating relations which are combined into the ‘total truth.’ 
However, since we are hopelessly subdimensional, we cannot perceive or 
understand the total truth, A. Instead, we turn it every which way and attempt 
to observe it from many different angles, some of which may help us to 
understand ‘more deeply.’ Disappointingly, for most of the directions we 
attempt to look at the relation, we will get no more information. That is the 
agony of asking questions which are not well-posed.” 

“Bottom line, to use more management jargon,” summarized the analyst, 
“these four views were deemed necessary by the author to understand the 
underlying foundations of models, computations and well-posedness, rather 
than rely on the rather opaque, algorithmic crankturning he had been taught 
in all his courses in mathematics.” 
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Figure 2-14. In order for a problem to be well-posed, the mathematical model must be 
consistent and the computation must be allowable. Consistency requires that the hyper-
dimensional relation not be the null set. Allowability requires that all the variables of the 

requested computation be relevant to the projection of the total relation onto the 
computational subspace. 
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2.8  CHAPTER SUMMARY 

• Four interrelated views of a mathematical model and its 
computations have been presented: set theoretic, family of 
submodels, bipartite graph and constraint matrix. (Figure 2-15). 
The first two are full models, containing all the detail necessary 
for final construction and computation; the latter two are 
metamodels, and are abstractions of the first two which 
concentrate on the topological and computational features. In a 
strong sense, the metamodels can be considered to provide an 
overarching management perspective on consistency and 
computability issues. Without this perspective, those who 
attempt to build models and make computations on them will 
blunder into difficulties due to either inconsistencies in the model 
or unallowabililties in the computations – in short, the traditional 
well posed problems. In any case, once the “well-posedness” of 
the models and computations have been analyzed and managed 
by the metamodels, the full models must then be employed for 
the actual computations. 

• The concept of “set” has been used as frequently in this chapter 
as the word “system” has been used in a book on systems 
engineering. This was done deliberately because – despite the 
apparent simplicity of the concept – it is far more precise a 
concept than “system” and its applicability is wide ranging.  

• The set was used to define a relation between variables. The 
concept of set was also used to identify: 

o the allowable values of a variable 
o the possible values of a product set 
o collections of variables – which can represent 

computational requests 
o collections of relations – which can represent submodels 
o subsets of bipartite graph vertexes called knots 
o subsets of bipartite graph vertexes called nodes 
o collection of edges connecting subsets of the knots and 

nodes 
o constraint matrix columns; homomorphic to knots and 

variables 
o constraint matrix rows; homomorphic to nodes and 

relations 
o constraint matrix elements; homomorphic to edges and 

relevancies 
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 Figure 2-15. The four representations of a mathematical model. The first two are full models 
and the latter two are metamodels. 
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o power set of the knots: all definable computational 
requests 

o power set of the nodes: all possible submodels 
 
• Perhaps Friedman’s greatest contribution was the recognition 

that very useful metamodels of the mathematical model’s 
variables, relations and relevancies are the bipartite graph’s 
knots, nodes and edges and the companion matrix’s rows, 
columns and elements.  

• This chapter provided the foundation for a building; its 
construction and use will continue in subsequent chapters. 

 

2.9  PROBLEMS FOR THE INTERESTED STUDENT 

1. Provide a real-world example of a three-dimensional product set 
where one dimension is continuous, another is discrete and a third is 
defined in intervals. 

 
2. Employing detailed algebraic equations in three-dimensional space, 

show an example of y being relevant to the model and another 
example of y being irrelevant. 

 
3. For a three-dimensional model, show how ∩,∪, Pr and Ex can be 

used to combine a family of three algebraic equations into the total 
model. 

 
4. Draw the constraint matrix for Figures 1, 5, 6 and 7 of Chapter One. 
 
5. Draw the constraint matrix for Figure 3 of Chapter One. Can you 

suggest how the term, “Basic Nodal Square” was developed?  
 
6. Regarding the mathematical model depicted in Figure 1-3, which of 

the following computational requests are allowable and which are 
not allowable? 

 

For the allowable requests, draw the directed bipartite graph which 
depicts the computational flow. For the unallowable requests, 
discuss the reason(s) for the unallowability. 

 
Computational Requests: 
E=f(T,M), A=f(T,E), A=f(P,M) 
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