Chapter 2 THE FOUR-FOLD WAY

How to Perceive Complex Mathematical Models and Well-Posed
Problems

2.1 PROLOGUE: THE MANAGER AND ANALYST
DISCUSS THE ORIGINS OF
MULTIDIMENSIONAL MODELS AND WELL-
POSEDNESS

“Since complexity has grown so enormously in modern times,” the
manager commented, “I presume that the motivations to develop techniques
to manage it are relatively recent.”

“On the contrary,” replied the analyst, “many of the concepts and
examples of problem recognition are quite old — ancient even.”

Consider the old Indian story of the blind men trying to “understand” an
elephant. Depending on what is touched — the leg, ear, tail, trunk, or tusk —
the unknown object takes on the attributes of a tree, a leaf, a rope, a snake or
a spear. Thus, touching an aspect of a complex object is far removed from
understanding the total integrated concept of “elephant.”

A more recent story — but still almost 2000 years old — comes from the
Talmud [5]. According to a commentary on the book of Genesis, on the day
that the Lord created Man, He took truth and hurled it to the ground,
smashing it into thousands of jagged pieces. From then on, truth was
dispersed, splintered into fragments like a jigsaw puzzle. While a person
might find a piece, it held little meaning until he joined with others who had
painstakingly gained different pieces of the puzzle. Only then, slowly and
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deliberately, could they try to fit their pieces of Truth together — to make
some sense of things.

Mankind’s yearning to understand the world over the eons has been aided
by the development of mathematical models. Groups of researchers,
sometimes spanning centuries contribute their little fragments of data or
understanding and eventually a general theory emerges. In many cases, the
consequences of the new theory are unexpected by the original contributors,
but such is the trust given to mathematics, the unexpected, nonintuitive
results are accepted given they are mathematically sound. Examples:

e In the 16th century, Tycho Brahe organized and extended the
astronomical observations of Copernicus and others into the world’s
finest set of data on stellar and planetary objects. Johann Kepler
took this data and formulated his famous three laws of planetary
motion. Despite his disappointment that planetary orbits were
elliptical — rather than the circles the Greeks maintained were
necessary for “celestial perfection” — he convinced himself and the
scientific world that the ellipse was the correct mathematical form
for all the orbits in Tycho’s data base.

e Decades later, Isaac Newton, with his greater mathematical
understanding, was able to generalize Kepler’s laws into his law of
universal gravitation — a gigantic intellectual feat which unified the
laws of the heavens and earth.

o Centuries later, Albert Einstein provided a refinement of Newton’s
theory of universal gravitation with his general theory of relativity.
Alexander Friedmann solved Einstein’s equations and concluded
that the universe began in a monstrous big bang. This was so against
Einstein’s instincts that he added a cosmological constant to his
equations of relativity to remove the possibility of an expanding
universe or the big bang. However, the rationality of mathematics,
as well as new data by Hubble and others have established
Friedmann correct and Einstein has referred to the cosmological
constant as his greatest blunder.

So in Man’s quest to understand, mathematical modeling has taken an
increasingly central role in building theories, and indeed in the scientific
method itself. The jagged shards of data, incomplete observations and
subdimensional theories are pieced together rationally — often resulting in
unexpected conclusions and a deeper view of the world. With the advent of
modern computer technology, this central importance promises to increase
far more.

“You certainly won’t get arguments from most practitioners of science
and technology about the importance of computers,” remarked the manager,
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attempting to be agreeable. “What you have said would be obvious to most
observers.”

“What is not obvious is that there are many barriers to the future efficient
use of computers in the modeling of complex system,” rebutted the analyst.

“I knew you’d say that,” said the manager, remembering the example of
Chapter 1. “What are these barriers?”

“First of all,” began the analyst, “with all the increased capability and
flexibility that the digital computer offers over the analog, there comes a
subtle but pervasive disadvantage: the model and the computational requests
placed on it are inextricably intertwined. In almost all cases, the model is
programmed to execute a specific computational flow, and when asked to
alter the computation or switch input and output variables on the same
model, the programmers tend to tell the managers, “can’t be done” or “too
much trouble, or “can’t you make do with all that I’ve given you?”

“Amen,” agreed the manager, “I’ve been told that many a time. The
programmers love to overwhelm you with data to show off their powerful
computation. Their love of being responsive to your deep needs to
understand what the model is teaching us is unfortunately much less.”

Second, until early this century, the general concept of a relation has been
quite fuzzy and philosophical. Then in 1913, Norbert Wiener [6], before he
became the father of cybernetics, suggested that the definition of a relation
be imbedded within set theory — one of the foundations of all mathematics.
This served to add needed clarity and rigor to the concept of “relation.”

Third, there was a general expectation that once a model was developed,
there were no limitations on what computations could be asked of it. Which
questions are “well posed” and which are not? In 1942, Claude Shannon [7],
before he became the father of information theory, studied these issues on
the recently developed mechanical differential analyzer — the most powerful
computer of its time, analog or digital. He discovered that some of the
variables desired to be dependant, or output variables — based on the rotation
of a shaft assigned to that variable — were “free running”, providing no
useful results. In other cases the entire network of rotating shafts, gear trains
and integrators would just “lock up” — again providing no useful results.
These instances of “free running” and “lockup” are directly related to the
concepts of under constraint and over constraint, which we will discuss later.

Fourth, as was mentioned in Chapter 1, there is a vast dimensionality gap
between the cognitive capability of man and machine. Our challenge is to
make the best partnerships between these cognitive entities. As George
Gamow [8] related in his charming book, “One, Two, Three, Infinity,” it was
possible to survive with very limited numerical perceptions during our
primitive beginnings, but the advent of mathematics, starting with
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arithmetic, enormously enriched our lives and ability to understand and
control the world.

“I can see the issues are not as new as I thought,” admitted the manager.

“Speaking of all the fathers, you mentioned Gamow — wasn’t he also a
student of Alexander Friedmann, the father of the big bang theory as well as
the father of George Friedman, this book’s author?”

“Almost correct! You continue to amaze me, I should develop more
respect for you,” beamed the analyst. “Yes, George Friedman’s father was
Alexander Friedmann, but he was Friedmann the tailor, not Friedmann the
cosmologist. But let’s proceed to some substance.”

“OK,” challenged the manager. “I’m ready to enter the mathematical
world you tell me that is necessary to bring order to this confusion and
ambiguity. Let’s see if the work will prove to be a worthwhile expenditure of
intellectual energy.”

“Fair enough,” agreed the analyst. “In the remainder of this chapter, I
want to introduce you to the very simplest foundations of set theory and
graph theory, which will define for us with rigor and clarity the formerly
vague concepts of relation, well-posed, consistent, allowable computation,
overconstraint and underconstraint. I believe it will be worth your effort.”

We will begin our exploration of the foundations of constraint theory by
presenting four interrelated views of the mathematical model: set theoretic,
families of submodels, bipartite graph, and constraint matrix. The first and
second are complete and contain all the model’s detail. The third and fourth
are metamodels and contain only those abstractions which illuminate the
model’s structure as it relates to consistency and computability.

2.2 THE FIRST VIEW: SET THEORETIC

Definition I: A set is a collection of elements. A subset is a portion of
this collection. The number of elements may be finite, such as the planets of
the solar system, or infinite, such as the points on a line. A set with no
elements at all is the null set. (Figure 2-1)

Definition 2: A variable is an abstraction of one of the model’s
characteristics which the analyst considers essential. Associated with each
variable is an allowable set of values. (Figure 2-2)

The set of variables which define the model can have enormous
flexibility. The variables can be continuous and quantitative, such as force,
length, or temperature; they can be discrete, such as the variables in Boolean
Algebra, or the solutions of Diophantine equations; they can be qualitative,
such as hot, rich, salty or sick; or combinations of these.
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infinite set : {all rational numbers}

Figure 2-1. 1t all begins with the simple concept of sets, subsets, and the null set.
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Money
Length, Mass...
Gear Ratio
Probability
Binary Boolean
Ternary Boolean
Permutations
Taste
H,0 State
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Any real value
Positive Real Numbers
Rational Numbers
0 < real number <1
Oorl
0,1o0r2
Positive integers
Sweet, Sour, Salty, Bitter
Ice, Water, Steam
Larger than, Older than...

Figure 2-2. The sets of variables and their allowable values have enormous flexibility.
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Definition 3: The model hyperspace is that multidimensional coordinate

system formed by all the variables as axes, each of which is orthogonal to all
the others. (Figure 2-3) This is simply a generalization of Descartes’
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unification of geometry and algebra. We will frequently refer to these axes
as Cartesian coordinates.

/ Allowable Values

\Va)'ﬂbles

Try to imagine that all these
axes are mutually perpendicular

Figure 2-3. The Model Hyperspace formed by the orthogonal axes of the variables is a useful
abstraction, although in general it is impossible to be perceived.

Definition 4: The product set of a set of variables is the set containing all
possible combinations of the allowable values of all the variables. In the case
where all the variables are continuous over an infinite range, the product set

is merely every point within the hyperspace defined by the set of variables.
(Figure 2-4)
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Figure 2-4. The Product Set contains all possible combinations of the allowable sets of the
variables’ values.

Definition 5: As suggested by Wiener and amplified by Bourbaki [9] and
Ashby [10], a relation between a set of variables is defined as that subset
within the product set of the variables which satisfies that relation. (Figure 2-
5) This relation can be between any number of variables and is not restricted
to the binary relations of “relation theory.”

The relations can also have enormous flexibility. They can be linear or
nonlinear, differential equation, partial differential equations, integral-
differential equations, logical equations, binary, ternary, etc., deterministic
or probabilistic, inequality relations, or any combination of these. In many
cases the relations can be represented by data or “truth tables.”

Definition 6: Since a relation reduces the size of the original product set
to a smaller, relation set, the relation can be said to constrain or apply a
constraint to the original product set. (Figure 2-6)

Now that we have embedded the concept of mathematical models within
set theory, we will need these four set theoretic operations for further
developments: (see definitions 7 and 8; Figure 2-7)
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Figure 2-5. Wiener suggested that a “relation” between variables can be defined as the subset
within the product set of these variables which satisfies it. This not only provides rigor, but
permits a tremendous variety of relation types.
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Figure 2-6. Relations, as well as variables held constant, constrain the product set into a much

smaller subset.
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Union:

{A} U {B} = all elements in A or
B or both

Intersection:

{A} N {B} = all elements that are
in both A and B

Projection: y

PryA = the shadow of A ontoy

PryA = the shadow of A onto x < A
PryA
-~

Extension:

1
ExA = extends each point in A A
to all points in the new direction

EX,A = extends A to all x

Ex,A = extends A to all y

Figure 2-7. Only four operations from set theory are employed for Constraint Theory.

Definitions 7: The union of sets A and B is the set of all points which are
either in set A or in set B or both. Symbolically:

X C AUBIf:x C AorxC B
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The intersection of sets A and B is the set of all points which are in
both 4 and B. Symbolically:

xC ANBif:xC Aandx C B

Definitions 8: The projection of set A onto dimension x is the set of
points within set 4 with all coordinates except x suppressed. For example, if
set 4 is the point (2,4) in the xy plane, then Pr, (2,4) = 2 on the x axis only.
Projection is a dimension reducing operation. Symbolically:

If A =(2,4) in xy-space (point)
Pr,A = (x=2) in x-space (point)
PryA = (y=4) in y-space (point)
The extension of set A into dimension y is the set of all points within set
A plus all possible values of the dimension y. For example, if set 4 is the

point (2,4) in the xy plane, then Ex,(2,4) is the line x=2 where y varies over

all its possible values. Extension is a dimension increasing operation.
Symbolically:

ExyA = (x=2) in xy-space (line)
Ex,A = (x=2) N (y=4) in xyz-space (line)

Definition 9: y is a relevant variable with respect to relation ¢ in xyz
space means that there exist lines in xyz space parallel to the y axis that are

neither entirely within nor entirely outside of the relation set. Thus y has an
effect on ¢, or equivalently, the relation ¢ constrains y. Symbolically:
If: Exy(Pry,Ag) # Ay, theny is relevant to ¢

Similarly, y is irrelevant with respect to relation ¢ if:

Exy(PryAg) = Ay  (Figure 2-8)
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2.3 THE SECOND VIEW: FAMILY OF
SUBMODELS

The set theoretic definition of relation was chosen to provide the firmest
and broadest mathematical foundation for the work to follow. Unfortunately,
it cannot also be claimed that this viewpoint is a practical way to describe
the relation. There are some occasions, such as tabulated or plotted
functions, when it is necessary to list every point within the relation subset
exhaustively. In these cases, the relation subset is merely the union of all the
listed points within the hyperspace of the model. However, in the vast
majority of mathematical models, far more efficient means are used to define
the usually infinite number of points comprising the relation subset.

These efficient means almost invariably involve the concept of
describing the total model as the intersection or union (or both) of a set of
submodels or algorithms. (Figure 2-9) This is necessary for at least two
reasons: First, and more obvious, a practical way of specifying infinite sets is
required. Second, and deeper, model builders cannot conceive of the entire
model with their limited perceptual dimensionality and thus attempt to
construct higher dimensional models by aggregating in some fashion a series
of lower dimensional submodels. The rules of aggregation employ the union,
intersection, projection and extension operators defined previously.

Frequently, a function is specified in a piecewise fashion; for example:

x = (0 when t<(
x = t* when t>0

In cases like this, the meaning is that the contribution of these two sets to
the total model is the union of the sets.

More frequently, a collection of “simultaneous equations” attempt to
define the model; for example:

x+y+z=13
x-y=8

In cases like this, the meaning is that the contribution of these two sets to
the total model is the infersection of the sets.

In general, the dimensionality of the total model is far greater than any of
the contributing submodels. Thus, the contributing submodels specify only a
subset of the total model and, in order for them to be able to intersect in the
total dimensional space, they must be extended into all the unspecified
directions. For example, let the total model space be xyz and let the relation
subset for f;(x,y)=0 be A4, and the relation subset for f>(x,z)=0 be A4,. Thus,
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before these two relations intersect, 4; must be extended in the missing z
direction, and A, must be extended in the missing y direction. Defining Ay as
the total model relation, then:

A [
v 1t
ExyA
Irrelevancy: , y is irrelevant with respect to A
A A since Ex,Pr,, A=A
in other words,
y has no affect on A
in yet other words,
changing y's value will not
: X change the xy relation
, |
Axz=Pry;A
z

Relevancy: | y is relevant with respect to A
Ayz=Pry;A since Ex,Pr,,A#A
in other words,
y has an affect on A
and changing y's value
does change x and z
X

v Y

z Pry;A

Figure 2-8. Relevancy of a variable with respect to a relation can be defined in terms of the
projection and extension operations.

Az = Ex,(A;) N Exy(A,)

Now, once the model is constructed in the above fashion, an analyst
wishes to have a subdimensional “view” — or computational request — of this
multidimensional relation. In order for him to view the relation — as A4, —
with respect to the xy plane, he must ask for a projection of Ay onto the xy
plane. (Figure 2-10). Symbolically:

Ay=P rxy(AZ)
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A=f1(y) when xo< x < x1
A=f,(y) when x; < x < X2
A=f3(y) when x,< x < x3

Thus, A= f{UfaUf3

A= faNfs

As = Q Exq{aiU B}
J
where: A; = simultaneous relations

B; = piecewise relations

Exq = extension of each
subrelation into all
non-relevant directions

In words, the total model relation is the intersection of the extensions of all the simultaneous

relation submodels as well as the unions of the piecewise submodels.

Figure 2-9. Total model relations are generated by families of submodels which are combined

by the union, intersection, extension and projection operations.

If the analyst wishes to impose additional restrictions on his view, or
computation, prior to the projection, he may hold any number of variables at
a constant value. In these cases, the relations corresponding to these
variables held constant intersect the total model relation prior to the

application of the projection operation.
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Figure 2-10. After each generating relation is developed, it is extended into the full
hyperdimensional space of the total model, forming the relation Ay, which in turn is projected
onto the subspace of the computational request, where it can be “viewed” by managers,
analysts and others interested in learning from the model.

2.4 THE THIRD VIEW: THE BIPARTITE GRAPH

Although there exist strong implications of topological structure in
mathematical models and their computations, neither of the two views
described above provides topological insight. In order to provide this
additional insight — as well as allow a right-brain perspective to aid the
dominantly left-brain views already presented — graph theory will be applied.
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Definitions 10: A graph is a topological network of points, called
Jjunctions, or vertexes, and lines connecting some of them, called arcs, or
edges. A bipartite graph is a special graph having two disjoint sets of
vertexes, {K} and {N}, such that any edge is only allowed to connect a vertex
in {K} to a vertex in {N}.

Definitions 11: A model graph, is a bipartite graph with one set of
vertexes, called nodes, corresponding to the model’s relations and the other
set of vertexes, called knots, corresponding to the model’s variables. A knot
will be connected by an edge to a node only if the corresponding variable is
relevant to the corresponding relation. As an additional visual aid, nodes will
be shown as squares and knots will be shown as circles. (Figure 2-11)

A model graph can be thought of merely as the circuit diagram of a
computer hookup of the mathematical model: the nodes are function
generators and the knots are wired connections that permit the values of the
variables to pass from one function generator to another. Thus, when the
edges indicate no direction, the bipartite graph represents a model. When the
edges indicate specific directions, then the bipartite graph represents a
computation on that model, tracking the flow of computation or constraint
across the topological structure.

2.5 THE FOURTH VIEW: THE CONSTRAINT
MATRIX

The fourth and final viewpoint of the mathematical model is introduced
primarily to provide a format amenable to computer processing. As will be
seen later, however, it also furnishes yet another mathematical perspective
from which the proof of certain theorems can most easily be made.

Definitions 12: A constraint matrix is a rectangular array of elements
that presents exactly the information inherent in a bipartite model graph, but
is a form that can be easily stored and operated upon by a computer. The
columns correspond to variables and the rows correspond to relations. An
element in the ith column and the oth row will be filled if the variable i is
relevant to the relation o, and empty if it is not. (Figure 2.12) Compactly
stated, the rows, columns and elements of the constraint matrix are
homomorphic to the nodes, knots and edges of the bipartite graph. In order
to indicate the direction of computational flow, the elements of the constraint
matrix can take on the values: +1 or -1.

To further emphasize the essential similarity between the bipartite graph
and the constraint matrix, Figure 2-13 shows a logical evolutionary transition
between the two representations. As was stated earlier, both the bipartite
graph and constraint matrix are “metamodels” and do not contain the full
model information inherent in the set theoretic and family of submodels
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versions. Rather, they emphasize the structure and topology important to
model consistency and computational allowability.

2.6 MODEL CONSISTENCY AND
COMPUTATIONAL ALLOWABILITY

We are now prepared to present rigorous definitions in the area of the
“well posed problem.” Saying a problem is well posed means that the
mathematical model is consistent and the computation is allowable.

Definition _13: A mathematical model is consistent means that its
multidimensional relation set contains at least one point. Symbolically,

As # the null set

Definition _14: A computational request made on a model is allowable
means that the projection of Ay onto the view space of the computation
contains at least one point and in addition, each variable involved in the
computation must be relevant to this projection in the sense of definition 9.

Thus, if the projection onto the desired subspace that the analyst wants to
view has been nulled out to no points at all, then the computation, the
application of variables held constant or even the total model relation has
been overconstrained. On the other hand, if the projection has variables that
are not relevant, these variables take on all their possible values, and are
therefore underconstrained. (Figure 2-14)

2.7 THE MANAGER AND ANALYST CONTINUE
THEIR DIALOGUE

“You started off simply enough,” commented the manager. “What can be
easier than the definition of sets and their operations? Also, your extension
of Cartesian coordinates into hyperspace can be grasped by extrapolating
from what we know of one, two and three dimensional spaces.

As a teenager, | was inspired by Abbot’s Flatland [11] and Burger’s
Sphereland [12]. These extensions are interesting philosophically, but do
they really represent the real world and should they be the basis for applied
mathematics? I’ve heard professors argue that Descartes himself only was
thinking of our familiar three dimensional space, not even the four
dimensions for relativity theory, the eleven dimensions for string theory, and
certainly not the hundreds of dimensions we need for a modern mathematical
model.”
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Figure 2-11. The bipartite graph is a metamodel of the full model which illuminates the
model’s structural and computational properties.
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Bipartite Graph {node, knot, edge} :: Constraint Matrix {row, column, element}

The Constraint Matrix displays structure

I

e denotes that the variable in the column is relevant to the relation in the row

The Constraint Matrix displays computation (or constraint flow)

1 1| -1 R
2
2 +110]0
31 +1|-1]+1
<=L

+1 denotes constraint flow from knot to node
-1 denotes constraint flow from node to knot
0 denotes no constraint flow from, although relevancy exists

Figure 2-12. The Constraint Matrix is the companion to the bipartite graph and displays
exactly the same information. It is also a metamodel which contains only that information
relating to the model’s structural and computational properties.
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Figure 2-13. Evolutionary transition from the bipartite graph to the constraint matrix.

“What do we really know about ‘reality,”” asked the analyst, launching
into a minor tirade. “Irrational numbers were once thought to be irrational,
and still bear the label. Negative numbers were once thought to be
imaginary, but now play an essential role in every walk of science and
finance. Zero was originally thought to be completely unworthy of serious
consideration, but we would be crippled if we stuck to the awkward Roman
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numerals. Imaginary numbers were originally considered as only interesting
abstractions, but today form the basis of several very practical integral
transforms and are essential to almost every walk of electrical engineering.

Then there are loops (which we will consider in Chapter Four). Early in
control theory, feedback loops were considered impossible, in logic, self-
referential statements were considered illogical, and in decision theory,
intransitive preferences are still considered irrational.”

“So, in light of the above, we face this philosophical question: ‘Does
hyperdimensional space have to correspond to the space-time continuum of
our universe in order to be useful for the understanding of mathematical
models?’ 1 claim the answer is ‘no’ and most mathematicians use as many
dimensions as they need. Descartes’ crucial intellectual leap was to enrich
the algebraic relations with geometric concepts; the extrapolation to any
number of dimensions should be trusted as a straightforward extension.”

“OK,” agreed the manager, feeling a little over-answered. “Your use of
the projection and extension operators was less familiar to me and I never
really thought how families of submodels contributed to the total model. The
concept that a computational request is really a projection of the total model
onto a subspace was really beyond my experience. But now I can see the
value of this construct. The projection operator provides the dimensionally-
limited human an understandable perspective of an inconceivable multi-
dimensional relation.”

“Or to further extend the lingo that managers like to use,” added the
analyst, “if you choose the right subdimensional viewspace, you get the ‘best
angle’ on a complex problem — something you guys are always trying to do.”

“Figure 2-14 is a good summary of most of the previous ideas. Referring
to the ancient stories at the beginning of this chapter, the blind men each
observing the elephant from different aspects form pitifully incomplete
shards of truth, generating relations which are combined into the ‘total truth.’
However, since we are hopelessly subdimensional, we cannot perceive or
understand the total truth, 4. Instead, we turn it every which way and attempt
to observe it from many different angles, some of which may help us to
understand ‘more deeply.” Disappointingly, for most of the directions we
attempt to look at the relation, we will get no more information. That is the
agony of asking questions which are not well-posed.”

“Bottom line, to use more management jargon,” summarized the analyst,
“these four views were deemed necessary by the author to understand the
underlying foundations of models, computations and well-posedness, rather
than rely on the rather opaque, algorithmic crankturning he had been taught
in all his courses in mathematics.”
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Generating Relations
L

IfA=0, Kj
NOT CONSISTENT

If A# 0 (null set),
CONSISTENT

>

Hold some of the
variables constant

-— Dimension Reduction

P — [ AL

Over Constrained Point Constrained Under Constrained || Perfectly Constrained

(no points in this (sometimes not (at least one of (all variables in this

projection) what was the variables subspace relevant)
expected) irrelevant)

Figure 2-14. In order for a problem to be well-posed, the mathematical model must be
consistent and the computation must be allowable. Consistency requires that the hyper-
dimensional relation not be the null set. Allowability requires that all the variables of the

requested computation be relevant to the projection of the total relation onto the
computational subspace.
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2.8 CHAPTER SUMMARY

e Four interrelated views of a mathematical model and its
computations have been presented: set theoretic, family of
submodels, bipartite graph and constraint matrix. (Figure 2-15).
The first two are full models, containing all the detail necessary
for final construction and computation; the latter two are
metamodels, and are abstractions of the first two which
concentrate on the topological and computational features. In a
strong sense, the metamodels can be considered to provide an
overarching management perspective on consistency and
computability issues. Without this perspective, those who
attempt to build models and make computations on them will
blunder into difficulties due to either inconsistencies in the model
or unallowabililties in the computations — in short, the traditional
well posed problems. In any case, once the “well-posedness” of
the models and computations have been analyzed and managed
by the metamodels, the full models must then be employed for
the actual computations.

e The concept of “set” has been used as frequently in this chapter
as the word “system” has been used in a book on systems
engineering. This was done deliberately because — despite the
apparent simplicity of the concept — it is far more precise a
concept than “system” and its applicability is wide ranging.

o The set was used to define a relation between variables. The
concept of sef was also used to identify:

o the allowable values of a variable

o the possible values of a product set

o collections of variables — which can represent
computational requests

collections of relations — which can represent submodels

subsets of bipartite graph vertexes called knots

subsets of bipartite graph vertexes called nodes

collection of edges connecting subsets of the knots and

nodes

constraint matrix columns; homomorphic to knots and

variables

o constraint matrix rows; homomorphic to nodes and
relations

o constraint matrix elements; homomorphic to edges and
relevancies

O O O O

O
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2. The Four-Fold Way
REPRESENTATION APPEARANCE PRIMARY PURPOSE
M
ég Most fundamenttal
definition for
IN K-SPACE "RElatien”
X
z
1: m>n+k
2: x=z+3p Most practical
FAMILY OF 3: r+3 ayk format for
SUBMODELS B heiie describing models
£ and algorithms
5: b=clg(h)dn
d
6: v=wr+wr

Best viewpoint for

BIPARTITE local constraint
6RAPH and computational
flow
abcde ,
1 ofe QI/
CONSTRAINT 2 | Best format for
MATRIX 3]e N automatic processing
41
3%
/

Figure 2-15. The four representations of a mathematical model. The first two are full models

and the latter two are metamodels.



48

Constraint theory

o power set of the knots: all definable computational
requests
o power set of the nodes: all possible submodels

e Perhaps Friedman’s greatest contribution was the recognition

that very useful metamodels of the mathematical model’s
variables, relations and relevancies are the bipartite graph’s
knots, nodes and edges and the companion matrix’s rows,
columns and elements.

e This chapter provided the foundation for a building; its

construction and use will continue in subsequent chapters.

2.9 PROBLEMS FOR THE INTERESTED STUDENT

1.

Provide a real-world example of a three-dimensional product set
where one dimension is continuous, another is discrete and a third is
defined in intervals.

Employing detailed algebraic equations in three-dimensional space,
show an example of y being relevant to the model and another
example of y being irrelevant.

For a three-dimensional model, show how 1, U, Prand Ex can be
used to combine a family of three algebraic equations into the total
model.

Draw the constraint matrix for Figures 1, 5, 6 and 7 of Chapter One.

Draw the constraint matrix for Figure 3 of Chapter One. Can you
suggest how the term, “Basic Nodal Square” was developed?

Regarding the mathematical model depicted in Figure 1-3, which of
the following computational requests are allowable and which are
not allowable?

For the allowable requests, draw the directed bipartite graph which
depicts the computational flow. For the unallowable requests,
discuss the reason(s) for the unallowability.

Computational Requests:
E=f(T.M), A=(T,E), A=f(P.M)
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