Chapter 1
Introduction

1.1 What Do We Mean by (Mathematical) Modeling?

With (mathematical) modeling we denote the translation of a specific problem from
the natural sciences (experimental physics, chemistry, biology, geosciences) or the
social sciences, or from technology, into a well-defined mathematical problem. The
mathematical problem may range in complexity from a single equation to a system
of several equations, to an ordinary or partial differential equation or a system of
such equations, to an optimization problem, where the state is described by one
of the aforementioned equations. In more complicated cases we can also have a
combination of the problems mentioned. A mathematical problem is well-posed, if
it has a unique solution and if the solution of the problem depends continuously
on its data, where continuity has to be measured in such a way that the results are
meaningful for the application problem in mind. In general the phenomena to be
described are very complex and it is not possible or sensible to take all its aspects
into account in the process of modeling, because for example

e not all the necessary data are known,

e the model thus achieved cannot be solved anymore, meaning that its (numerical)
solution is expensive and time consuming, or it is not possible to show the well-
posedness of the model.

Therefore nearly every model is based on simplifications and modeling assumptions.
Typically the influence of unknown data are neglected, or only taken into account
in an approximative fashion. Usually complex effects with only minor influences on
the solution are neglected or strongly simplified. For example if the task consists
of the computation of the ballistic trajectory of a soccer ball then it is sensible to
use classical Newtonian mechanics without taking into account relativity theory. In
principle using the latter one would be more precise, but the difference in results for
a typical velocity of a soccer ball is negligible. In particular this holds true if one
takes into account that there are errors in the data, for example slight variations in the
size, the weight, and the kickoff velocity of the soccer ball. Typically available data
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2 1 Introduction

are measured and therefore afflicted with measurement errors. Furthermore in this
example certainly the gravitational force of the Earth has to be taken into account, but
its dependence on the flight altitude can be neglected. In a similar way the influence
of the rotation of the Earth can be neglected. On the other hand the influence of air
resistance cannot be neglected. The negligible effects are exactly those which make
the model equations more complex and require additional data, but do not improve
the accuracy of the results significantly.

In deriving a model one should make oneself clear what is the question to be
answered and which effects are of importance and have to be taken into account
in any case and which effects are possibly negligible. The aim of the modeling
therefore plays a decisive role. For example the model assumptions mentioned above
are sensible for the flight trajectory of a soccer ball, but certainly not for the flight
trajectory of arocket in an orbit around the Earth. Another aspect shows the following
example from weather forecasting: An exact model to compute the future weather for
the next seven days from the data of today cannot serve for the purposes of weather
forecast if the numerical solution of this model would need nine days of computing
time of the strongest available supercomputer. Therefore often a balance between the
accuracy required for the predictions of a model and the costs to achieve a solution
is necessary. The costs can be measured for example by the time which is necessary
to achieve a solution of the model and for numerical solutions also by the necessary
computer capacities. Thus at least in industrial applications costs often mean financial
costs. Because of these reasons there can be no clear separation between correct or
Jfalse models, a given model can be sensible for certain applications and aims but not
sensible for others.

An important question in the construction of models is: Does the mathematical
structure of a model change by neglecting certain terms? For example in the initial
value problem

ey (@) +y(x)=0, y0)=1

with the small parameter € one could think about omitting the term €y’. However,
this would lead to an obviously unsolvable algebraic system of equations

yx)=0, yO0)=1.

The term neglected is decisive for the mathematical structure of the problem indepen-
dent of the smallness of parameter €. Therefore sometimes terms which are identified
as small, cannot be neglected. Hence, constructing a good mathematical model also
means to take aspects of analysis (well-posedness) and numerics (costs) of the model
into account.

The essential ingredients of a mathematical model are

e an application problem to be described,
e a number of model assumptions,
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e a mathematical problem formulation, for example in the form of a mathematical
relation, specifically an equation, an inequality, or differential equation, or several
coupled relations, or an optimization problem.

The knowledge of the model assumptions is of importance to estimate the scope
of applications and the accuracy of the predictions of a model. The aim of a good
model is, starting from known but probably only estimated data and accepted laws
of nature to give an answer as good as possible for a given question in an application
field. A sensible model should only need data which are known or for which at least
plausible approximations can be used. Therefore the task consists in extracting as
much as possible information from known data.

1.2 Aspects of Mathematical Modeling: Example
of Population Dynamics

To illustrate some important aspects of modeling in this section we consider a very
simple example: A farmer has a herd of 200 cattle and he wants to increase this herd
to 500 cattle, but only by natural growth, i.e., without buying additional animals.
After a year the cattle herd has grown to 230 animals. He wants to estimate how long
it lasts till he has reached his goal.

A sensible modeling assumption is the statement that the growth of the population
depends on the size of the population, as a population of the double size should also
have twice as much offspring. The data available are

e the initial number x (fy) = 200 of animals at the initial time £y,
e the increment in time A¢ = 1 year,
e a growth factor of r = 230/200 = 1.15 per animal and per time increment A¢.

If one sets t, = 1y + n At and if x(¢) denotes the number of animals at time ¢, then
knowing the growth factor leads to the recursion formula

x(tn+l) =rx(ty). (1.1)
From this recursion formula one gets
x(ta) = r"x(fo) .

Therefore the question can be formulated as:
Find a number n such that x(z,) = 500.

The solution is

500
() "\ 300
—") , orn=——7> =06.6.

nln(r) =In (x(to) = In(1.15)
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Hence, the farmer has to wait for 6.6 years.

This is a simple population model which in principle can also be applied to other
problems from biology, for example the growth of other animal population, of plants
or bacteria. But it can also be used in apparently totally different fields of applications,
for example the computation of interests or the cooling of bodies (see Exercises 1.1
and 1.2). Without possibly noticing, in deriving the above model we have used several
important modeling assumptions, which are fulfilled sometimes, but which are not
fulfilled in a lot of cases. In particular the influence of the following effects has been
neglected:

e the spatial distribution of the population,
e limited resources, for example limited nutrients,
e aloss of population by natural enemies.

Further details which also have been neglected, are for example the age distribution
in the population, which has influence on the death rate and the birth rate, and the
subdivision in female and male animals. Additionally the model leads to non-integer
population quantities, which strictly speaking is not correct. The simplifications and
deficiencies do not render the model worthless but they have to be recognized and
taken into account to assess the result correctly. In particular the specific result of
6.6 years should not be taken too seriously, and an appropriate interpretation rather
is that the farmer presumably will reach his goal in the 7" year.

An aspect, which is not optimal for intrinsic mathematical reasons, is the time
increment of one year, because it is chosen arbitrarily. For the application under
consideration it has a sensible meaning, nevertheless also an increment of three
months or of two years could have been chosen. Furthermore we need two data, the
increment in time and the growth rate. Both data depend on each other, meaning
that the growth characteristics possibly can only be described by one number. As a
first approach one can conjecture that the growth rate depends linearly on the time
increment, i.e.,

r=1+Atp

with a factor p still unknown. From » = 1.15 for 4¢ = 1 year we conclude that p =
0.15/year. Taking this for granted then for 4t = 2 years one has » = 1.3. Therefore
after 6 years, (6 = 3 times 2) the farmer has
200 - 1.3° = 439.4
cattle. But in the “old” model with 47 = 1 year he has
200 - 1.15° ~ 462.61

animals. Therefore the assumption of a linear relation between r and At is wrong.

A better approach can be gained by the limiting process At — 0O:
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x(t + 4t) = (1 + 4t p) x(¢) for “small” 4t ,

or more precisely

x4+ A4 —x()
hm —_— =p
At—0 At

x(1),

i.e.,

O =px@). (1.2)

This is a continuous model in the form of an ordinary differential equation, which
does not contain an arbitrarily chosen time increment anymore. It possesses the exact
solution

x(1) = x(ty) P~

If the data are as above, i.e., a time increment of A¢ = 1 year and a growth rate
r = 1.15, this means
el = 1,15

and therefore
p = In(1.15)/year ~ 0.1398 /year .

This is a continuous exponent of growth.

The discrete model (1.1) can be perceived as a special numerical discretization
of the continuous model. An application of the explicit Euler method with time step
At to (1.2) leads to

x(tiy1) = x(t;) + At px(t;), or x(ti41) = (1 + 41 p)x(5;),
this is (1.1) with » = 1 + 4¢ p. In the case p < 0 a time increment of the size

At < (—p)~! has to be chosen to achieve a sensible sequence of numbers. On the
other hand using the implicit Euler method one gets

x(tis1) = x(t) + At px(tizr) . or x(tip1) = (1 — 4t p)~'x(1),
i.e., (1.1) withr = (1 — 4t p)~'. Here for p > 0 the time step has to be chosen such

that At < p~'. By Taylor series expansion one can see that the different growth
factors coincide for small At “up to an error of the order O ((41)?)”:

(1= 4t p)™ =1+ 4t p+ 0((4t p)?).
The connection between the continuous and the discrete model therefore can be
established by an analysis of the convergence properties of the numerical method.

For the (explicit or implicit) Euler method one gets for example

lx(#;) — xi| < C(t) 4t,
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where x (#;) is the exact solution of (1.2) at time ¢; and x; is the approximate solution
of the numerical method, assuming that#; < ¢,, where ¢, is the given final time for the
model. For details about the analysis of numerical methods for ordinary differential
equations we refer to the textbooks of Stoer and Bulirsch [123] and Deuflhard and
Bornemann [28].

Both models, the discrete and the continuous, have the seeming disadvantage
that they also allow non-integer solutions, which obviously are not realistic for the
considered example. The model describes — as it is true for every other model —
not the total reality but only leads to an idealized picture. For small populations
the model is not very precise, as in general population growth also depends heavily
on stochastic effects and therefore cannot be computed precisely in a deterministic
way. In addition for small populations the model assumptions are questionable, in
particular one neglects the age and the sex of the animals. In the extreme case of a
herd of two animals obviously the growth will depend heavily on the fact whether
there is a male and a female animal, or not. For large populations on the other hand
one can assume with a certain qualification that it possesses a characteristic uniform
distribution in age and in sex, such that the assumption of a growth proportional to
population size make sense.

The substitution of integer values by real numbers reflects the inaccuracy of the
model. Therefore it is not sensible to change the model such that integer values in
the solutions are enforced. This would only lead to an unrealistic perception of high
accuracy of the model. For a small population a stochastic model, which then “only”
provides statements about the probability distribution of the population size, makes
sense instead of deterministic models.

Nondimensionalization

The quantities in a mathematical model generally have a physical dimension. In the
population model (1.2) we have the units number and time. We denote the physical
dimension of a quantity f with [ f] and abbreviate the units number of entities by A
and time by 7. Therefore we have

[(1=T,
[x(H]=A,
, A
[x(t)]_?,

1

[P]ZT-

The specification of a physical dimension is not yet a decision about the physical unit
of measurements. As a unit of measurement for time one can use seconds, minutes,
hours, days, weeks, or years, for example. If we measure time in years, then 7 is
indicated in years, x(¢) by a number, x’(¢) in number/years and p in number/years.

To get models as simple as possible and furthermore in order to determine char-
acteristic quantities in a model, one can nondimensionalize the model equations.
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For this aim one defines a characteristic value for every appearing dimension and
correspondingly a unit of measurement. Here it is not necessary to choose one of the
common units as for example seconds or hours but it is more appropriate to choose
a unit adapted to the problem. For the population model there are two dimensions,
therefore two characteristic values are needed, the characteristic number x and the
characteristic time 7. These are chosen in such a way that the initial data ty and
xo = x(tp) are as simple as possible. Therefore a convenient unit of measurement

for time is given by
t—1
T=——,
t

where 7 denotes a unit of time which still has to be specified, and as a unit for number
we choose

X = X0 -
Setting
X
y=z
X
and expressing y as a function of 7,
X(ET + 1)
yr)y=———7,
one obtains B
t
Y1) == x'(t)
X

and therefore the model becomes

y(r)=pxy(r).

~I1| =|

This model gets its most simple form for the choice

_ 1
r=—. (1.3)
p
The model thus derived is the initial value problem
Y(m) =y,
y0)=1. 1.4)

This model has the solution
y(r)=¢€".
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From this solution all solutions of the original model (1.2) can be achieved by using
a transformation:

x(1) = T y(7) = x0 y(p(t — 1)) = x0 P |

The advantage of the nondimensionalization therefore is the reduction of the solution
of all population models of a given type by the choice of units to one single problem.
Note that this holds true independent of the sign of p, although the behavior of the
solutions for p > 0 and p < 0 is different. For p < 0 the solution of (1.2) is given
by the solution (1.4) for the range 7 < 0.

The scaling condition (1.3) also can be obtained by means of dimensional analysis.
In this procedure the characteristic time 7 to be determined is expressed as a product
of the other characteristic parameters in the model,

t=p'xy withn,meZ.

By computing the dimension one obtains
- 1\"
[£] = [p]"[x0]" and therefore T = T A"

The only possible solution of this equation is given by n = —1, m = 0, if the number
of animals is interpreted as a dimension of its own. Thus we get exactly (1.3).

In more complex models typically the model cannot be reduced to a single problem
by nondimensionalization but the number of relevant parameters can be strongly
reduced and the characteristic parameters can be identified. This also relates to the
corresponding experiments: For instance, from the nondimensionalization of the
equations for airflows one can conclude how the circulation around an airplane can be
experimentally measured by using a (physical) model for the airplane much smaller
in scale. We will explain dimensional analysis in one of the following sections using
a more meaningful example.

1.3 Population Models with Restricted Resources

For large populations in nature a constant growth rate is not realistic anymore. A
restriction of the habitat, or the available nutrients, or other mechanisms impose
limitations on the growth. To construct a model it is feasible for such situations to
assume that there is a certain capacity x,; > 0 for which the resources of the habitat
are still sufficient. For population quantities x smaller than x,, the population still
can grow, but for values larger than x,, the population decreases. This means that
the growth rate p now depends on the population x, p = p(x), and that
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px) >0 for0 < p < xy,
px) <0 for p > xy

have to hold true. The most simple functional form satisfying these conditions is
given by a linear ansatz for p, i.e.,

p(x) =qg(xy —x) forall x eR
with a parameter g > 0. With this ansatz we obtain the differential equation
x'(t) = g xpx(t) — q x(2)? (1.5)

as a model. The additional term —q x(¢)? is proportional to the probability for the
number of encounters of two specimens of the population per unit of time. The
term represents the more competitive situation if the population size increases, the
so-called “social friction”. The Eq.(1.5) has been proposed by the Dutch biomath-
ematician Verhulst and is called logistic differential equation or equation of limited
growth.

Equation (1.5) also can be solved in closed form (compare Exercise 1.3). From

x/

x(xpy —x) —4

we conclude using the partial fraction decomposition

1 1 /1 1
- - — -+
x(xpy —x)  xy \x  xy—x

In(x(t)) —In|xp — x(t)| = xpqt +c1, ¢ €R.

and by integration

After the choice of an appropriate constant ¢c; € R we obtain

L = CzeXqu ,
xy — x(t)

and
coxp et Xy

t) = = .
X( ) 14+ Czequt 1+ C3€_qut

Incorporating the initial condition x (fy) = x¢ we obtain

XMX0
X0 + (xM — xo)e_fol(f_IO) ’

x(t) = (1.6)
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From this exact solution the following properties can be easily derived:

e If x( is positive, the solution always stays positive.
e If xq is positive, then for t — +o0 the solution converges to the equilibrium point
Xoo = XMm.

The graph of x can be sketched also without knowing the exact solution. From (1.5)
first we conclude

x>0, ifx <xy,

x' <0, ifx > xy.
Furthermore we have

=) =(qu—x)x) =gy —x)x' —qxx

=q(xy —2x)x" = ¢*(xy — 2x) (xpr — X) X
From these results we conclude

x>0, ifx € (0, xy/2) U (xp, 00),
x" <0, ifxpy/2 <x <xp.

Thus the solution curves have an inflection point at x,; /2 and the curves are concave
in the interval between x,,/2 and xs, and convex otherwise. Solutions of the logistic

differential equation are depicted in Fig. 1.1.
Stationary Solutions

For more complex time-depending models a closed form solution often cannot be
found. Then it is useful to identify time independent solutions. Such solutions can
be computed using the time dependent model by just setting all time derivatives to
zero. For our model with restricted growth one gets

0=gxyx —gx>.

—

TM

Fig. 1.1 Solutions of the logistic differential equation
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This equation has the two solutions
xo=0 and x; = xy,.

These are the solutions of the original model for specific initial data. Often time
independent solutions appear as so-called stationary limits of arbitrary solutions
for large times, meaning that they are solutions constant in time towards which
time dependent solutions converge for large times. Typically this only appears if the
stationary solution is stable in the following sense: If the initial data is only changed
slightly then also the solution changes only slightly. Using the exact solution (1.6)
the question of stability can be easily answered for the logistic differential equation:
The solution for the initial value
X (t()) =c

with a small € > 0 is given by

XME
I + (xM —_ (c:)e—XMq(t_tO) >

x:(1) =

it converges for t — +o00 towards x,,, therefore the stationary solution xo = 0 is not
stable. For
x(t) =xy+e¢

with a small € # 0 the solution is given by

xm(xy +€)
(xM + 5) — ge—qu(l_tO) >

xe (1) =
it converges for t — 400 towards x,,. From

xL(t) = g x:(t)(xy — x:(2))

one can conclude also without knowing the exact solution that the distance to xj,
can only decrease for increasing time as from x.(f) > x, it follows x/(¢) < 0 and
from x.(¢) < xy it follows x/(¢) > 0. Therefore the stationary solution x, is stable.
Stability is of importance, as in nature in general no instable stationary solution can
be observed, therefore they are irrelevant for most practical applications. For more
complex models sometimes no closed form solution for the time dependent equation
can be derived. However, there are techniques of stability analysis, with which often
the stability properties of stationary solutions can be deduced. Often this is done
by means of a linearization of the problem at the stationary solution followed by a
computation of the eigenvalues of the linearized problem. This will be explained in
more detail in Chap.4.
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1.4 Dimensional Analysis and Scaling

Now we want to explain dimensional analysis using a slightly more significant
example. We consider a body of mass m, which is thrown bottom-up in vertical
direction with respect to the gravitational field of a planet (for example the Earth).
The motion of the body is described by Newton’s law

a=—,
m

where a denotes the acceleration of the body and F the force acting on the body.
This force is described by Newton’s law of gravitation

-G mepm
- (x+ R

where G ~ 6.674 - 107N - m? /kg? denotes the gravitational constant, 7 ¢ the mass
of the planet, R the radius of the planet and x the height of the body, measured from
the surface of the planet. We neglect the air resistance in the atmosphere and consider
the planet to be a sphere. If one defines the constant g by

GmE
= R2 N

one gets
_ gR*m
 (x+ R

For the Earth we have g = 9.80665 m/s?, the gravitational acceleration. The motion
of the body then is described by the differential equation

gR?

NG

(1.7)

This has to be completed by two initial conditions,
x(0)=0, x'(0) =0,

where v denotes the initial velocity.

For trajectories expected in our application typically the term x(¢) is very small
compared to the radius of the Earth and seems to be negligible in the denominator
in the right-hand side in (1.7). We want to investigate the validity of this ansatz in a
systematic fashion. To do so first we perform a nondimensionalization. As a specific
example we use the data
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g=10m/s?>, R=10"m, and vy= 10m/s,

which have an order of magnitude corresponding to the application in mind.

The dimensions appearing here are L for the length and T for time. The given data
are the initial velocity vy with dimension [vg] = L/ T, the “planet acceleration” g with
dimension [¢g] = L/T?, and the radius R with dimension [R] = L. The independent
variable is the time ¢ with dimension [¢] = T, and the quantity to be computed is the
height x with dimension [x] = L. First we look for all representations of the form

T =08 g"R°,

which are either dimensionless (case (i)), or have the dimension of a length (case
(i1)), or have the dimension of a time (case (iii)). From

a b
[H] _ £ L LS = La+b+cT7a72b
S \T T2 N

Case (i): Wehavea +b+c =0, —a — 2b = 0, therefore a = —2b, ¢ = b, and
finally

it follows:

This leads to the identification of

2
=20 (1.8)
gR
as a characteristic dimensionless parameter. In fact all other dimension-
less parameters are powers of this specific one.
Case (ii)): We have a+b+c=1, a+2b=0 and therefore a = —2b,
¢ = 1 4+ b. As a specific unit for length one obtains

g — U&Zbgle+b — RE_b
where b denotes a constant not yet specified.

Case (iii): We have a4+ b+ ¢ =0, a+2b = —1 and therefore a = —1 — 2b,
¢ = b + 1. Therefore a characteristic unit for time is given by

_ie R
7=y PGP R = b,
0o

We will now try to nondimensionalize Eq. (1.7). To this purpose we consider a unit
for length X and a unit for time 7 and represent x(¢) in the form
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x() =xy(t/7).

From (1.7) we obtain

Ty IR
2T T e R
ie.,
x () = — ! (1.9)
7y (X/R)y(r) +1)*" '

This equation has to be provided with the initial conditions

t
y(0) =0 and y'(0) = —vo.
X

Now we want to choose x and 7 in such a way that as many of the appearing parameters
as possible equal 1. However, here we have more parameters than scaling units,
namely the three parameters

N| |

1
, and —vg.
X

x| =

>

~]|

g

Hence, only two of these parameters can be transformed to one and therefore there
are three different possibilities:
x
(a) 5 = 1 and
g

| =l

- IR
= 1 are a consequence of X = R, f = _/ —, then the parameter
g

. t 2 .
is given by —vg = = /e using ¢ from (1.8). Therefore the model reduces
g Y 0 LT g (1.8)
to
" ’
V') =————=., y0)=0, y(0)=+k. (1.10)
(1) + 1)?
x t _ _ R . X
(b) — =1and vy = 1 can be deduced fromx = R and t = —, leading to 5 =
R X 0o t'g
2
;—O = ¢ for the third parameter. Then the dimensionless model is given by
g
(= 3 =0, Y(O)=1
EY\T)=— P =V, Yy =1.
(y(m) + 1D?
x ; — Do _ 1)3 .
©) 5= 1 and —vy = 1 are a consequence of f = — and X = —. Then the third
t'g X g

= 2
X )
parameter is given by i _I(’)Q = ¢. Thus the dimensionless model reads
g
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y'(1) = y©0)=0, y(0)=1. (1.11)

RCIGE
Let us mention that there is a fourth possibility. Besides (1.9) we may also use the
equivalent formulation

x 1

21 VT R

This leads, by setting 7 = gR?/vj X = gR?/v?, to a fourth possibility (d)

y'(r) = — y©0)=0, y () =1

(y(r) +e)?’

with ¢ = v%/(gR).

Now we want to assess and compare the four dimensionless equations for the
application example displayed above. For R = 10’ m, g = 10m/s? and vy = 10 m/s
the parameter € is very small,

2
e= 20 _ 106
Rg
This suggests to neglect terms of the order of ¢ in the equations.
The model (a) is then reduced to

y'(1) = y(0)=0, y(0)=0.

1
G ET R

Because of y”(0) < 0and y’(0) = 0 this model leads to negative solutions and there-
fore it is extremely inexact and of no use. The reason lies in the scaling within the
nondimensionalization: The parameters 7 and X here are given by

_ IR
f= [=—=10°s andx = 10" m,
g

both scales are much too large for the problem under investigation. The maximal
height to be reached and the instance of time for which it is reached are much
smaller than the scales x for length and 7 for time and therefore are “hardly visible”
in the nondimensionalized model.

The model (b) reduces to

1
O=-Gmsm YO=0y0=1
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This problem is not well posed, as it has no solution. Also here the chosen scales for
time and length are much too large,

-_R 6 — 7
t=—=10"s and x =R =10"m.

0o
Model (c) reduces to
Y'(ry=-1, y0)=0, y(0)=1. (1.12)
This model has the solution ]
y(ry=1-— 57'2

and thus describes a typical parabola shaped path-time curve for a throw within the
gravitational field of the Earth neglecting the air resistance. The back transformation

2
x(t) =% y(t/7) = %Oy(gt/vo)

leads to
I,
x(t) = vot — Egt .

This corresponds to the solution of (1.7), if the term x(¢) in the denominator of the
right-hand side of (1.7) is neglected. The scales in the nondimensionalization here
have reasonable values,

2
F=2—1s, 7=2 = 10m.
g g
Model (d) reduces to
4 1 /
y(7)

This model does not correspond to a constant acceleration force. Also, the initial
condition seems to be problematic for this differential equation, and the time and the
length scale chosen are much too large.

Hence, for the application considered the nondimensionalization in version (c)
is the “correct one”. The versions (a), (b), and (d) are equally well mathematically
correct, but there the small parameter € cannot be neglected anymore because its
influence is amplified by the (too) large scaling parameters 7 and X.
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1.5 Asymptotic Expansions

Now we will introduce a technique with which the simplified model can be improved.
The basic idea is not to neglect the terms of order € in the exact model (1.11), but
rather to do a series expansion of the solution of (1.11) with respect to € to achieve
more precise solutions by keeping some of the terms beyond the zeroth order term.
The terms of higher order in € are determined from equations which we get by
substituting a series expansion into (1.11).

‘We want to discuss this procedure which is called the method of asymptotic expan-
sion, first for a simple algebraic example. We consider the equation

x> 40.002x —1=0. (1.13)
The second summand has a small factor in front. Setting ¢ = 0.001 < 1, we obtain
x24+2x—-1=0. (1.14)

Now we want to approximate solutions x of this equation by a series expansion of
the form
xo + %% + 2% + -+ witha > 0. (1.15)

Before doing so we first define in general what we mean by an asymptotic expansion.
Letx : (—ep,€0) = R, g9 > 0, be a given function. A sequence (¢, (€)),en, is called
an asymptotic sequence if and only if

Onr1(€) = 0(¢p(e)) as e —>0

foreachn = 0,1, 2,3, .... An example is the sequence ¢, () = €"* used above. A
N
series > ¢y (e)xy is called asymptotic expansion of x (g) of the order N € N U {oo}

k=0
with respect to the sequence (¢, (€))nen,, if for M =0,1,2,3,..., N we have

M
x(e) — Z o (e)xr = o(dy(e)) as € — 0.
k=0
If Z,’cvzo ¢r(€)xx is an asymptotic expansion of x () we write
N
X ~ z¢k(5)xk as ¢ — 0.
k=0

If N = oo, we write
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x(g) ~ Z¢k(e)xk as € —> 0.

k=0

In the special case ¢(c) = ¥, we speak of an asymptotic expansion of x(g) in
powers of €. Note that asymptotic expansions of arbitrary order can exist, even if the
corresponding infinite series are divergent for every € # 0. In particular an asymptotic
expansion can exist, although the Taylor expansion for x(¢) does not converge for
any € # 0.

Now we substitute the asymptotic expansion (1.15) into (1.14) and obtain

x§+26”x0x1+--~+2€(x0+50‘x1+~~)—1=O.

If this identity shall hold true, it must hold true in particular for small €. Therefore
all terms which do not contain a factor € (or £“), must add up to zero. Such terms are
of order 1. We write O(1) or O(¢), respectively, and collect only those terms, which
are exactly of order 1 or ¢, respectively. The equation of order 1 then reads

o): x}-1=0.

Its solutions are given by xo = £1. In particular we see that the equation of order
O(1) has exactly as many solutions as the original problem. This is a condition
necessary in order to speak of a regularly perturbed problem. Later on we will see
when to speak of regular or of singular perturbations.

Now we consider the terms of the next higher order in . What the next higher
order is depends on whether we have o < 1, @ > 1, or a = 1. If & < 1, then we
conclude from the term of order ® that x; = 0, and from the terms of order /¢ in
a successive fashion x; =0 for 1 < j < 1/o. If a = 1/k for some k € N, then it
follows from the term of order ko = 1 that

2x0Xxr +2x0=0

and therefore x; = —1. Proceeding with the asymptotic expansion one sees that the
terms of order j with arj ¢ N always lead to x; = 0. Therefore only the terms x;,, for
n € N remain. For the corresponding powers " we have kna € N. Therefore the
power series ansatz with a < 1, @ = 1/k, for some k € N, leads to the same result
as the ansatz o = 1, and therefore it is unnecessarily complicated. If a = 1/ for all
k € N, then from the term of order € we get

2X() = 0;

but this is in contradiction to the already computed solutions xo = £1. Therefore
the ansatz o < 1 is not sensible. In the case a > 1 the term of order ¢ also leads to
2xp = 0 which is impossible as we have already seen. Therefore o = 1 remains as
the only sensible choice and we obtain the equation
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O(e) 1 2xpx1+2x9=0

for the order €. Its only solution is given by x; = —1.
If we also take terms of the next higher order 2 into account, we obtain

xé + 2exox] + elez +2e%x5x0 + 2e(xo + ex1 + EZXQ) —1=0
and the terms of order 2 lead to the identity
O(?) xl2 + 2xx0 +2x1 =0.

Therefore we have ! |
-1
X2 5 (x()) )

The Eq.(1.13) corresponds to (1.14) for e = 1073. Therefore we expect that the

numbers
2
X0, Xo + €X1, Xo +Ex1 +7°x2

are good approximations of the solutions of (1.13) if we set ¢ = 1073, In fact we
have

X0 | xo + ex1 | xo +ex1 + ezxz exact solutions
1{ 0.999 0.9990005 0.9990005 - - -
—1|—1.001 —1.0010005 [—1.0010005- - -

Therefore in this simple example the series expansion leads to very good approxi-
mations taking only a few terms into account.

This procedure becomes more interesting for complex problems without a closed
form solution. Now we want to discuss the method of asymptotic expansion for the
example (1.11), athrow in a gravitational field of a planet. We apply Taylor expansion
atz =0

m=1—2Z+322_4Z3i"'
Z

to the right-hand side of the differential equation

" _ _;
y. (1) = AT e 00) (1.16)
and get
V(1) = =14 2ey.(1) = 3?2y (1) £ --- . (1.17)

We assume that the solution y. also possesses a series expansion of the form
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Y-(1) = o (1) + "1 (1) + ¥ y2 (1) + - - - (1.18)

with coefficient functions y;(7) and a parameter « to be specified. This ansatz will
be substituted into (1.17) and then the coefficients of the same powers of € will be
grouped together. The aim of this procedure is to determine a reasonable value for
a parameter o and to obtain solvable equations for the coefficient functions y;(7),
j=0,1,2,.... The substitution of (1.18) into (1.17) leads to

Yo () + €Y/ () + 25 () + - -
=— 1+ 2e(yo(r) + Wi (1) +*0(7) +--)
— 32 (yo(r) + €™y (1) + Xy () + ) £ (1.19)
In the same way the series expansion can be substituted into the initial conditions
and one obtains

90(0) 4+ £y1(0) + > y2(0) +--- =0,
4 (0) 4 2y (0) + €2 y}(0) + -~ = 1.

By comparing the coefficients of e, k € N, one immediately gets
yj(0) =0 for j e NU{0}, y,(0) =1 and y;(0) =0 for j € N. (1.20)

To compare the coefficients appearing in (1.19) for the same powers of € on the left
and right-hand side is more complicated. The lowest appearing power of ¢ is £ = 1.
The comparison of the coefficients of £° leads to

Yo(r) =—1.

Together with the initial conditions yo(0) = 0 and y;(0) = 1 we obtain the already
known problem (1.12) with its solution

1,
yo(r) =7 — 57
The next exponent to be considered depends on the choice of a.. For o < 1 it is €%,

comparison of the coefficients leads to
yi(r)=0.

Together with the initial conditions y; (0) = y;(0) = 0 we have the unique solution
y1(7) = 0. The term 2¢yy in (1.19) can only be compensated by a term of the form
5’“’y,’c’, k € N,kao = 1. As in the case of y; we conclude that y; =0 for 1 < j <
k — 1. Analogously one sees that the terms y;, where ka ¢ N, all have to be zero.
Hence, one could have started with the ansatz o = 1.
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For o > 1 the next exponent is given by ¢!, and the comparison of coefficients
leads to yo(7) = 0. This is a contradiction to the solution computed above. Therefore
« > 1 is the wrong choice.

In summary, the only reasonable exponent is o = 1. Then the coefficients of ¢!
are given by

V(1) =2yo(r) =27 — 7°.

Together with the initial conditions y;(0) = y{(0) = 0 one obtains the unique solu-
tion

The coefficients of 2 lead to the problem

2 1 3
Y3 (1) =2y1(r) =3 y5(7) = 573 B 874 — 3724373 — ZT4

together with the initial conditions y,(0) = y;(0) = 0. Its solution is given by

11 11 1
L S

2= 30" Y6 T4

Correspondingly further coefficients y3(7), y4(7), - - - can be computed, but the effort
becomes larger and larger with increasing order. In particular the first three terms of
the series expansion are

1 1 11 11
yE(T) =T — 57’2 + € (57’3 — 57'4) + 52 (—17'4 + @7’5 — %76) + 0(53) .

Figure 1.2 shows the graph of the approximations yy(7) of order 0, yo(7) + € y;(7) of
order 1 and of the exact solution for e = 0.2. One sees that visually the approximation
of order 1 can hardly be distinguished from the exact solution, but the approximation
of order O still contains a clearly visible error.

Now we want to use the series expansion to obtain a better approximation for
the height of the throw. For this purpose we first compute an approximation for the
instant of time 7 = 7., at which this maximal height is reached, using the equation

yi(r) =0.
From y.(7) = yo(7) + & y1(7) 4+ €%y2(7) + - - - it follows that
Yo(r) +eyi(n) +2yy(1) + 0(%) =0
with yg, y1, ¥» as above. Again we solve this equation in an approximative fashion

using the series ansatz
2
I 0 1 2 Ut .
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-—-‘N.
\,\yo +eyr
Ye
Yo

f Y -
1 2

Fig. 1.2 Asymptotic expansion for the vertical throw with e = 0.2

Comparing the coefficients of £ leads to
Yo(r0) =1 -1 =0,
and therefore 7y = 1. From the coefficients of € and the expansion y/(7.) = y; () +

ey!(ro)m1 +---,i =0, 1, one obtains

1
o) + ¥ (o) = -1 + Tg - 573 =0

and therefore 7 = 2/3. Thus, the approximation of first order for 7. is given by

l—i-2
€.
3

The corresponding height is

he = y.(7.) = yo(m0) + £ (3o (T0)T1 + 31 (1)) + O(?)

= yo(10) + e yi1(r0) + O(?) = % + ia +0(e%).
If one takes into account that the gravitational force decreases with height, then the
maximal height of the throw becomes slightly bigger. For our original example with
€ = 107° this affects the results in the seventh digit.

A priori it is not clear whether a series expansion of the form (1.18) exists. In
order to develop a model in a mathematically rigorous fashion by using such a series
expansion makes it necessary to justify the results obtained, for example by the
derivation of an error estimate of the form
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N

ye(r) = D elyi(m)] < Cyet (1.21)
Jj=0

We show such an estimate for N = 1, i.e.,

1ye(r) — yo(r) — ey (1)| < Ce?, (1.22)

for 7 € (0, T') for an appropriate final time 7', and £ small enough in the sense that
€ < g for an appropriate € to be specified. As a first step we construct a differential
equation for the error

7:(7) = y=(7) — yo(7) — e y1(7).

From the differential equations for y., yy, and y; we obtain

() =y/(1) =y (1) —ey{(7) = + 1 —=2e yo(7).

(I +ey.(n)

A Taylor expansion with a representation of the remainder leads to

1 1
1 2y43—— 2
1) YT ot

where ¥ = J(y) € (0, 1). Hence, we obtain

/(1) = =1 4+ 2ey.(1) — 362 )4y62(7') +1—2ey(7).

(1 +e9y.(m)*
Substitution of y.(7) = z.(7) + yo(7) + € y1(7) leads to

/(1) =2e2.(7) + € R(7), (1.23)
where

3y2(7)

RO == ey

+ 2y| (7') .
Additionally the initial conditions
z:(0)=0 and z.(0) =0

are valid. For an estimation of R.(7) we need lower and upper bounds for y.(7).
These can be derived from the differential equation for y. and the representation



24 1 Introduction

Mﬂ=M®ﬁAﬂmw=A(ﬂ@+Ay%M0w

T t
:T+/ / v/ (s)dsdt.
o Jo

We set 7. := inf {t |t >0, y(1) < 0}. Obviously it follows from (1.16), that
y/(r) > —1for 0 < 7 < t. and therefore

1
ye(7) ZT—ETZ.

As y. is continuous, in particular we have . > 2. Because of y”(7) < 0 for 7 < t.
we also have y.(7) < t. for7 < .. Now let T < ¢. be chosen and fixed, for example
T = 2. Then we have

IR-(7)| < 3ly-(M +2lyi ()] < Cy
for 7 < T with a constant C; = C{(T'). For a given Cy > 0 we define a further

instant of time 7. > 0 by 7. :=inf {¢ | > 0, |z.(t)| > Coe?}. As z. is continuous
and z.(0) = 0, we have 7. > 0. For 7 < min(7, 7.) we conclude from (1.23) that

lz-(T)| = ‘/OT/Otzg(s)dsdt

Thenfor Cy > T>C| thereexistsacg > 0, such that 1 72(2Cogo + C1) = %,namely

T t 1
5/ / lz/(s)|ds dt < §T2(2C0€+C1)€2.
o Jo

1 C

RN TR TS

For all ¢ < g and all ¢t < min{T, 7.} it holds true that

C
umn§§é.

As z. is continuous, in particular we have 7. > T'. Hence, (1.22) has been shown,
for C = Cy/2.

The procedure to determine an asymptotic expansion can also be formulated more
generally and abstractly in Banach spaces, i.e., in complete, normed vector spaces.
Let B;, B; be Banach spaces and

FZBl X[O,EQ)-)BZ

be a smooth mapping, which is sufficiently differentiable for the following consid-
erations. For € € [0, £9) we look for a solution y. of the equation
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F(y,e)=0.
We make the ansatz

)
e = Zgl%‘
i=0

and expand

oo oo [e.¢]
F(ye)= > e F() =Y F | > ey
i=0 i=0 j=0

=> ¢ [ Fo) +DEG) [ D¢y

i=0 =1
00 00

+%D2F,-(y0) ZEJyj, Z&:’yj + ...
=1 =1

= Fy(yo) + (F1(yo) + DFo(30) 1))+

+ &2(F>(yo) + DFi(30) (1) + DFo(30)(y2) + 3 D> Fo(y0) (1, 1))
R

We try to solve these equations successively, with increasing order and obtain

Fo(yo) =0,
D Fy(yo)(y1) = —Fi1(3o) »

1
D Fy(y0)(y2) = —F2(y0) — DF(y0)(y1) — EDzFo(yo)(yl, ),

DFy(yo) (k) = G (Yo, - - -5 Yk—1) -

If the linear mapping D Fy(yo) : By — B, possesses an inverse then the values
Y1, ¥2, ¥3, . .. can be computed successively.

Definition 1.1 If the values yy, ..., yy are solutions of the above displayed equa-

tions, then the series
N
N .
Ye = Z e'yi
i=0

is called asymptotic expansion of order N.
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An important question now is: Are the solutions for the problems “perturbed” by a
small parameter € a good approximation for the original problem? A positive answer
is encoded in the following definition.

Definition 1.2 (Consistency) The equations
F(y,e)=0, €>0,

are called consistent with
F(y,0)=0,

if for all solutions yy of F(yg, 0) = 0 it holds true that
lim F(yp,e) =0.
6*}0

Remarks

1. In general consistency does not imply convergence: also in a consistent situation
the solutions y. of F(y, ) = 0 does not need to fulfill

y-—y0— 0 in B

(see also Exercise 1.11).

2. Animportant case in asymptotic analysis is characterized by the fact that the small
parameter appears as a factor in a term which is decisive for the mathematical
structure of the problem. For differential equations this term in general is the
highest order derivative of the unknown function appearing in the equation. In
this case one speaks of a singular perturbation. At the end of Chap.6 we will
investigate corresponding examples.

Examples:

(1) The equation
ex?—1=0

changes its order for ¢ — 0. In particular for ¢ = 0 the equation becomes insolv-
able and the solutions xgjE of e x2 — 1 = 0 converge to infinity for e — 0.
(i1) The initial value problem

eyl = y:(0)=0, y.(0)=1

(y- + 1?’

changes its character if one sets ¢ = 0. For € > 0 one has a differential equation
and for € = 0 one obtains an insolvable algebraic equation.
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1.6 Applications from Fluid Mechanics

Now we will discuss the introduced notions of dimensional analysis, asymptotic
expansion and singular perturbation for a considerably more complex example from
fluid mechanics. The models which we use will be derived systematically in the
framework of continuum mechanics in Chap. 5.

We consider the following example: a fluid, i.e., a liquid or a gas, flows past a
body K (Fig.1.3). We are interested in the velocity field

v:v(t,x)eRS,teR,xeR3,

of the fluid. We assume that for |x| — oo the velocity converges to a constant value,
ie.,
o(t,x) > VeR® as |x| > 0.

From conservation principles and using certain constitutive assumptions about the
properties of the fluid the Navier—Stokes equations can be derived, see Chap. 5. For
an incompressible fluid with constant density gy neglecting exterior forces we obtain

2000 + (v - V)o) = =Vp +pdv, (1.24)
V.o=0, (1.25)

where p denotes the pressure and p the dynamic viscosity of the fluid. The viscosity
is caused by internal friction. It is high for honey and low for gases. Furthermore,
expressed in Cartesian coordinates we have

—
e ~a i
v A -
— L P 4 —
—
\ /
—

Fig. 1.3 Flow past an obstacle
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3
0
V.o = z —v0; €R for the divergence of a vector field v,
i=1 Oxi
SIS .
Ao = —v eR the Laplacian operator and
.Z Ox? P P

3
(D V)l} :(ZD,‘ 8ivj) €R3.
j=1,2,3

First we discuss the dimensions of the appearing terms.

variables dimension
v velocity L/T
00 mass density M/L3
p pressure = force/area | (M - L/ T%)/L? = M/(LT?)

Furthermore we have
[ul = M/(LT).

As a consequence all terms in (1.24) have the dimension M/ (L*T?).

As an example for the potential of dimension analysis we consider the behavior
of a fluid flowing around a large ship. The goal is to perform experiments with a ship
whose size is reduced by the factor 100. Under which circumstances the results of
such experiments with a ship model can be transferred to the behavior of a large real
ship?

For this purpose the equation has to be transferred into a dimensionless form.
Here the relevant parameters are the characteristic length x, for example the length
of the ship, the velocity v of the ship, the density gg, and the viscosity . We form
dimensionless quantities from combinations of these parameters, for example

where 7 = (X, V, 09, i1) is a characteristic time still to be determined. Furthermore
we set

)
u(t,y) = 7
V]

and

q(T,y) = =, where p is still to be determined.

SIS

Multiplication of the Navier—Stokes equations by 7/(go|V|) and using the transfor-
mation rules 0, = %87 and V, = %Vy leads to the equation
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V] P I w1
O+ —@W -Vu=——— q+———=4u.
X 2o X|V| 20 (¥)°

Weset? =x/|V|,p = |V|*00 and ) = 1/ 0o — this is called the kinematic viscosity
— and obtain

1
Ou+ (u-V)u=-Vg+ — Au,
Re

u(t,y) — V/|V| as |y| = oc0.

Here Re := x| V|/n is called the Reynolds number. For large |y| the Euclidean norm
of the nondimensionalized velocity converges to 1. Furthermore it still holds that

V-u=0.

This means that flow situations with different x lead to the same dimensionless form,
if the Reynolds number is the same for the different situations. If we reduce the size
of the ship by the factor 100, then one possibility is to enlarge the approach velocity
by the factor 10 and to reduce the kinematic viscosity by the factor 10 to obtain the
same Reynolds number.

With the help of the Reynolds number one can estimate which effects are of
importance for a flow and which effects are not. We discuss this for the example
of two different models for the flow resistance of a body, which we motivate by
means of heuristic considerations. For the case of small Reynolds numbers, i.e.,
for high viscosity or a small approach velocity, the viscous friction dominates the
flow resistance. Then the characteristic quantities are the velocity » of the obstacle
relative to the flow, a characteristic quantity X for the size of the obstacle, and the
dynamic viscosity g of the fluid. The dimensions are given by [v] = L/T, [x] = L,
and [u] = FT/ L?, where F denotes the dimension of force. Then a combination of
these quantities has the dimension

[Dafbluc] — La+b—20T—a+ch )
This is the dimension of force, if
a+b—2c=0, —a+c=0,and c=1

and therefore a = b = ¢ = 1. A law for the friction resistance in a viscous fluid
therefore has to have the form

Fr=—cruxo (1.26)
where Fp is the friction force acting on the body, v the velocity of the body relative

to the flow velocity, and cy, is the friction coefficient which is depending on the shape
of the body. For a sphere with radius r it can be shown that
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Fr = —67mrup

holds true, and this is called Stokes’ law.

For high Reynolds numbers, however, this part of the flow resistance is dominated
by a force which is necessary to accelerate the part of the fluid lying in the direction
of the motion of the body. The mass to be accelerated per time interval Ar may fulfill

Am =~ g A |v| 4t ,

where p is the density of the fluid and A the cross sectional area of the body. Here
the term A |o| 4t just describes the volume replaced by the body in the time interval
At. This fluid volume is accelerated to velocity v. The supplied kinetic energy is

AEwin ~ S Am o> ~ Lo A o] 4t.
The friction force is related to the kinetic energy by
| Frl o] At &< AExin
where o indicates that the two sides are proportional to each other. Hence, we obtain
|Frloc S0 Aol
The corresponding proportionality constant ¢, is called drag coefficient and we obtain
Fr=—1cqoAlv. (1.27)

As this force is proportional to the square of the velocity, for large velocities it
dominates the viscous frictional force (1.26), on the other hand for small velocities
it can be neglected compared to (1.26). Formula (1.27) can also be justified by a
dimensional analysis (see Exercise 1.12). In applications the drag coefficient has to
be determined by measurements since for most body shapes a theoretical derivation
as for a sphere in the case of Stokes’ law does not exist any more. In any case (1.27)
is only a relatively coarse approximation to reality, the real dependence of the flow
resistance on the velocity is considerably more complex. On the other hand Stokes’
law is a relatively good approximation, if only the velocity is sufficiently small.

In order to assess for a given application which of the two laws (1.26) or (1.27)
is reasonable, the coefficient of the two frictional forces can be considered:

1.27 —
\FR?"|  oxlo|

—_— X — Re
1.26
TS

In doing so we choose the scale x such that A = X2. Therefore Stokes’ law (1.26)
makes sense for Reynolds numbers Re <« 1. On the other hand the flow resistance
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given by (1.27) dominates for Re >> 1. For Re ~ 1 both effects have the same impor-
tance.

The Navier—Stokes equations being a complex model the question arises whether
certain terms can be neglected in specific situations. As we have transferred the
equation to anondimensional form itis possible to speak of large or small independent
of the choice of units: now the number 1 can be interpreted as a medium sized quantity.
The only parameter is the Reynolds number and for many problems Re is very large.
Then ¢ = 1/ Re is a small term which suggests to neglect the term € 4u = é Au.In
this way we obtain the Euler equations of fluid mechanics

O;u+ (- -V)u=—-Vg,
V-u=0.

How good is the description of a real fluid by this reduced model? Later we will see
that the Euler equations do not allow for the formation of vortices (see Sect. 6.1.4).
Most specifically we have

8xzu3 - 8X3u2
V xu(t,x) = | Oxur —Oyus | =0
8X1u2 - axzul

fort > 0if V x u(0, x) = 0. Additionally it turns out that
e the term € Au cannot be small in the vicinity of the boundary JK of the body,
and if the Euler equations describe the flow,

e a bounded body would exert no resistance to the flow, therefore no forces would
act against the flow. This is called d’Alembert’s paradox and
e no lift force would act on the body (in 3-D).

In reality we see that a flow past an obstacle induces the formation of vortices, which
sometimes separate from K. Additionally so-called boundary layers can be observed.
These are “thin” regions of the flow in the vicinity of the body in which the flow field
changes drastically.

What is the deficiency of the reduced model?

In the Navier-Stokes equations second derivatives with respect to the spatial
variables appear, but in the Euler equations only first derivatives. In the theory of
partial differential equations different types of equations are distinguished (see for
example Evans, [37]). According to this classification the Navier—Stokes equations
are parabolic, but the Euler equations are hyperbolic. The qualitative behavior of
hyperbolic and parabolic differential equations differs considerably. For example in
the solutions of the Euler equations even for arbitrary smooth data discontinuities
may occur, on the other hand for the Navier—Stokes equations smooth solutions are
to be expected in this case, even if the rigorous theoretical proof for three dimensions
is still outstanding. The small factor € belongs to the term which is decisive for the
behavior of the solution. Therefore one speaks of singular perturbation. To obtain
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approximate solutions of the Navier—Stokes equations the method of asymptotic
expansion cannot be used in the form we have discussed so far. It breaks down in
boundary layers, where the solution changes strongly. In Chap.6 we will develop
the singular perturbation theory, to obtain asymptotic expansions also in boundary
layers.

1.7 Literature

An extensive description and analysis of biological growth models can be found in
[105]. For further information on the subjects nondimensionalization, scaling, and
asymptotic analysis we recommend [89], Chaps. 6 and 7, for scaling and dimensional
analysis also [41], Chap. 1, is a good reference and for various aspects of asymptotic
analysis we refer to [68]. A presentation of singular perturbation theory with many
examples can be found in [77]. Parts of the presentation in this chapter are based on
the lecture notes [116].

1.8 Exercises

Exercise 1.1 A bank offers four different variants of a savings account:

variant A with monthly payment of interest and an interest rate of 0.3% per month,
variant B with a quarterly payment of interest and an interest rate of 0.9% per
quarter,

variant C with a semiannual payment of interest and an interest rate of 1.8% per
half-year,

variant D with an annual payment of interest and an interest rate of 3.6% per year.

(a) Compute and compare the effective interest rate which is obtained after a year
(reinvesting all paid interest).

(b) How must the interest rates be adjusted, such that they lead to the same yearly
interest rate of 3.6%?

(c) Develop an interest model that is continuous in time, which does not need a time
increment for the payment of interest.

Exercise 1.2 A police officer wants to determine the time of death of the victim of a
homicide. He measures the temperature of the victim at 12.36 p.m. and obtains 80°F.
According to Newton’s law of cooling the cooling of a body is proportional to the
difference between the body’s temperature and the ambient temperature. Unfortu-
nately the proportionality constant is unknown to the officer. Therefore he measures
the temperature at 1.06 p.m. once more and now he obtains 77°F. The ambient
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temperature is 68°F and it is assumed that the body’s temperature at the time of
death has been 98°F.
At what time the homicide took place?

Exercise 1.3 (Separation of variables, uniqueness, continuation of solutions) For
given functions f and g consider the ordinary differential equation

X' () = () g(x()).

We look for solutions passing through the point (#y, xo), i.e., x(#y) = xo holds true.

(a) Show thatin the case g(x() # 0 locally a unique solution through the given point
exists.

(b) Assume that g # 0 in the interval (x_, x,), where g(x_) = g(x;) = Oandlet g
be differentiable at x_ and x_.. Show that the solution of the differential equation
through the point (¢, x¢), where xo € (x_, x), exists globally and is unique.
Hint: Is the solution through the point (¢, x) unique?

Exercise 1.4 We consider the model of limited growth of populations

X(t) =qxyx(t) —qx*(t), x(0)=x.

(a) Nondimensionalize the model using appropriate units for # and x. Which possi-
bilities exist?

(b) What nondimensionalization is appropriate for xy < x3 (xo “much smaller
than” x,,) in the sense that omitting small terms leads to a reasonable model?

Exercise 1.5 (Nondimensionalization, scale analysis) A body of mass m is thrown
upwards in a vertical direction from the Earth’s surface with a velocity v. The air
resistance is supposed to be taken into account by Stokes’ law Fgz = —cv for the
flow resistance in viscous fluids, which is reasonable for small velocities. Here c is a
coefficient depending on the shape and the size of the body. The motion is supposed
to depend on the mass m, the velocity v, the gravitational acceleration g and the
friction coefficient ¢ with dimension [¢] = M/T.

(a) Determine the possible dimensionless parameters and reference values for height
and time.
(b) The initial value problem for the height is assumed to take the form

mx" +cx' =-mg, x(0)=0, x'(0)=v.
Nondimensionalize the differential equation. Again different possibilities are

available.
(c) Discuss the different possibilities of a reduced model if 5 := cv/(mg) is small.



34 1 Introduction

Exercise 1.6 A model for the vertical throw on the Earth taking into account the air
resistance is given by

mx"(t) = —mg —clx'®)|x' (), x@) =0, x'(tg) =0vp.

In this model the gravitational force is approximated by F = —mg, the air resis-
tance for a given velocity v is described by —c|o|o with a proportionality constant ¢
depending on the shape and size of the body and the density of the air. This law is
reasonable for high velocities.

(a) Nondimensionalize the model. What possibilities exist?

(b) Compute the maximal height of the throw for the datam = 0.1kg, g = 10m/s?,
09 = 10m/s, ¢ = 0.01 kg/m and compare the result with the corresponding result
for the model without air resistance.

Exercise 1.7 (Nondimensionalization) We want to compute the power P, which is
necessary to move a body with known shape (for example a ship) in a liquid (for
example water). We assume that the power depends on the length £ and the velocity
v of the ship, the density ¢ and the kinematic viscosity 7 of the liquid, and the
gravitational acceleration g. The dimensions of the data are [¢] = L, [o] = M/L?,
[l=L/T,[n)=L?*/T,[P]=ML?/T?, and [g] = L/T?, where L denotes the
length, M the mass and T the time. Show that under these assumptions the power P
is given by

W = @(Fr, RC)

with a function @ : R? — R and the dimensionless quantities

lv|€

Re = — (Reynolds number) and Fr = Froude number).
n

o] (
Vig
Exercise 1.8 (Formal asymptotic expansion)

(a) For the initial value problem
X' +ex'@®)=-1, x(0)=0, x'0)=1

compute the formal asymptotic expansion of the solution x(¢) up to the second
order in €.

(b) Compute the formal asymptotic expansion for the instance of time t* > 0, for
which x(#*) = 0 holds true, up to first order in ¢, by substituting the series
expansion t* ~ fy + £ t; + O(e?) into the approximation obtained for x leading
to a determination of #y and #;.
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Exercise 1.9 A model already nondimensionalized for the vertical throw with small
air resistance is given by

x'(1) = -1 —e(x'(1)*, x(0)=0, x'(0)=1.

The model describes the throw up to the maximal height.

(a) Compute the first two coefficients x((¢) and x; (¢) in the asymptotic expansion
x(t) = xo(t) + e x1 (1) + 22 (t) + - - -

for small ¢.

(b) Compute the maximal height of the throw up to terms of order € using asymptotic
expansion.

(c) Compare the results from (b) for the data of Exercise 1.6(b) with the exact result
and the result neglecting the air resistance.

Exercise 1.10 (Multiscale approach) The function y(t) is supposed to solve the
initial value problem

Y'(t)+2eY @)+ A +e)y@) =0, y0)=0, y(©0) =1,

for t > 0 and a small parameter € > 0.

(a) Compute the approximation of the solution by means of formal asymptotic
expansion up to first order in €.
(b) Compare the function obtained in (a) with the exact solution

y(t) =e “sint.

For which times ¢ the approximation from (a) is good?
(c) To get a better approximation one can try the approach

y’\’YO(faT)‘FE)’l(fﬂ')+52)’2(Ia7)+"' P

here 7 = et is a slow time scale.

Substitute this ansatz in the differential equation and compute yy such that the
approximation becomes better.

Hint: The equation of lowest order does not determine y, uniquely and coeffi-
cient functions in 7 appear. Choose them in a clever way such that y, is easily
computable.

Exercise 1.11 (Consistency versus convergence) For a parameter € € [0, g9) with
€9 > 0 we consider the family of operators

F(-,€): By := C([0, 00)) — B, := C([0, 0)) x R?,
F(y,e)= "+ 1+¢)y,y0),y©0)—1).
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Here C} ([0, 00)) denotes the vector space of n-times differentiable functions with
bounded derivatives up to order n. The norms of the spaces B; and B, are given by

Iyl = sup {lyOl+ 1y OI+ 1y O,

1€(0,00)

ICf, @, b)lls, = sup ){If(f)l}+la|+|b|.

re(

(a) For the problem F(y, ) = (0, 0, 0) compute the exact solution y..
(b) Show: F (-, €) is consistent with F (-, 0), but y. does not converge to y in B; as
e — 0.

Exercise 1.12 Derive the friction law for the flow resistance in the case of high
Reynolds numbers,
Fr=—3cwAololo,

by means of a dimensional analysis. Use the assumptions that the frictional force
depends on the density o of the liquid, a characteristic quantity r of the body, and
the velocity v of the flow. As the drag coefficient depends on the shape of the body
choosing r such that A & r? is feasible.
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