
Chapter 2
Theoretical Foundations for Flows Involving
Vorticity

Abstract This chapter introduces the fluid mechanics foundations that are relevant
for this book. The fluid mechanics equations are given for inertial and non-inertial
frames. The chapter presents vorticity kinematics and dynamics and the main theo-
rems involving vorticity. The equations presented are necessary to the development
of vorticity-based methods, both analytical and numerical. Some classical results
of vortices in viscous and inviscid fluid are provided due to their relevance for the
validation of numerical vortex menates and 3D axisymmetric flows are developed in
details. They are conveniently used for the study of rotor. Two-dimensional poten-
tial flows and conformal mapping solutions are introduced. They are relevant for
the implementation and validation of vortex methods and the derivation of Prandtl’s
tip-loss factor. A Matlab code to compute the Karman-Trefftz map is provided.

Further developments are found e.g. in the books of Lamb [29], Batchelor [4], and
Saffman [43]. Useful relations involving tensors, operators, differential calculus,
integration theorems and field formalism are found in Appendix C. In particular,
Appendix C provides the definition of the operators grad div, curl and their notations
using the “Del” operator∇. Both the “Del” and literal notations are used in this book.

2.1 Fluid Mechanics Equations in Inertial and Non-inertial
Frames

2.1.1 Physical Quantities

The following notations are adopted: u is the fluid velocity [m/s], ρ is the fluid density
[kg/m3], S is the entropy of the fluid [J/K], T is the temperature of the fluid [K],
p = p(ρ, T ) is the static pressure of the fluid [kg/m/s2], and e = e(ρ, S) = e(ρ, T )

is the internal energy of the fluid [m2/s2]. The enthalpy h, the total energy et and
total enthalpy ht are defined as:
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h = e + p

ρ
, et = e + u2

2
, ht = h + u2

2
[m2/s2] (2.1)

The total pressure pt is defined as the sum of the static pressure p and the dynamic
pressure 1

2ρu
2:

pt = p + 1

2
ρu2 (2.2)

The vorticity is defined as the rotational of the velocity:

ω � curl u [s−1] (2.3)

The dilatation is defined as the divergence of the velocity:

Θ � div u [s−1] (2.4)

2.1.2 Conservation Laws

Introduction The main fluid-mechanics conservation laws are recalled here in inte-
gral and local forms. The conservation laws of fluid mechanics are obtained by
consideration of a material volume, which is a volume consisting of the same fluid
particles throughout time. For a material volume Dm , the conservations laws are
stated as follows: the change in time of the mass of Dm is zero in a flow without sink
or source of mass (conservation of mass); the change in time of the linear momentum
of Dm is equal to the forces applied within the volume and at its boundary (Newton’s
law); the change in time of the angular momentum of Dm is equal to the moments
applied within the volume and at its boundary (Newton’s law); the change in time of
the total energy of Dm is equal to the power of the external forces and the external
heat (first law of thermodynamics). The conservation laws apply on the total values
of the mass, momentum and energy in the material volume and these total values
are obtained by integration of the quantities over the volume. Reynolds transport
theorem (RTT) is used to express the time derivative of these integrals in terms of
volume and surface integral. The equations of the conservation laws obtained are
then referred to as integral forms. Using the divergence theorem, it is possible to
express the equations under one volume integral. The equations are then said to be in
conservative forms. The expressions below the integrals are then isolated and these
are referred to as the local forms or differential forms of the conservation laws.

Material derivative Thematerial derivative of a fluid property is defined as the time
rate of change of this property as experienced by a fluid particle as it moves through
the flow field. Writing f (x, t) the Eulerian tensorial field of any order corresponding
to this property, the material derivative is defined as:
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d f

dt
(x, t) = ∂ f

∂t
(x, t) + [∇ f (x, t)] · u(x, t) (2.5)

The material derivative is a particular case of the total derivative where ẋ ≡ u. A
thorough treatment requires the distinction between Eulerian and Lagrangian fields
and coordinates. The material derivative is seen to consist of the sum of the local
derivative, which corresponds to the variation of the quantity at a fixed point, and
the convective derivative which is related to the fact that the particle experiences
different values of the vector field f as it convects.

Conservative derivative The conservative derivative of a tensorial field f of any
order is defined as:

D f

D t
(x, t)� ∂ f

∂t
(x, t) + ∇· ( f (x, t) ⊗ u(x, t)

)
(2.6)

where⊗ is the tensor product. For a scalar field λ, the tensor product can be removed
and the conservative derivative is Dλ

Dt = ∂λ
∂t = ∇·(λu). Thematerial and conservative

derivatives are related using ∇ · ( f ⊗ u) = f ∇ · u + [∇ f ] · u as:

D f

D t
≡ d f

dt
+ f ∇· u,

D(λ f )

D t
≡ λ

d f

dt
+ f

Dλ

D t
(2.7)

The conservation of mass writes Dρ

Dt = 0 and hence:

D(ρ f )

D t
= ρ

d f

dt
(2.8)

Further, the material and convective derivatives are equal for incompressible flows
(i.e. when ∇ · u = 0).

Reynolds transport theorem A general form of Reynolds transport theorem (RTT)
is presented below. A fluid quantity f is studied in a geometrical volume Ω(t). The
system is illustrated in Fig. 2.1. The surface marking the boundary of the volume,
∂Ω(t), moveswith the local velocity V b(x, t). This velocitymay differ from the fluid
velocity. For a fixed volume, the boundary velocity is V b ≡ 0. For amaterial volume,
the boundary velocity is the fluid velocity V b(x, t) ≡ u(x, t). The geometrical
volumemay contain a discontinuity surfaceΣ moving at the local velocity VΣ(x, t).

Fig. 2.1 Sketch of a domain
Ω with a surface of
discontinuity Σ moving at
velocity VΣ and a boundary
∂Ω moving at the speed V b
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Examples of discontinuity surfaces are: shock waves in supersonic flows, vorticity
sheets in shear flows, surfaces between immiscible fluids, actuator disks, etc. The
time derivative of the integral quantity of the vector field f (x, t) in Ω is given by
the generalized Reynolds transport theorem (RTT) as:

δ

δt

∣
∣∣∣
V b

[∫

Ω(t)
f dv

]
=
∫

Ω(t)

∂ f

∂t
dv +

∫

∂Ω(t)
f V b · dS −

∫

Σ(t)
[[ f ]]VΣ · dS (2.9)

=
∫

Ω(t)

[
∂ f

∂t
+ ∇ · ( f ⊗ V b)

]
dv +

∫

Σ(t)

[[
f ⊗ (V b − VΣ)

]] · dS
(2.10)

where dS = ndS is pointing outward of the domain and the notation [[ f ]] = f2 − f1
is used to represent the difference of the values of the quantity f on both sides of
the discontinuity surface (see Fig. 2.1). The generalized divergence theorem (DT)
from Eq.C.42 was used to go from Eq.2.9 to 2.10. The generalized RTT and DT are
obtained by expressing the theorems in the domains 1 and 2, and doing the sum of
the results. The integral on the discontinuity surface appears naturally. The notation
δ
δt

∣∣
V b

is introduced to emphasize that this derivative is not the material derivative and
the domain considered is not a material domain. Yet, if the boundary of Ω is moving
with the local fluid velocity (u(x, t) · n)n on each of its point then the volume is
a material domain and the time rate of change of the integral quantity followed in
its motion is the material derivative, viz.: δ

δt

∣∣
u

≡ d
dt . According to Eq.2.9 then, the

material derivative of an integral over a material domain Dm is:

δ

δt

∣∣∣∣
u

[∫

Dm

f dv

]
≡ d

dt

[∫

Dm

f dv

]
=
∫

Dm

∂ f

∂t
dv +

∫

∂Dm

f u · dS −
∫

Σ(t)
[[ f ]]VΣ · dS

(2.11)

=
∫

Dm

D f

D t
dv +

∫

Σ(t)

[[
f ⊗ (u − VΣ)

]] · dS
(2.12)

where the conservative derivative is defined in Eq.2.6. For a fixed volume, δ
δt

∣∣
0

implies a derivative with respect to t for x fixed, which is the definition of the partial
derivative ∂

∂t . The time variation of the quantity within a fixed volume is then:

δ

δt

∣
∣∣∣
0

[∫

Ω

f dv

]
≡ ∂

∂t

[∫

Ω

f dv

]
=
∫

Ω

∂ f

∂t
dv −

∫

Σ(t)
[[ f ]]VΣ · dS (2.13)

By considering the instantaneous “fixed” volume Ω that matches with the material
volume Dm at a given time t , the material derivative of the integral I = ∫

Dm
f dv

(Eq. 2.11) is seen to be the sum of two contributions:
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δ I

δt

∣∣
∣∣
u

≡ dI

dt
= δ I

δt

∣∣
∣∣
0

+
∫

∂Dm

f u · dS (2.14)

Thefirst termof the right hand side (RHS) corresponds to the variation of I as function
of time if the volume was fixed. The second term corresponds to the variation of the
integral due to the convection of the domain Dm . Equation2.9 can also be applied
to two identical volumes Ω(t) that matches at time t with two different boundary
velocities V b and V b,2. A typical choice is to take V b,2 = (u · n)n. The difference
of Eqs. 2.11 and 2.9 applied for the volumes matching at t provides the material
derivative of a volume integral delimited by an arbitrary surface moving with an
arbitrary velocity V b as:

d

dt

[∫

Ω(t)
f dv

]
= δ

δt

∣∣
∣∣
V b

[∫

Ω(t)
f dv

]
+
∫

∂Ω(t)
f (u − V b) · dS (2.15)

The above is applied for instance to obtain the material derivative of a fixed volume
integral (using V b = 0 and Eq.2.13):

d

dt

[∫

Ω

f dv

]
=
∫

Ω

∂ f

∂t
dv +

∫

∂Ω

f u · dS −
∫

Σ(t)
[[ f ]]VΣ · dS (2.16)

=
∫

Ω

D f

D t
dv +

∫

Σ(t)

[[
f ⊗ (u − VΣ)

]] · dS (2.17)

Most of the conservation laws involve an integral of a quantity ρ f . The application of
Reynolds transport theorem for such quantity can be simplified once the equation of
conservation ofmass is proved (in the next paragraphs). Equation2.8 follows directly
from the conservation of mass and Eq.2.12 leads then to the following result for the
integral of a quantity ρ f over a material volume:

d

dt

[∫

Dm

(ρ f )dv

]
=
∫

Dm

ρ
d f

dt
dv +

∫

Σ(t)

[[
ρ f ⊗ (u − VΣ)

]] · dS (2.18)

The same formula holds for a fixed volume according to Eq.2.17.
Integral forms The conservations laws stated in the introduction are extended to
any geometrical volume Ω(t) moving with the velocity V b, with or without surface
of discontinuity, as long as Eq.2.15 is used. The mass, linear momentum, angular
momentum and total enthalpy in the volume Ω are obtained by integration of the
quantities ρ, ρu, r × ρu and ρet respectively. Their conservation laws writes:
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d

dt

∫

Ω(t)

ρdv = 0 (2.19)

d

dt

∫

Ω(t)

ρudv =
∫

Ω(t)

ρFdv +
∫

∂Ω(t)

σ ·ndS (2.20)

d

dt

∫

Ω(t)

r×ρudv =
∫

Ω(t)

r×ρFdv +
∫

∂Ω(t)

r×(σ ·n)dS (2.21)

d

dt

∫

Ω(t)

ρetdv =
∫

Ω(t)

(ρF ·u)dv +
∫

∂Ω(t)

(u·σ − qs)·ndS (2.22)

In the above, σ [N/m2] is Cauchy’s stress tensor accounting for surface forces. F
are forces per mass [N/kg], linked to volume forces with f = ρF [N/m3]. Examples
of volume forces are: the gravity, inertial forces in non-inertial frames (Euler force,
centrifugal force, Coriolis force), the Lorentz force due to a magnetic field, etc. and
q
s
is the surface heat flux [W/m2] (see e.g. Eq.2.90). Writing σ = −p11 + τ (see

Eq.2.85), the total enthalpy ht = e + p
ρ

+ u2

2 satisfies:

d

dt

∫

Ω(t)

ρhtdv=
∫

Ω(t)

(ρF ·u)dv +
∫

∂Ω(t)

(u·τ − qs)·ndS +
∫

Ω(t)

∂p

∂t
dv −

∫

Σ(t)
[[p]](VΣ ·n)dS

(2.23)

The conservation of entropy S for a volume without discontinuity surface is:

d

dt

∫

Ω(t)

ρSdv =
∫

Ω(t)

[
τ : D
T

− q
s
· grad T
T 2

]
dv −

∫

∂Ω(t)

q
s

T
·ndS (2.24)

where D is the deformation tensor (see Sect. 2.2.1, D = 1
2 (grad u +t grad u)),

and τ : D = ∑
i

∑
j τi jD j i is the result of the double tensorial contraction. The

fundamental inequality of thermodynamics (second law) is:

d

dt

∫

Ω(t)

ρSdv ≥ −
∫

∂Ω(t)

q
s

T
·ndS (2.25)

Local/differential forms The local forms of the conservation laws are obtained by
transforming all the surface integrals over ∂Ω in Eqs. 2.19–2.22 into volume integrals
using the generalized divergence theorem given in Eq.C.42. The local forms are then:
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dρ

dt
+ ρ div u = 0,

[[
ρ(u − VΣ)

]]·n = 0 (2.26)

ρ
du

dt
= ρF + div σ , [[ σ ]] ·n + ρ

[[
u
]]
(u − VΣ)·n = 0 (2.27)

tσ = σ (none) (2.28)

ρ
det
dt

= ρF ·u + div(σ ·u − q
s
),

[[
u·(σ ·n + q

s
)
]]

+ ρ[[et ]](u − VΣ)·n = 0 (2.29)

For each conservation law, the equation on the left side provides the “Jump-condition”
that apply across the surface of discontinuityΣ if such surface is present (seeFig. 2.1).
The local forms of the conservation of enthalpy and entropy with σ = −p11+ τ (see
Eq.2.85) are:

ρ
dht
dt

= ρF ·u + div(τ ·u − q
s
) + ∂p

∂t
(2.30)

ρ
dS

dt
= − div

q
s

T
+ τ : D

T
− q

s
· grad T
T 2

(2.31)

The fundamental inequality of thermodynamics is:

ρ
dS

dt
≥ − div

q
s

T
, ρ[[S]](u − VΣ)·n ≥ −

[[q
s

T

]]
(2.32)

The conservation of kinetic energy is obtained by taking the scalar product of the
momentum equation with u:

ρ
d(u2/2)

dt
= ρF ·u + u· div σ (2.33)

2.1.3 Fluid-Mechanic Equations in a Non-inertial Frame

The fluid mechanics equations in a non-inertial frame are derived in this section.
The non-inertial frame follows an arbitrary motion. A relevant application of these
equations for rotor is the case of a frame rotating with a constant velocity.

Notations: Frame of references, basis and vectors coordinates Two frame of ref-
erences (R) and (R′) are considered where the first one is assumed to be inertial and
the second one has an arbitrary motion with respect to (w.r.t.) the frame (R). The
arbitrary motion includes spatial rotation and translation. Non-relativistic velocities
are assumed and the time is assumed to be the same in both frames. The origins of
the reference frames are the points O and O ′ and their systems of axes are identified
with the orthonormal bases (e) and (e′). Cartesian coordinates related to the bases
(e) and (e′) are adopted in both reference frames to simplify the notations and deriva-
tions. The final results that will be obtained are yet independent of the coordinates
system adopted in each frame. The reference frame (R′) rotates around O ′ with the
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Fig. 2.2 Notations used for
the inertial frame (R) and the
non-inertial frame (R)′. In
this sketch the rotation of the
frame (R′) is assumed to be
along e′

3′ for simplicity e2

e1O

(R)

e2
e1

O
(R )

vO

(R /R)

instantaneous rotation vector Ω(R′/R)(t) with respect to (R) and translates with the
instantaneous velocity vO ′(t). The Cartesian basis of (R) consists of the vectors e1,
e2, e3. A sketch representing the notations adopted is shown in Fig. 2.2. A vector V
is expressed in this coordinate system using the coordinates Vi as1:

V = V
∣∣
(e) = V1 e1 + V2 e2 + V3 e3 = Vi ei (2.34)

The Einstein summation convention was used in the last equality. The notation V |(e)
means that the vector is expressed in the basis (e), which is convenient when matri-
cial products are involved. Primed indices will now be introduced as a convenient
way to distinguish the coordinates and basis vectors of (R′). The Cartesian basis of
(R′) consists of the vectors e′

1′ , e′
2′ , e′

3′ where primed indices have been used. The
coordinates of a vector V in this coordinate system are written Vi ′ such that:

V = V
∣∣
(e′) = V1′ e′

1′ + V2′e′
2′ + V3′ e′

3′ = Vi ′ e
′
i ′ = Vk ′ e′

k ′ (2.35)

It is noted that there are no primes on the coordinates of V but only on the indices.
Einstein summation is implied in the two last equalities but it is stressed that the
primes cannot be removed from the dummy indices i and k. The motivation for
using these notations will appear clear when considering the position vector later in
this paragraph. Vectors are first-order tensors and they are thus invariant from one
basis to the other:

V = Viei = V i ′ e
′
i ′ (2.36)

The coordinates are expressed from one frame to the other thanks to the orthogonal
transformation matrix L such that

Vi ′ = Li ′ j Vj , Vi = L j ′i Vj ′ (2.37)

which is written using a matricial product as:

1Since the space is Euclidean and the bases are orthonormal there is no need to distinguish the
covariant coordinates, usually noted Vi , and the contravariant coordinates, usually noted V i .
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Fig. 2.3 Definition of the
position vectors r and r ′, and
the Eulerian coordinates x
and x ′. The position vectors
mark the trajectory of a given
particle P . This position at a
given time is expressed by
the Eulerian coordinates.
Each of these vectors are
expressed with respect to the
origin of the frame rO

rP = x

P

e2

e1O

(R)

e2
e1

O (R )

rP = x

V
∣
∣
(e)

= L · V ∣∣
(e′), V

∣
∣
(e′) = tL · V ∣∣

(e)
(2.38)

The position vector is defined as the distance between the origin of a frame of
reference to a given point in this frame of reference. The position vectors of (R) and
(R′) are noted r = OP and r ′ = O ′P respectively. The position vectors are used to
identify the trajectory of a given particle. At a given time, the position of a particle
corresponds to the Eulerian positions x and x ′ in (R) and (R′) respectively. A sketch
representing the notations adopted is shown in Fig. 2.3. The observer transformation
or the Euclidean transformation (x, t) → (x ′, t) is such that:

x ′ = L · x∣∣
(e) + r ′

O = L · x∣∣
(e) − r O ′ (2.39)

The coordinate transformation is differentiable and non-singular. The inverse trans-
formation is:

x = tL · x ′∣∣
(e′) + r O ′ = tL · x ′∣∣

(e′) − r ′
O (2.40)

The vectors x and x ′ are expressed in both (e) and (e′) as:

x = xi ei (= xi ′e
′
i ′), x ′ = x ′

i ′e
′
i ′(= x ′

i ei ) (2.41)

The parenthesis used in the above equation are present to note that in practice the
vector x is more easily expressed in (e) and the vector x ′ is more easily expressed
in (e′). The coordinate transformations Eqs. 2.39 and 2.40 is such that each Eulerian
coordinate in a frame is expressed as a function of the coordinates in the other frames:

for i = 1..3, xi = xi (x
′
1′ , x ′

2′ , x ′
3′), for i ′ = 1′..3′, x ′

i ′ = x ′
i ′(x1, x2, x3) (2.42)

A quantity Q is said to be objective or frame indifferent if it is invariant under all
observer transformation. The evaluation of the quantity Q in the frame of reference
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is noted (Q)(R). The fact that the quantity Q is objective is then written:

(Q)(R) = (Q)(R′) (objective quantity) (2.43)

The following results are relevant (see e.g. [36, p.107]): mass and temperature are
objective quantities; a vector joining two positions is an objective quantity; the veloc-
ity and acceleration of a particle are quantities that are not objective; the gradient,
curl and divergence of an objective tensor is an objective tensor; the divergence of
the velocity field is an objective scalar (since div vfix = 0); the viscous stress tensor
τ is an objective quantity.

Differential of a vector The differential of a vector A with respect to time in two
different reference frames is considered. The time derivative of the vector in each
frame of reference is:
(
dA

dt

)

(R)

�
(
d[Aiei ]

dt

)

(R)

= dAi

dt
ei ,

(
dA

dt

)

(R′)
�
(
d[Ai ′e′

i ′ ]
dt

)

(R)

= dAi ′

dt
e′
i ′

(2.44)

since the Cartesian bases are fixed relative to each reference frame, i.e.
(
dei
dt

)

(R)
= 0

and
(
de′

i ′
dt

)

(R′)
= 0. The components of A are now written in the basis of (R′) and

successively differentiated in the reference frame as:

(
dA

dt

)

(R)

=
(
d
[
Ai ′e′

i ′
]

dt

)

(R)

= dAi ′

dt
e′
i ′ + Ai ′

(
de′

i ′

dt

)

(R)

(2.45)

=
(
dA

dt

)

(R′)
+ Ai ′ Ω(R′/R) × e′

i ′ (2.46)

where the relation
(
de′

i ′
dt

)

(R)
= Ω(R′/R) × e′

i ′ was used. This relation is easily proven

when the rotation is directed along a given e′
j ′ . The time derivatives of the vector in

each basis are then related by

(
dA

dt

)

(R)

=
(
dA

dt

)

(R′)
+ Ω(R′/R) × A (2.47)

Equation2.47 is referred to as Bour formula or the transport theorem.

Lagrangian particle kinematics The motion of a particle is considered and a
Lagrangian formulation is naturally adopted. The following notations are adopted:
P is the point where the particle is located, r(t) ≡ OP is the particle trajectory with
respect to O , r ′(t) ≡ O ′P is the particle trajectory w.r.t. O ′, r O ′(t) ≡ OO ′ is the
trajectory of O ′ w.r.t. O , and Ω is the rotation vector of (R′) w.r.t. (R). The position
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vector in (R) is decomposed as r = OO ′ + O ′P = r O ′ + r ′ and the application of
Eq.2.47 to r ′ and vrel leads to the expression for the speed and acceleration:

r = r O ′ + r ′ (2.48)

v� ṙ = ṙ O ′ +
(
dr ′

dt

)

(R′)
+ Ω × r ′ = vfix + vrel (2.49)

a � v̇ = r̈ O ′ +
(
d2r ′

dt2

)

(R′)
+ 2Ω × vrel + Ω̇ × r ′ + Ω × Ω × r ′ = afix + acor + arel

(2.50)

where

vrel �
(
dr ′

dt

)

(R′)
, vfix � ṙ O ′ + Ω × r ′ = vO ′ + Ω × r ′ (2.51)

arel �
(
d2r ′

dt2

)

(R′)
, afix � r̈ O ′ + Ω̇ × r ′ + Ω × Ω × r ′, acor � 2Ω × vrel

(2.52)

The dot notation was used for the time derivative w.r.t. to (R). The subscript rel is
used for the relative speed and acceleration of the particle w.r.t. (R′). The quantities
with the subscript fix are values that would be obtained if the particle was fixed in
(R′). The value acor is Coriolis acceleration.

EuleriankinematicsEulerian coordinates are nowused to study the flowkinematics.
The flow quantities are assumed to be functions of time t and position x . The Eulerian
kinematics require a proper account of the partial derivatives andmaterial derivatives.
A given fluid particle P is assumed to occupy at time t the Eulerian position x =
r(t) ≡ OP in (R) and the Eulerian position x ′ = r ′(t) ≡ O ′P in (R′). By definition
of the Eulerian coordinates in (R), the partial derivative with respect to time of OP
is zero and the material derivative of OP is the Eulerian fluid velocity u, viz.:

(
∂OP

∂t

∣∣
∣∣
x

)

(R)

≡ 0 i.e.
∂xi
∂t

∣∣
∣∣
x

ei = 0 (2.53)

(
dOP

dt

)

(R)

≡ u i.e.
dxi
dt

ei =
[

∂xi
∂t

∣
∣∣∣
x

ei + u · ∇x xi

]

ei = u (2.54)

The notation ∂/∂t |x means that the position coordinates xi are kept constant in the
time derivation, which is indeed the definition of a partial derivative of a function
of time and position. The notation ∇x stands for the gradient relative to the Eulerian
coordinates xi . The vector OP is now decomposed as:

OP = OO ′ + O ′P = r O ′ + r ′ (2.55)
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The vector OO ′ ≡ r O ′ is not a function of position and hence:

(
dOO ′

dt

)

(R)

≡
(

∂OO ′

∂t

∣∣
∣∣
x

)

(R)

� vO ′ (2.56)

where vO ′ is the velocity of the origin O ′ as defined in the previous paragraph
using Lagrangian formalism. At the time t , the particle P is at the Eulerian location
x ′ = x ′

i ′e
′
i ′ . The vectors of the basis (e′) are not a function of position and hence:

for i ′ = 1′, .., 3′
(
de′

i ′

dt

)

(R)

≡
(

∂e′
i ′

∂t

∣∣∣∣
x

)

(R)

= Ω × e′
i ′ (2.57)

The time derivatives of r ′ follow from Eq.2.57:

(
∂r ′
∂t

∣∣∣
∣
x

)

(R)

=
⎛

⎝
∂[xi ′e′i ′ ]

∂t

∣∣
∣∣∣
x

⎞

⎠

(R)

= ∂x ′
i ′

∂t

∣∣
∣∣∣
x

e′i ′ + x ′
i ′Ω × e′i ′ =

(
∂r ′
∂t

∣∣∣
∣
x

)

(R′)
+ Ω × r ′ (2.58)

(
dr ′
dt

)

(R)

=
(
d[x ′

i ′e
′
i ′ ]

dt

)

(R)

= dx ′
i ′

dt
e′i ′ + x ′

i ′Ω × e′i ′ =
(
dr ′
dt

)

(R′)
+ Ω × r ′ (2.59)

These results could have been directly obtained using the transport theorem from
Eq.2.47.Using the decomposition fromEq.2.55 and the results fromabove, Eqs. 2.53
and 2.54 become:
(

∂r

∂t

∣∣
∣∣
x

)

(R)

≡ 0 = vO ′ +
(

∂r ′

∂t

∣∣
∣∣
x

)

(R′)

+ Ω × r ′ = vfix +
(

∂r ′

∂t

∣∣
∣∣
x

)

(R′)

(2.60)

(
dr

dt

)

(R)

≡ u = vO ′ +
(
dr ′

dt

)

(R′)
+ Ω × r ′ = vfix +

(
dr ′

dt

)

(R′)
(2.61)

where vfix = vO ′ +Ω×r ′ was defined in Eq.2.51. The above equations are rearranged
as:

∂x ′
i ′

∂t

∣∣∣∣
x

e′
i ′ �

(
∂r ′

∂t

∣∣∣∣
x

)

(R′)

= −vfix,
dx ′

i ′

dt
e′
i ′ �

(
dr ′

dt

)

(R′)
= u − vfix � urel (2.62)

The vector urel is the flow velocity as observed in the frame (R′) and its components
in this frame are the material derivative of the Eulerian coordinates x ′

i ′ . The equation
on the left states that as the relative frame (R′) moves, a fixed point in the frame (R)

appears to move at the velocity −vfix in (R′). The converse relation may easily be
obtained by considering the partial derivatives w.r.t. to time of r when the point x ′ is
fixed in (R′):
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(
∂r

∂t

∣∣
∣∣
x ′

)

(R)

= vO ′ + ∂r ′

∂t

∣∣
∣∣
x ′

+ Ω × r = vO ′ + 0 + Ω × r = vfix (2.63)

The above states that a fixed point in the frame (R′) appears to move at the velocity
vfix in (R).

Material derivative in inertial and non-inertial frames A flow quantity Q that
is a function of time and of the Eulerian position x of (R) is considered, i.e. Q =
Q(t, x1, x2, x3). The infinitesimal variation of Q is

dQ = ∂Q

∂t

∣∣∣∣
x

dt + ∂Q

∂xi
dxi = ∂Q

∂t

∣∣∣∣
x

dt + dx · ∇x Q (2.64)

The variation of the quantity during an infinitesimal time dt and along the fluid
trajectory is given by the material derivative:

(
dQ

dt

)

(R)

= ∂Q

∂t

∣∣
∣∣
x

+ u · ∇x Q (2.65)

Replacing u in Eq.2.65 by urel + vfix according to Eq.2.62 leads to:

(
dQ

dt

)

(R)

= ∂Q

∂t

∣∣∣
∣
x

+ vfix · ∇x Q + urel · ∇x Q (2.66)

The flow quantity can also be expressed in the frame (R′) as a function of time and
the Eulerian position x ′ as Q = Q(t, x ′

1′ , x ′
2′ , x ′

3′). The variation of Q during an
infinitesimal time dt and along the fluid trajectory is:

(
dQ

dt

)

(R′)
= ∂Q

∂t

∣∣∣
∣
x ′

+ ∂Q

∂x ′
i ′

dx ′
i ′

dt
= ∂Q

∂t

∣∣∣
∣
x ′

+ urel · ∇x ′ Q (2.67)

The variation of a scalar quantity Q along a trajectory is an objective quantity (see
e.g. [36, p.107]) and hence (dQ/dt)(R) = (dQ/dt)(R′). Also, the gradient of a scalar
is a first order tensor (it is the canonical example of a covariant tensor) and is an
objective quantity invariant by observer transformation hence ∇x Q = (∇Q)(R) =
(∇Q)(R′) = ∇x ′ Q. Equating Eqs. 2.66 and 2.67 leads to the following identification:

∂Q

∂t

∣∣∣∣
x ′

= ∂Q

∂t

∣∣∣∣
x

+ vfix · ∇x Q (2.68)

Equations2.65 and 2.67 are rewritten below to summarize the results of this para-
graph:



24 2 Theoretical Foundations for Flows Involving Vorticity

dQ

dt
= ∂Q

∂t

∣∣
∣∣
x

+ u · ∇x Q = ∂Q

∂t

∣∣
∣∣
x ′

+ urel · ∇x ′ Q (2.69)

Acceleration The results from the previous paragraphs are applied to derive the
acceleration of the fluid. The flow velocity is expanded according to Eq.2.62 as
u = vfix + urel. The transport theorem Eq.2.47 is applied to vfix and the material
derivative from Eq.2.69 is then developed as:

(
dvfix
dt

)

(R)

=
(
dvfix
dt

)

(R′)
+ Ω × vfix = ∂vfix

∂t

∣∣
∣∣
x ′

+ urel · ∇x ′vfix + Ω × vfix

= ∂vfix
∂t

∣∣
∣∣
x ′

+ Ω × urel + Ω × vfix (2.70)

where the relation urel ·∇x ′vfix = Ω×urel has been used. It is easily found by inserting
the expression of vfix = vO ′ + Ω × r ′. The similar procedure is applied to urel and
gives:

(
durel
dt

)

(R)

=
(
durel
dt

)

(R′)
+ Ω × urel = ∂urel

∂t

∣∣∣∣
x ′

+ urel · ∇x ′urel + Ω × urel

(2.71)

The total fluid acceleration is given by the sum of Eqs. 2.70 and 2.71:

a �
(
du

dt

)

(R)

= afix + acor + arel (2.72)

with

afix � ∂vfix
∂t

∣
∣∣∣
x ′

+ Ω × vfix = aO ′ + dΩ

dt
× r ′ + Ω × Ω × r ′ (2.73)

acor � 2Ω × urel (2.74)

arel �
(
durel
dt

)

(R′)
= ∂urel

∂t

∣∣∣∣
x ′

+ urel · ∇x ′urel (2.75)

The expression for afix in Eq.2.73 has been expressed using the definition vfix =
vO ′ + Ω × r ′, noting that vO ′ and Ω are functions of time only, using ∂r ′

∂t

∣∣∣
x ′

= 0,

using aO ′ =
(
dvO′
dt

)

(R′)
+ Ω × vO ′ and

(
dΩ
dt

)

(R)
=
(
dΩ
dt

)

(R′)
. An alternative form for

afix is:
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afix = dΩ

dt
× r ′ + grad

[(
dvO ′

dt

)

(R′)
· r ′ − v2fix

2

]

(2.76)

from which it follows that curl afix = 2Ω .

Fluid-mechanic equations in non-inertial frameThe derivations from the previous
paragraphs are now directly used to express the fluid-mechanics equations in a non-
inertial frame. The continuity equation in the frame (R) is given by Eq.2.26:

(
dρ

dt

)

(R)

+ ρ divx u = 0,
∂ρ

∂t

∣
∣∣∣
x

+ divx (ρu) = 0 (2.77)

To go from the left to right equation the term div(ρ) is developed as ρ div u+u ·grad ρ

(see Sect.C.2). Using u = vfix + urel, noting that div vfix = 0 and using the fact
that the divergence of a 1st order tensor is a 0th-order tensor invariant by observer
transformation (i.e. divx u = divx ′ u) the continuity equation in a non-inertial frame
is:

(
dρ

dt

)

(R′)
+ ρ divx ′ urel = 0,

∂ρ

∂t

∣∣∣∣
x ′

+ divx ′(ρurel) = 0 (2.78)

Equation2.68 was used to obtain the equation on the right. It is recalled that Eq.2.69
holds:

dρ

dt
=
(
dρ

dt

)

(R)

=
(
dρ

dt

)

(R′)
= ∂ρ

∂t

∣∣
∣∣
x ′

+ urel · ∇x ′ρ (2.79)

The momentum equation in the frame (R) is given by Eq.2.20:

ρ

(
du

dt

)

(R)

= ρF + divx σ , (2.80)

Using
(
du
dt

)

(R)
= afix + acor + arel from Eq.2.72 and noting that the divergence of a

second order tensor is a first order tensor invariant by observer transformation (i.e.
divx σ = divx ′ σ ), the momentum equation in a non-inertial frame is:

ρ

(
durel
dt

)

(R′)
= ρ

(
F − afix − acor

)+ divx ′ σ , (2.81)

where
(
durel
dt

)

(R′)
= ∂urel

∂t

∣∣∣
∣
x ′

+ urel · ∇x ′urel (2.82)
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The stress tensor is expressed in both frames:

σ = (−p + λ divx u)11 + μ
(∇xu +t∇xu

)

= (−p + λ divx ′ urel)11 + μ
(∇x ′urel +t∇x ′urel

)

A Newtonian fluid was assumed in the above expressions (see Eq.2.89). The energy
and enthalpy equations in a non-inertial frame are obtained from Eqs. 2.29 and 2.30
in a similar way:

ρ

(
det,rel
dt

)

(R′)
= ρ(F − afix − acor)·urel + divx ′(σurel − qs) (2.83)

ρ

(
dht,rel
dt

)

(R′)
= ρ(F − afix − acor)·urel + divx ′(τurel − qs) + ∂p

∂t
(2.84)

with et,rel = e + u2rel/2 and ht,rel = e + p/ρ + u2rel/2.

2.1.4 Fluid Mechanics Assumptions

Separation of viscous effects In a fluid in motion the following form for the stress
tensor is generally assumed:

σ = −p11 + τ (2.85)

where the first tensor represents non-viscous stresses while the second tensor repre-
sents stresses of viscous origin due to the fluid deformation. Equation2.27 may then
be written:

du

dt
= F − 1

ρ
grad p + 1

ρ
div τ (2.86)

Classical fluid A classical fluid is a continuum for which the stress law is of the
form:

σ = f (grad u, ρ, T ) (2.87)

Stresses are thus directly related to the fact that a velocity field is present within the
fluid. Further, stresses do not depend on motions at various locations but only of the
stress rate defined by grad u.

Fourier’s law For most isotropic fluid, the heat flux q
s
satisfies Fourier’s law:

q
s
= −k grad T (2.88)
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where k is the thermal conductivity of the fluid. Fourier’s law is only presented here
to mention the definition of a perfect fluid in the following paragraph.

Newtonian fluid Three properties define a Newtonian fluid:

• the stress tensor σ is a linear function of grad u
• the stress tensor is invariant with respect to any rigid motion applied to the entire
domain

• the fluid is isotropic (quantities do not have directional preferences).

For a Newtonian fluid, the viscous stress tensor τ and the heat flux q
s
are written:

τ = λ(div u)1 + 2μD (2.89)

q
s
= −k grad T (2.90)

with D the deformation tensor (see Sect. 2.2.1, D = 1
2 (grad u +t grad u)), λ and

μ are Lamé’s viscous coefficients, and k is the thermal conductivity of the fluid. In
general, the coefficient λ, μ and k are functions of ρ or T and are not constant. Fluid
dynamics equations for Newtonian fluids are known as theNavier–Stokes equations.

Perfect fluid In this document a “perfect fluid” will correspond to a fluid whose
motion may be described without the effect of viscosity and thermal conductivity.
For aNewtonian fluid,wewill have: (λ, μ, k) → (0, 0, 0), which is τ = 0 and q = 0.
Since this document does not consider heat fluxes, the use of inviscid assumption
will be preferred to the “perfect fluid” assumption.

Incompressible fluid For an incompressible fluid, the rate of density change of a
fluid particle dρ/dt is negligible compared with the component term ρ∇ · u. Using
Cartesian coordinates, this writes [17, p. 105]:

∣∣∣∣
dρ

dt

∣∣∣∣ � ρ
∣∣∇ · u∣∣ ≤ ρ

(∣∣∣∣
∂u

∂x

∣∣∣∣+
∣∣∣∣
∂v

∂y

∣∣∣∣+
∣∣∣∣
∂w

∂z

∣∣∣∣

)
(2.91)

By consideration of this condition, the continuity equation given inEq.2.26 becomes:

∇ · u = 0 (2.92)

For an incompressible fluid, the dilatation is then zero, i.e. Θ ≡ 0. Inserting the
above into the continuity equation also implies:

dρ

dt
= 0 (2.93)

so that the density is constant on trajectories. It does not imply that the density has
the same constant value in the entire domain: different particles can have different
densities but their value remains constant. If the fluid is homogeneous at the initial
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time, then the density remains constant over time and space (∇ρ = 0): such flow is
called a constant-density flow.

By definition ofω = curl u, and using “curl curl = grad div−∇2”, the following
relation holds for incompressible flows:

curl ω = −∇2u (2.94)

The condition div u = 0 is also found by considering the assumption that an elemen-
tary material volume Dm , followed in its motion, is constant:

d

dt

∫

Dm

dV = 0 (2.95)

The above is using the Green–Ostrogradski theorem from Eq.C.36 [41, §3.3]:

d

dt

∫

Dm

dV =
∫

Dm

∂1

∂t
dV +

∫

S
1u · n dS =

∫

Dm

(
∂1

∂t
+ div(1u)

)
dV =

∫

Dm

div u dV = 0

(2.96)

Since Dm is an arbitrary material volume, it implies div u = 0. The incompressible
condition from Eq.2.92 is satisfied identically if (see e.g. [48, p. 10]):

u = curl ψ (2.97)

where ψ is a function of position (since “div curl ≡ 0”).

Baroclinic/non-baroclinic(barotropic) fluid A baroclinic fluid satisfies grad p ×
grad ρ 
= 0. Examples of non-baroclinic fluids, i.e. such that grad p × grad ρ ≡ 0
are barotropic fluids. Barotropic fluids are such that the pressure is a pure function of
the density and does not depend on the temperature. In the following the assumption
of barotropic fluid will be used, but the condition of non-baroclinic fluid should be
enough. Two examples of barotropic fluid are:

1. homogeneous, incompressible fluid
2. perfect fluid in homoentropic flow.

Ideal incompressible fluid This assumption is considered to be satisfied when the
Reynolds number is high, the Mach number is low and the ratio of temperatures is
small.

Incompressible, Newtonian fluid For an incompressible Newtonian fluid, Eq. 2.89
becomes:

τ = 2μD = μ
(
grad u +t grad u

)
(2.98)
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2.1.5 Usual Cases - Equations of Euler and Bernoulli

Homogeneous incompressible Newtonian fluid of constant viscosity For an
incompressible, homogeneous, Newtonian fluid of constant viscosity, using
“div(grad ) = Δ” (Appendix C) and Eq.2.94:

1

ρ
div τ = 1

ρ
div
(
0 + μ

(
grad u +t grad u

)) = νΔu = −ν curl ω (2.99)

with μ/ρ = ν. The conservation of mass and momentum write:

div u = 0 (2.100)

du

dt
= F − 1

ρ
grad p − ν curl ω (2.101)

Using [grad u] · u = ω×u + grad(u2/2), Eq. 2.101 writes:

∂u

∂t
+ ω × u = F − 1

ρ
grad pt − ν curl ω (2.102)

where pt = p + 1
2ρu

2 is the total pressure, sometimes written H and referred to
as the Bernoulli constant. Taking the scalar product of Eq.2.102 with u leads to the
following energy equation:

dpt
dt

= ρF · u + ∂p

∂t
− μ(curl ω) · u (2.103)

Euler’s equations Euler’s equations are obtained under the assumptions of a homo-
geneous, inviscid, Newtonian fluid under conservative forces. The conservative
forces are assumed to derive from a potential VF such that F = − grad VF . Using
[grad u] · u = ω×u + grad(u2/2), Euler’s equations writes:

dρ

dt
+ ρ div u = 0 (2.104)

∂u

∂t
+ ω × u = −1

ρ
grad p − grad

(
u2

2
+ VF

)
(2.105)

ρ
de

dt
= −p div u, p = p(ρ, T ), e = e(ρ, T ) (2.106)

The conservation ofmomentum (Eq.2.105) in polar coordinates andwithout external
forces writes (see Sect.C.3) is
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∂ur
∂t

+ ur
∂ur
∂r

+ uθ

r

∂ur
∂θ

− u2θ
r

+ uz
∂ur
∂z

= − 1

ρ

∂p

∂r
(2.107)

∂uθ

∂t
+ ur

∂uθ

∂r
+ uθ

r

∂uθ

∂θ
+ uruθ

r
+ uz

∂uθ

∂z
= − 1

ρ

1

r

∂p

∂θ
(2.108)

∂uz

∂t
+ ur

∂uz

∂r
+ uθ

r

∂uz

∂θ
+ uz

∂uz

∂z
= − 1

ρ

1

r

∂p

∂z
(2.109)

B1: First Bernoulli theorem (weak formulation) The following assumptions are
applied: incompressible, steady flow of an inviscid fluid under conservative forces
(i.e. deriving from a potential VF ). Under these assumptions, the flow is said to be
iso-energetic and satisfy Bernoulli theorem in its weak formulation:

e + p

ρ
+ u2

2
+ VF = constant along a streamline (2.110)

This formulation is qualified as weak due to the fact that the constant is in general
different from one streamline to another. Bernoulli’s equation expresses the conser-
vation of the “total energy” defined here as the sum of the internal energy, the kinetic
energy and potential energy associated with volume and pressure forces.

B1: First Bernoulli theorem in a rotating frame The notations and results of the
fluid-mechanics equations in a non-inertial frame derived in Sect. 2.1.3 are adopted.
A frame rotating with constant angular velocity Ω is considered. The flow velocity
in this frame is written urel. The Coriolis and centrifugal fictitious external forces
that appear in a rotating system are respectively −2Ω × urel and −Ω × Ω × r ′ =
1
2 grad(Ω × r ′)2. For an incompressible, steady flow (steady in the rotating frame)
of an inviscid fluid under the body force Fb, Eq. 2.103 writes:

dpt
dt

= ρ

(
Fb − 2Ω × urel +

1

2
grad

[
(Ω × r ′)2

]) · urel (2.111)

The second term of the RHS is identically 0. Further simplifications are obtained if
the body force is 0 or if it is orthogonal to urel.

2 Under this assumption, the first term
of the RHS of Eq.2.111 is 0, leading to:

dpt
dt

= grad

(
1

2
ρΩ × r ′

)2

· urel = d

dt

[
1

2
ρ
(
Ω × r ′)2

]
(2.112)

where the fact that the flow is steady in the rotating frame has been used for the
second equality. It follows that

2De Vries argued that this is the case for an actuator disk in inviscid flow. Since the flow is inviscid,
the actuator disk force is due to a lift force, which is indeed orthogonal to the velocity [15]. For an
actuator disk, the lift force is artificially introduced and it is not the result of the pressure field.
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d

dt

[
pt − 1

2
ρ
(
Ω × r ′)2

]
= 0 (2.113)

and hence:

p + 1

2
ρu2rel −

1

2
ρ
(
Ω × r ′)2 = constant along a streamline (2.114)

B2: Second Bernoulli theorem (strong formulation) The following assumptions
are made: irrotational flow (i.e. curl u = 0 and hence the velocity is written
u = gradΦ), perfect fluid, barotropic fluid (i.e. p = p(ρ) and hence 1

ρ
grad p =

grad
∫ dp

ρ
), under conservative forces (i.e. deriving from a potential VF ). Under these

assumptions, Bernoulli’s strong formulation writes:

∂Φ

∂t
+
∫

dp

ρ
+ u2

2
+ VF = C(t) (2.115)

Unlike the weak formulation, the constant C(t) in the above equation is used for
points that do not belong to the same streamline.

The assumption of barotropic fluid may be replaced by the assumption of incom-
pressible fluid. In that case:

∂Φ

∂t
+ p

ρ
+ u2

2
+ VF = C(t) (2.116)

Particular case of B2: homoentropic flow For a irrotational and homoentropic flow
of a perfect fluid under conservative forces, Eq. 2.115 becomes:

∂Φ

∂t
+ e + p

ρ
+ u2

2
+ VF = C(t) (2.117)

Indeed, the homoentropic assumption implies dh = T ds + dp
ρ

= dp
ρ

and hence
∫ dp

ρ
= h.

Particular case of B1 and B2: homogeneous, incompressible, perfect fluid For a
homogeneous, incompressible, perfect fluid under conservative forces, the internal
energy is conserved along the streamlines (i.e. de/dt = 0), and hence Eq.2.110
becomes:

p

ρ
+ u2

2
+ VF = constant along a streamline (2.118)

The fluid is barotropic with ρ = cst, so Eq.2.115 becomes:
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∂Φ

∂t
+ p

ρ
+ u2

2
+ VF = C(t) (2.119)

If the flow is also steady, then:

p

ρ
+ u2

2
+ VF = C (2.120)

2.2 Flow Kinematics and Vorticity

2.2.1 Flow Kinematics

Motion of a material element A material element (line, vector, surface, volume)
consists of the same fluid particles throughout time. An elementary material vector
δl(t), located at the pointM = x at the time t is considered.Theother vector extremity
is written P(t), such that δl(t) = P(t)−M(t). Thematerial vector evolves according
to the trajectory equation dx/dt = u. The Taylor expansion of the functions M and
P writes:

M(t + δt) = M(t) + u(x, t)δt + O(δt2) (2.121)

P(t + δt) = P(t) + u(x + δl(t), t)δt + O(δt2) (2.122)

These equations are gathered by introducing the definition of δl:

δl(t + δt) = δl(t) + [u (x + δl (t) , t
)− u

(
x, t
) ]

δt + O(δt2) (2.123)

The Taylor expansion of the velocity field at x , if defined, writes:

u(x + h, t) = u(x, t) + grad u(x, t) · h + O(h2) (2.124)

Inserting Eq.2.124 into 2.123 leads to:

δl(t + δt) = δl(t) + [ grad u(x, t) · δl(t)
]
δt + O(δt2, h2) (2.125)

By evaluation of the limit and using shorter notations, this writes:

d(δl)

dt
= (grad u) · δl ⇔ d(δl)

dt
= (

δl · ∇) u (2.126)

Deformation and rotation matrix At a given point in space where it is defined, the
gradient of the velocity field may be decomposed [31, p. 6] into a symmetric part D
and an antisymmetric part Ω as:
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grad u = 1

2

(
grad u +t grad u

)+ 1

2

(
grad u −t grad u

)
(2.127)

= D + Ω (2.128)

where D is the deformation matrix or rate-of-strain matrix, and Ω is the rotation
matrix. The trace of the deformation matrix is equal to the divergence of the velocity,
i.e. trD = div u. Hence, for incompressible flows the trace of D is 0. Using the
definition of the vorticity (Eq.2.3) and the definition of Ω , it is shown that:

∀h ∈ R
3, Ω · h = 1

2
ω × h (2.129)

This is of relevance for vortex methods, in particular when h is chosen as ω. More
details and physical interpretations are found in standard fluid mechanics text books,
e.g. the book of Saffman [43].

Vorticity stretching It will be seen in Sect. 2.3.2 that the “stretching” term grad u ·
ω ≡ (u · ∇)ω appears in the dynamic equation of vorticity. The development of this
term shows that only the deformation tensor contributes to the vorticity stretching:

grad u · ω =
(
D + Ω

)
· ω = D · ω + Ω · ω = D · ω + 1

2
ω × ω = D · ω

(2.130)

Using the above, since D is symmetric, the three following expressions are equal:

grad u · ω =t grad u · ω = 1

2

[
tgrad u +t grad u

] · ω (2.131)

The three equalities are written below using the Del notation:

(ω · ∇)u = (ω · ∇T )u = 1

2

[
ω · (∇ + ∇T

)]
u (2.132)

Alternatively, one can understand these equalities using the following identity:(∇a − (∇a)T
)·b = (∇ × a

)×b. Applied to u andω this yields:
(∇u − (∇u)T

)·ω =(∇ × u
)×ω = 0. It is noted that in general∇u 
= (∇u)T and only the multiplication

by ω makes this equality true.

2.2.2 Vorticity and Related Definitions

Discussion on vortex and vorticity vocabulary The notions of vortex and vorticity
are strongly linked. vorticity is a measure of the local rotation of a fluid particle (see
Eq.2.128). The definition of a vortex is more ambiguous. For simplicity, a vortex is
assumed to represent a coherent flow structure which is characterized to some extent
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by a large scale rotation of the fluid. A vortex has vorticity but a vorticity field does
not necessarily represent a vortex: A steady shear layer is a vorticity field with no
distinct vortex. The notion of vortex in 3D requires the introduction of a criteria to
define/detect a vortex. Most methods are based on the decomposition of the velocity
gradient tensor and the extraction of its invariant or eigenvalues. More details on the
definition of a vortex is found in the dedicated articles of e.g. Hunt et al. [23], Jeong
and Hussain [24], Haller [18] and in the book of Wu [55, pp. 72 and 310].

In many applications, the vorticity is concentrated to small areas. In such case,
a vortex denote any finite volume of vorticity immersed in a irrotational fluid. The
terms vorticity and vortex are then used without rigorous distinction. For instance,
the following terms are indifferently used in this book: vortex sheet/vorticity sheet,
vortex methods/vorticity-based method.

Vortex lines In a region where the vorticity does not vanish identically, lines tangent
to the local vorticity vector at each point are called vortex lines [43, pp. 8–10]. In
other words, they are the field lines of the vorticity field. By definition of field lines,
a differential element dx tangent to a vorticity line satisfy:

dx × ω(x, t) = 0 (2.133)

Written differently, vortex lines are solutions of the differential equation:

dx

ωx
= dy

ωy
= dz

ωz
(2.134)

For any curve L , the continuous set of vorticity lines that pass by this curve form a
vorticity surface. If the curve L is a closed path, the vorticity surface forms a vorticity
tube, referred also as a vortex tube. Vortex tubes and lines are studied in details by
Saffman [43, pp. 8–10].

Vorticity and rotation -Kinematic interpretationThe vorticity is twice the average
angular velocity around an infinitesimal circle:

1

2πl

∮

C

u

l
· dl = 1

2πl2

∫∫

S
ω · dA (Stokes’s theorem) (2.135)

which tends to 1
2ω when l → 0. More details are found in the book of Saffman [43,

pp. 6–7].

Vorticity and rotation - Dynamic interpretation The dynamic interpretation of
vorticity is obtained by considering the angular momentum about the centroid of a
fluid particle rotating as a solid bodywith angular velocityω/2. The topic is presented
in the book of Saffman [44, p. 7].

Circulation If C design a closed geometric path, then the circulation along this path
refers to the following curvilinear integral:
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Γ �
∮

C
u · ds [m2/s] (2.136)

Using Stokes theorem (Eq.C.50) and ω = curl u, the circulation is directly related
to the flux of vorticity through any surface S that has C as support:

Γ =
∫∫

S
ω · ndS (2.137)

Irrotational flow An irrotational flow is a flow for which the vorticity ω is zero
everywhere. An irrotational flow is obtained if the following assumptions hold [22]:
- perfect fluid - barotropic fluid (e.g. incompressible homogeneous fluid), - fluid
under conservative forces, - initially irrotational: ∀x ∈ Ω,ω(x, t = 0) = 0, - (there
is only one streamline exiting an obstacle). The irrotational nature of the flow is a
consequence of Lagrange’s theorem presented in Sect. 2.6.2.

Solenoidal field - case of the vorticityBecause of the vectorial relation “div(curl ) ≡
0”, the vorticity field has a divergence of zero. Fields that satisfy this condition are
called solenoidal. From the divergence theorem (see Appendix C) which relates a
volume integral to a closed surface, it is seen that the flux of vorticity through a
closed surface is identically null:

∫

∂Ω

ω · n dS =
∫

Ω

divω dΩ ≡ 0 (2.138)

The vorticity flux through a closed surface is always zero but it is not true in general
for an open surface. It does apply for open surfaces that are vorticity surfaces since
there the vorticity is orthogonal to the surface normal. Also, this relation should not
be confusedwith Kelvin’s theorem (presented in Sect. 2.6.1), which involves the time
derivative of the vorticity flux on an open surface under restrictive conditions, which
are not present here.

For a differentiable vector field f , the following relation holds: div(xi f ) =
xi div f + f · (grad xi ) = xi div f + fi . It follows that for a solenoidal vector
field:

ωi ≡ div(xiω) (2.139)

The application of the divergence theorem leads then to:

∫

Ω

ωi dΩ =
∫

Ω

div(xiω) dΩ =
∫

∂Ω

xiω · ndS (2.140)

The application to all components leads to the following vectorial form (see also
Eq.C.43):
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∫

Ω

ω dΩ =
∫

∂Ω

x(ω · n)dS (2.141)

Consequently, if the vorticity is zero outside of a finite region D then the total vorticity
in the domain Ω ⊃ D is zero. As a side note, the application of Eq.C.47 provides
an alternative form for the total vorticity:

∫

Ω

ω dΩ =
∫

∂Ω

n × udS (2.142)

2.2.3 Helmholtz (First) Law

From Eq.2.138 it follows that no source or sink of vorticity are present in the vol-
ume. The three possible configurations allowed for vorticity lines are then: closed
curve, lines of infinite length, and finite lines whose extremities are part of the flow
boundaries (walls). Another implication is that in a vorticity tube the vorticity flux
and the circulation is conserved along the tube. Γ (t) can thus be called the intensity
of the vorticity tube.

2.2.4 Helmholtz-(Hodge) Decomposition

The Helmholtz decomposition is discussed for instance by: Richardson and Cor-
nish [40], Majda and Bertozzi [31, p. 72], Morino [32], Batchelor [4, p. 84]. A full
account of the problem requires a knowledge of the functional space in which the
field is defined and a proper account of the boundary conditions (holes, walls, Neu-
mann or Dirichlet conditions). Some elements are given below, but the following
treatment is incomplete.

Helmholtz decomposition For most physical applications, a velocity field u is writ-
ten according to the Helmholtz decomposition ([40]):

u = u0 + uω + uΦ (2.143)

where

curl uΦ ≡ 0, uΦ is curl free (divergence part) (2.144)

div uω ≡ 0, uω is divergence free (rotational part) (2.145)

curl u0 ≡ div u0 ≡ 0, u0 is divergence free and curl free (2.146)

The decomposition is built from a scalar potential Φ and a vector potential ψ with:
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uΦ = ∇Φ, uω = curl ψ, u0 = u − uΦ − uω (2.147)

This decomposition is not unique and depends on the boundary conditions. For
incompressible flows, uΦ accounts for boundary conditions. In absence of boundaries
and for a flow occupying the entire space uΦ = 0. The Helmholtz-Hodge decompo-
sition [11, 37] is chosen such as u0 is harmonic, i.e. Δu0 = 0. In most applications
u0 is a constant but it is not the only possibility: The example u0 = αxex − αyey
satisfies Eq.2.146.

Poisson’s equations involved The dilatation and vorticity are defined respectively
asΘ � div u, and ω � curl u (see Sect. 2.1.1). Choosing uΦ = gradΦ, uω = curl ψ

and the gauge divψ = 0, the decomposition from Eq.2.143 leads to

Θ � div u = div uΦ = ΔΦ (2.148)

ω � curl u = curl uω = −Δψ (with divψ = 0) (2.149)

For an incompressible flow (Θ ≡ 0), the first equation leads to a Laplace equation.
For an irrotational flow (ω ≡ 0), the second equation leads to threeLaplace equations.

2.2.5 Bounded and Unbounded Domain - Surface
Map - Generalized Helmholtz Decomposition

Unbounded domain - Biot–Savart law In an unbounded space and in the absence
of boundaries, the rotational part of the velocity is retrieved from the vorticity field
using the Biot–Savart law (see Sect. 2.6.4):

uω(x, t) =
∫

D
K (x − x ′) × ω(x ′, t) dx ′ (2.150)

where K is the Biot–Savart kernel defined in Eq.2.232 and the integral is taken over
D = Dω, with Dω the support of vorticity, possibly infinite.

Reduced domain If one restricts the integral in Eq.2.150 to a smaller domain D =
Din, the contribution from the vorticity outside of the domain is accounted for by
means of a Neumann-to-Dirichlet map which ensures the continuity of tangential
and normal velocity at the domain interface ∂Din. The velocity field is then written:
u = u0 + uω + uext where uext is the surface integral solution of ∇2u = −∇ × ω

that satisfies the mapping with the external domain. The velocity obtained from the
surface map is [35]:

uext(x) =
∫

∂Din

[−K (x − x ′) un(x ′) + K (x − x ′) × uτ (x
′)
]
dx ′ (2.151)
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where un is the component of the total velocity field normal to ∂Din such that un =
u · n, with n pointing towards the interior of the domain, uτ = n × u and K is the
Biot–Savart kernel defined in Eq.2.232. The gradient∇uext is directly obtained from
the expression of uext as:

∇uext(x) =
∫

∂Din

[−∇K (x − x ′) un(x ′) + ∇ (K (x − x ′) × uτ

)]
dx ′ (2.152)

The addition of the surface integral to the Helmholtz decomposition is sometimes
referred to as the generalized Helmholtz decomposition.

Interpretation in terms of source and vorticity surfaces Equation2.151 has the
same expression as an integration over a surface distribution of source and vortic-
ity (see Sect. 2.6.4). Introducing the source distribution σ = un and the vorticity
distribution γ = uτ , Eq. 2.151 is rewritten as:

uext(x) =
∫

∂Din

[
−K (x − x ′) σ (x ′) + K (x − x ′) × γ (x ′)

]
dx ′ = uσ (x) + uγ (x)

(2.153)

where uσ and uγ are the velocities induced by the source and vorticity distributed
on the boundary ∂Din.

Applications The expression of uext is convenient in applications where the support
of vorticity is infinite and a smaller computational domain of interest is investigated.
This is in particular the casewhen studying shearedflow in numerical vortexmethods.
The vorticity associated with the shear profile has a support too large to be handled
numerically. The surface map offers a convenient solution to account for this large
support of vorticity (see Chap.30).

The surface map method is also convenient since the outside domain doesn’t need
to be modelled as long as the velocity on the boundary of the domain is known.

A typical validation case for the numerical implementation of Eq.2.151 may be a
cylindrical domain with constant velocity u. The surface corresponds then to a vortex
cylinder with source terms at its cross-sections and the velocity is indeed constant
within the domain. This application is detailed in Sect. 36.1.4.

2.3 Main Dynamics Equations Involving Vorticity

2.3.1 Circulation Equation

General formApplying the definition of the circulationEq.2.136 to amaterial curve,
the temporal derivative of the circulation is computed as:

http://dx.doi.org/10.1007/978-3-319-55164-7_30
http://dx.doi.org/10.1007/978-3-319-55164-7_36
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dΓ

dt
=
∮

L(t)

du

dt
· dM +

∮

L(t)

u · ˙̂dM (2.154)

The first term involves the fluid acceleration which will be expressed using Newton’s
law Eq.2.86. The second term involves the material derivative of a material vector,
which is given in Eq.2.126 as ˙̂dM = [∇u] · dl. The second term is then developed
as:

∮

L(t)

u · ˙̂dM =
∮

L(t)

u · ([∇u] · dl) =
∮

L(t)

u · du =
∮

L(t)

d
u2

2
= 0 (2.155)

As a result of this only the first term of Eq.2.154 remains. Expressing du/dt using
the momentum equation from Eq.2.86 leads to:

dΓ

dt
=
∮

L(t)

F · dl +
∫

Σ(t)

1

ρ2
(∇ρ × ∇p) · ndS +

∮

L(t)

1

ρ
div τ · dl (2.156)

In the above equation, the path integral of the pressure term from the Navier–Stokes
equation has been replaced by a surface integral using Stokes’ theorem (Eq.C.50) and
the term curl ( 1

ρ
grad p) has been developed with “curl ( f A) = f curl A+grad f ×

A” and “curl (grad f ) = 0” (see Sect.C.2).

Sources of circulation Three different sources of circulation are identified from
the equation of conservation of circulation (Eq.2.156): non-conservative forces (e.g.
Coriolis force), baroclinicity (i.e. grad p × grad ρ 
= 0), and viscous stresses.

Newtonian fluid of uniform viscosity For a Newtonian fluid of uniform viscosity,
1
ρ
div τ = νΔu and Eq.2.156 writes:

dΓ

dt
=
∮

L(t)

F · dl +
∫

Σ(t)

1

ρ2
(∇ρ × ∇p) · ndS + ν

∮

L(t)

Δu · dl (2.157)

The integration is performed over a material line L(t), and Σ is an open surface
bounded by L .

Homogeneous Incompressible(⇒barotropic) Newtonian fluid of uniform vis-
cosity Recalling 1

ρ
div τ = νΔu = −ν curl ω, the integral term on the viscous

stresses is rewritten indifferently:

∮

L(t)

1

ρ
div τ · dl = −ν

∮

L(t)

curl ω · dl = ν

∫

Σ(t)

ΔωndS (2.158)

where Stokes theorem and “curl curl = grad div−Δ” has been used.

dΓ

dt
=
∮

L(t)

F · dl − ν

∮

L(t)

curl ω · dl (2.159)
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The integration takes place over a material line L(t), and Σ is an open surface
bounded by L .

2.3.2 Vorticity Equation

IntroductionThe vorticity equation is obtained by taking the curl ofmomentum con-
servation equation given in Eq.2.86. Information about the divergence part is lost
because the divergence and curl operators are orthogonal (see e.g. Chorin [10]). In
particular, the pressure term vanishes from the vorticity equation for a barotropic
fluid. The pressure is recovered by taking the divergence of Newton’s law (see
Sect. 2.3.6).

General form The vorticity equation is found by taking the curl of Newton’s law
Eq.2.86.

dω

dt
= ∂ω

∂t
+ (u · ∇)ω

︸ ︷︷ ︸
advection

= (ω · ∇)u
︸ ︷︷ ︸
stretching

− ω∇ · u
︸ ︷︷ ︸
dilatation

+ ∇ × F
︸ ︷︷ ︸

n.-c. forces

+ 1

ρ2
∇ρ × ∇p

︸ ︷︷ ︸
baroclinicity

+∇ ×
(
1

ρ
∇ · τ

)

︸ ︷︷ ︸
v. diffusion

(2.160)

Alternative forms of this equation will be given in Sect. 2.3.4. The vorticity equation
is sometimes referred to as Helmholtz’s vorticity equation.

Sources of vorticity The sources of circulation found in Eq.2.156 are also present
in the vorticity equation, but two additional terms are found: ω · grad u − ω div u.
These two terms combined are responsible for the stretching and change of direction
(dilatation) of the vorticity. This will be studied in more details in Sect. 2.3.3.

2.3.3 Stretching and Dilatation of Vorticity

In this section only the stretching and dilatation terms are considered. In other words,
the fluid considered is an inviscid, barotropic fluid and under conservative forces.
The fluid may be compressible. For a fluid that satisfies Eq.2.85, the ideal/inviscid
assumption implies τ = 0.

Rearranging terms The vorticity equation under these conditions writes:

dω

dt
= (∇u) · ω
︸ ︷︷ ︸

strain

+ω∇ · u
︸ ︷︷ ︸
dilatation

(2.161)

Rearranging the terms and dividing by the density leads to
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1

ρ

dω

dt
− ω

ρ2

(
ρ∇ · u) = (∇u

) · ω

ρ
(2.162)

Noting that

d

dt

(
ω

ρ

)
= 1

ρ

dω

dt
− ω

ρ2

dρ

dt
(2.163)

and using the continuity equation given by Eq.2.26, Eq.2.162 is rewritten:

d

dt

(
ω

ρ

)
= (∇u) · ω

ρ
(2.164)

Comparison with material motion Equation2.164 may be compared to the kine-
matic evolution equation of a differential material element δl as given in Eq.2.126:

d(δl)

dt
= (∇u

) · δl (2.165)

A material vector δl(t) tangent and along the same direction as ω at a given location
and at the time t is now considered. One can write ω = ω

δl δl. Using the kinematic

relation ˙̂δl = (∇u) · δl, Eq. 2.164 is rewritten and integrated as follow:

1

ω/ρ

d

dt

(
ω

ρ

)
=

˙̂δl
δl

→ (ω/ρ)(t)

(ω/ρ)(t0)
= δl(t)

δl(t0)
(2.166)

Hence if a vorticity line is stretched, the vector ω/ρ will change accordingly. More
details are found in the book of Saffman [43, pp. 11–12].

Note for incompressible flows For incompressible flows, Eq.2.164 is directly
obtained from Eq.2.161.

Relevance for vortex methods The fact that the ω/ρ behave dynamically like a
material element is convenient for the Lagrangian tracking of vorticity. The quan-
tity ω/ρ is transported and stretched using the local fluid velocity. This property
is used by vortex methods which usually are applied in situations where Eq.2.161
holds, that is, either for inviscid fluids, or within the context of viscous splitting (see
Sect. 41.3). As noted by Voutsinas [50], the observation by Rehbach in 1973 [39] that
a concentration of vorticity ωδV follows the same dynamics as a material element in
incompressible flows was a key element for the development of vortex particle meth-
ods. The result is extended to other “vorticity-dimensions”, such as surface vorticity
and line vorticity [50]. These other vorticity dimensions are discussed in Sect. 2.4.

Deformation schemes The result mentioned in Sect. 2.2.1 is recalled here. The
decomposition of the velocity gradient into a symmetric (D) and anti-symmetric
(Ω) part was given in Eq.2.128. By multiplication with the vorticity, the vorticity
stretching term was obtained (Eq.2.130) as: (∇u) · ω ≡ (ω · ∇)u = D · ω. Three

http://dx.doi.org/10.1007/978-3-319-55164-7_41
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different forms of this equations were given in Eq.2.132 as follows:

(ω · ∇)u = (ω · ∇T )u = 1

2

[
ω · (∇ + ∇T

)]
u (2.167)

The three expressions above lead to different numerical stretching schemes in vortex
particle methods (see Sect. 42.2).

2.3.4 Alternative Forms of the Vorticity Equation

The terms of advection and dilatation are gathered into a conservative form using
the identity3 div(ω ⊗ u) = (u · ∇)ω + ω div u to give:

∂ω

∂t
+ div(ω ⊗ u) = (ω · ∇)u − ∇ × F + 1

ρ2
∇ρ × ∇p + ∇ ×

(
1

ρ
∇ · τ

)

(2.168)

The stretching term can also be written in the conservative form div(u ⊗ ω) ≡
(ω · ∇)u + u divω since divω ≡ 0 to give:

∂ω

∂t
+ div(ω ⊗ u) = div(ω ⊗ u) − ∇ × F + 1

ρ2
∇ρ × ∇p + ∇ ×

(
1

ρ
∇ · τ

)

(2.169)

The terms of advection, dilatation and stretching can also be gathered under the term
curl

(
ω × u

) = (u · ∇)ω − (ω · ∇)u + ω(∇ · u) − u(∇ · ω) since div
(
curl (u)

) ≡ 0
(see Appendix C, Sect.C.2). Using this identity, Eq.2.160 writes:

∂ω

∂t
+ curl (ω × u) = −∇ × F + 1

ρ2
∇ρ × ∇p + ∇ ×

(
1

ρ
∇ · τ

)
(2.170)

The right hand side of this equation is zero within the context of Euler’s equation
(i.e. ideal homogeneous fluid under conservative forces). Dividing Eq.2.160 by ρ,
and using the continuity equation as in Sect. 2.3.3, the following form is obtained:

d

dt

(
ω

ρ

)
= (∇u) · ω

ρ
+ 1

ρ
∇ × F + 1

ρ3
∇ρ × ∇p + 1

ρ
∇ ×

(
1

ρ
∇ · τ

)
(2.171)

3The divergence of a tensor of order 2 is: div T = ∂ j (Ti j )ei . A different convention for the diver-
gence is sometimes found. This is the case for the book of Cottet and Koumoutsakos [13] where the
divergence is div2 T = ∂i (Ti j )e j , and hence the identity becomes: div2(u⊗ω) ≡ (u ·∇)ω+ω div u.
The end result is the same but the divergence definition is different. In the current book, no account
is made of covariant and contravariant coordinates.

http://dx.doi.org/10.1007/978-3-319-55164-7_42
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where the term 1
ρ3 ∇ρ × ∇ p can also be written 1

ρ
∇ p × ∇ 1

ρ
.

In all the above equations, if the fluid is Newtonian, incompressible and of homo-
geneous viscosity, the following substitution can be made:

∇ ×
(
1

ρ
∇ · τ

)
= νΔω (2.172)

2.3.5 Vorticity Equation in Particular Cases

Ideal (inviscid) barotropic fluid under conservative forces This case was studied
in Sect. 2.3.3. For a fluid that satisfies Eq.2.85, the ideal/inviscid assumption implies
τ = 0. From the direct consequences of all assumptions, Eq. 2.160 becomes:

dω

dt
= ∂ω

∂t
+ (u · ∇)
︸ ︷︷ ︸
convection

ω = (ω · ∇)u
︸ ︷︷ ︸

strain

+ω∇ · u
︸ ︷︷ ︸
dilatation

(2.173)

or using the form from Eq.2.170:

∂ω

∂t
+ curl

(
ω × u

) = 0 (2.174)

The fact that the fluid is barotropic may be obtained if the fluid is homoentropic
(since it is ideal). The fluid may be compressible.

Incompressible homogeneous Newtonian fluid under conservative forces The
incompressibility implies the absence of dilatation. The incompressibility and homo-
geneity imply that the fluid is barotropic. The condition of incompressibility and
the Newtonian nature of the fluid gives curl ( 1

ρ
∇τ) = νΔω. In the absence of

non-conservative forces and with the previous assumptions, the vorticity equation
Eq.2.160 becomes:

dω

dt
= ∂ω

∂t
+ (u · ∇)
︸ ︷︷ ︸
convection

ω = (ω · ∇)u
︸ ︷︷ ︸

strain

+ νΔω
︸︷︷︸
diffusion

(2.175)

Incompressible homogeneous inviscid fluid under conservative forces For a fluid
that satisfies Eq.2.85, the inviscid assumption implies τ = 0. The incompressibility
implies the absence of dilatation. The incompressibility and homogeneity implies
that the fluid is barotropic. In the absence of non-conservative forces and with the
previous assumptions, the vorticity equation Eq.2.160 becomes:
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dω

dt
= (ω · ∇)u
︸ ︷︷ ︸

strain

(2.176)

Incompressible homogeneous Newtonian fluid under conservative forces, 2D
case In two dimensions, ω reduces to:

ω = ωz = ∂v

∂x
− ∂u

∂y
(2.177)

and the strain term is 0 since ω · ∇ = ωz∂z = 0 (derivatives along z are 0). The
two-dimensional form of Eq.2.175 reduces to the scalar equation

∂ω

∂t
+ (u · ∇)
︸ ︷︷ ︸
convection

ω = νΔω︸︷︷︸
diffusion

(2.178)

Incompressible homogeneous inviscid fluid under conservative forces, 2D case
For an inviscid fluid that satisfies Eq.2.85, then Eq.2.178 becomes:

dω

dt
= 0 (2.179)

2.3.6 Pressure

In incompressible flows, the pressure is recovered by solving a Poisson equation,
see e.g. the book of Cottet and Koumoutsakos [13, p. 6], the book of Saffman [43,
p. 18] or the article of Willis et al. [52]. The divergence part of the Navier–Stokes
equations gives:

∇ · (ρu ⊗ u) = ∇
(
u2

2

)
+ ω × u ⇒ −∇2 p

ρ
= ∇

(
∇
(
u2

2

)
+ ω × u

)
(2.180)

In compressible formulations, the pressure is retrieved using the equation of state of
a perfect gas (see e.g. [34])

p = (γ − 1)ρ

(
E − |u|2

2

)
(2.181)

where γ is the adiabatic index and E is the internal energy.
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2.3.7 Vortex Force, Image/Generalized/Bound Vorticity,
Kutta–Joukowski Relation

The following treatments is detailed in the book of Saffman [43, p. 47].

Vortex force The expression ρu × ω is referred to as the vortex force. For a steady
flow of a homogeneous, inviscid, Newtonian fluid, the conservation of momentum
given in Eq.2.102 becomes:

∫

V

[
u × ω + F − 1

ρ
∇H

]
dV = 0 →

∫

V
ρ
[
u × ω + F

]
dV −

∫

∂V
H ndS = 0

(2.182)

where V is a fixed volume, F is a non-conservative external force, H is the Bernoulli
constant H = p + 1

2u
2 + VF , VF is the potential associated with the conservative

force Fc = ∇VF , and the Green–Gauss identify from Eq.C.45 was used. If the
Bernoulli constant H is uniform over ∂V (e.g. a stream-surface), then the surface
integral vanishes and it is seen that the external non-conservative forces balances the
vortex force:

∫
ρu×ωdV = − ∫ FdV . In other words, the external non-conservative

force needed to maintain a steady flow is determined by the vortex force.

Image/generalized/bound vorticity The presence of a body in an incompressible
flow is replaced kinematically by a vorticity distribution within the body volume,
referred to as image vorticity and noted ωb. In steady motion, the image vorticity is
fixed relative to the body. In an unsteady case, the change of flow about the body
will result in a change of its generalized vorticity. This change of vorticity, called
shed vorticity should exit the body. This release occurs at a point of least resistance,
typically the trailing edge of an airfoil The extension of the velocity field and vorticity
field inside the body is discussed e.g. in the books ofBatchelor, Saffman andLewis [5,
30, 43]. The image vorticity distribution is not unique and depends on the extension
method used. The term generalized vorticity or bound vorticity is also used to refer
to the vorticity extended inside the body. The vorticity outside the body is referred to
as free vorticity. The image vorticity can also be represented using a vortex sheet [43,
p. 41]. This representation led to the development of numerical boundary element
methods to compute the flowabout bodies (see e.g. the book ofKatz andPlotkin [25]).

Despite the kinematic extension, the bound vorticity does not follow the same
dynamics as the free vorticity. The image vorticity does not in general satisfy the
Helmholtz laws. Indeed, a non-conservative force is likely to be present to balance
the vortex force ρub × ωb.

Noting FT the total force exerted on the body by the fluid. The total external force
applied to the fluid is −FT . The application of Eq.2.182 to a volume which includes
the bound vorticity and such that the Bernoulli constant is uniform on its boundary
gives:
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FT = ρ

∫

V
u × ω dV (2.183)

The total vortex force is thus independent of the image distribution used. The integral
over the body volume Vb is expressed in term of a surface integral using the Green–
Gauss identify from Eq.C.45:

∫

Vb

u × ωdV =
∫

Vb

[
∇
(
1

2
u2
)

− u · ∇u

]
dV =

∫

∂Vb

[
1

2
u2n − u · (u · n)

]
dS

(2.184)

Kutta–Joukowski theorem The Kutta–Joukowski theorem is presented in Eq.3.17.
It is demonstrated for a cylinder of circular cross section in Sect. 32.4.1 by integration
of the pressure distribution around the cylinder. It can also be obtained by integration
of the vortex force. The notations from Sect. 32.4.1 are adopted. The velocity field
inside the cylinder is extended based on the exterior field given by Eq.32.24 and
Eq.32.25 (simply by replacing r with a):

u = U0 +U0

(
y2

a2
− x2

a2

)
− Γ y

2πa2
, v = −2U0

xy

a2
+ Γ x

2πa2
(2.185)

The resulting vorticity field inside the cylinder is:

ωz = ∂v

∂x
− ∂u

∂y
= Γ

πa2
− 4U0

y

a2
(2.186)

The associated vortex force per length is

F = ρ

∫

r<a
u × ω dS = ρ

∫

r<a

(
vωz ex − uωz ey

)
dS (2.187)

Most terms involved in the integral are zero since they are antisymmetric in x or
y. Only the constant term U0Γ/πa2 contributes to the integral. The vortex force is
then:

F = −ρU0Γ ey (2.188)

The vortex force provides the same expression as the Kutta–Joukowski relation.

http://dx.doi.org/10.1007/978-3-319-55164-7_3
http://dx.doi.org/10.1007/978-3-319-55164-7_32
http://dx.doi.org/10.1007/978-3-319-55164-7_32
http://dx.doi.org/10.1007/978-3-319-55164-7_32
http://dx.doi.org/10.1007/978-3-319-55164-7_32
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2.4 Different Dimensions of Vorticity: Surface, Line
and Points

Introduction When the vorticity has two or three dominant components and is
confined to thin regions it is convenient to reduce the dimension of the problem
by integrating the vorticity over its smallest dimension. This process introduces the
concept of vorticity sheet, vorticity line and vorticity particle. The terms vortex
sheet, vortex line, and vortex particle are more commonly used in the literature.
The terminology is consistent with the notion of the field lines of the vorticity field
introduced in Sect. 2.2.2. Vorticity sheets are studied in further details in Sect. 2.8.
The reduction process is correct at an infinitesimal level but is unphysical at a larger
scale since it effectively introduces discontinuities in the velocity field. The reduction
of dimension of vorticity has two main motivations. First, it is a convenient way to
simplify some flow situations and derive “vortex models”. Second, it is a way to use
Lagrangian formulation and benefit fromHelmholtz theorempresented in Sect. 2.6.3:
this is the approach chosen in “vortex methods” where vorticity is projected onto
lower-order vorticity elements that are convected with the local velocity. This second
interpretation requires an analysis of the dynamics of vorticity as done in Sect. 2.3 and
in particular in Sect. 2.3.3. The dynamics for the different dimensions of vorticity will
be brieflymentioned in this section.When reducing the dimension of the problem the
direction of vorticity and intensity should be conserved. In fact, as much moments
of the vorticity distribution as possible should be conserved.

The reduction of vorticity dimensions is illustrated on Fig. 2.4, adapted from
both [16, 49].

ω = ×U γ = ω dz

Γ = γ dx

Vortex sheet

Vortex line

z

x

u u

u
α = Γ dy

Vortex particle

y

u

Vorticity volume

Fig. 2.4 Reduction of vorticity dimensions by integration. The concentration of vorticity introduces
singularities in the velocity field close to the vortex elements
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Infinitesimal region of vorticity If dV , dS and dl are infinitesimal dimensions
characterizing the dimensions of a vorticity-volume, vorticity-sheet and vorticity-
line, then from a dimensional analysis the respective intensities of these vorticity
elements should respect:

ωdV = γ dS = Γ dl = α (2.189)

As noted by Hess, there is a kinematic equivalence between a vortex sheet and a
continuous dipole distribution μ such that γ = ∇μ × n [20, 50]. The different
intensities have the following units:

ω [s−1] μ [s−1] γ [m/s] Γ [m2/s] α [m3/s] (2.190)

The quantity Γ dl will also be written Γ dl. As a general rule the sign and direction
of the strength of a vortex filament is such that the direction of the circulation is
determined by the right-hand rule.

Dynamics of vorticity The dynamics of vorticity are studied in Sect. 2.3 and in
particular in Sect. 2.3.3. For an incompressible, inviscid fluid under conservative
force, the evolution of a vortex particle is such that:

dα

dt
= (

α · ∇) u (2.191)

The evolution of the vortex sheet is obtained by consideration of the pressure jump
across it [50]:

∂μ

∂t
+ (umean · ∇)μ = 0 (2.192)

with

umean = 1

2

(
u+ + u−) (2.193)

Vorticity sheets are studied in further details in Sect. 2.8. More details are found in
the article of Voutsinas [50]. The following is quoted from this article:

It was Rehbach (1973) [39], who first noted that for an incompressible flow, concentrations
of vorticity ωdV , as obtained by integrating ω over a small region around a point, will obey
exactly the same dynamics [as ω]. This is because although the shape of dV will change,
its volume will not ([…] because of this change in shape errors accumulate in time and
that is why periodically vorticity has to be redistributed [in vortex methods]). This result
can be extended to surface vorticity γ dS (Mudry 1982) and to line vorticity dl (Knio and
Ghoniem 1990 [27]). […] The material particles on the two sides of a vortex sheet will
move differently due to the tangential jump in the velocity. So convection of the vortex
sheet in a strict material sense is not possible. In fact, convection of vortex sheets relies on
dynamics. Since [the velocity induced by a dipole distribution] has zero divergence, it would
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correspond to an incompressible behavior. This means that across the vortex sheet at any
point the pressure must be continuous.

Example: Cartesian coordinates Consider a volume, dx × dy × dz, in which the
vorticity vector is assumed constant and directed along z. If the vorticity decays
rapidly in the x-direction compared to the other dimensions, then the vorticity field
is approximated by a vortex sheet of surface dydz. If the vorticity also decays rapidly
in the y-direction, the vorticity volume is approximated by a vortex filament. The
following relations hold:

ωdxdydz = γ dydz = Γ dzez = α (2.194)

ωdx = γ , γ dy = Γ ez , ωdS = Γ ez (2.195)

As an example of application, a vorticity panel of intensity γ can be discretized into
several vorticity filaments (see e.g. [12]). If the filaments are spaced by an interval
Δy, the more vortex filaments are used the smaller Δy and hence the smaller the
intensity of the vortex filament Γ .

Example: Polar coordinates A thin vorticity layer contained within two cylinders
is considered such that the vorticity is decomposed into two components ωz and ωθ

using polar coordinates.

z-component: ωzrdrdθdz = γzrdθdz = Γzdzez (2.196)

θ -component: ωθrdrdθdz = γθrdθdz = Γθrdθeθ (2.197)

ωzdr = γz , ωθdr = γθ , γzrdθ = Γzez , γθdz = Γθez (2.198)

2.5 Vorticity Moments, Variables and Invariants -
Incompressible Flows

Introduction Several flow variables are defined in this section. Most of them are
quantities related to the vorticity distribution. Some of these quantities are invariants
and they can thus be used to evaluate the accuracy of a numerical methods as time
evolves (seeSect. 41.11). Incompressibleflows are assumedand thedensity is omitted
in the integrals involved. Definitions including the density ρ are found for instance
in the book of Akhmetov [2, p. 12]. Other definitions might also differ by a factor
half compared to the definitions given here.

The definitions are given for different conditions: tri-dimensional flows (labelled
“3D”), two-dimensional flows (“2D”), Axisymmetric vorticity distribution without
swirl (“ring”), 2D flow approximations by vortex points (subscript “h”). Notations
for the “ring”-like case are found in the study of axisymmetric flows in Sect. 2.9.
The conservation properties of the different variables are briefly mentioned within
parenthesis. In general, conservationproperties differ in 2Dand3D. Indeed, the extent
of the two-dimensional vorticity field (ωz) is unbounded in the three-dimensional

http://dx.doi.org/10.1007/978-3-319-55164-7_41
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sense and the vorticity cannot be assumed to be zero outside a finite “volume”.
More details on the conservation properties are found in the review chapter from
Winckelmans [53, p. 130] and the book of Cottet and Koumoutsakos [13, p. 50].
More information about the Hamiltonian nature of the system is found in the book of
Chorin [11]. The relation between Kinetic energy and the Hamiltonian is discussed
in the book of Akhmetov [2, p. 13].

The vector ψ represents the vector potential such that Δψ = −ω in the context
of Helmholtz decomposition (see Sect. 2.2.4). In two dimensions, the scalar stream
function is written �.

Total vorticity (Conserved in 3D unbounded flows) (Conserved in 2D unbounded
flows with non-zero circulation)

Ω3D =
∫

V
ω dV Γ =

∫

S
ωz dS (2.199)

ΓRing =
∫

S
ωφ(r, θ)r drdθ I h0 =

∑

p

αp (2.200)

For 3D unbounded flows in which the vorticity vanishes outside some finite region,
the total vorticity is zero according to Eq.2.142. The vortex centroid is thus ill-
defined. More discussions on the topic are found in the book of Saffman [43, p. 61].

Linear Momentum (In general not well defined in an infinite region) (Conserved
in 3D unbounded flows) (Conserved in 2D unbounded flows with zero circulation)
(Not defined in 2D unbounded flows with Γ 
= 0)

I u,3D =
∫

u dx I u,2D =
∫

u dx (2.201)

Using Eq.C.48 with f = u, one obtains I u,3D = 1
2

∫
x × ω dx + 1

2

∫
S x × u × n dS.

For an unbounded flow, it is shown that the surface integral is − 1
3 I3D and thus

I u,3D = 2
3 I 3D. The demonstration is done by see Saffman [43, p. 51].

Linear Impulse (Conserved in 3D unbounded flows) (Conserved in 2D unbounded
flows with non-zero circulation) (First vorticity moment, similar to a dipole strength)
(The value of I is independent of the choice of the origin when Ω (or Γ in 2D) is
zero)

I 3D = 1

2

∫
x × ω dx I 2D =

∫
x × ωzez dx (2.202)

IRing = π

∫

S
ωφ(ρ, z)ρ2dρdz ez I 1,2D =

∫
xωz dx (2.203)

I h1,2D =
∑

p

x pαp (2.204)
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The difference of factor between the 1D and 2D case is due to the fact that the vortex
lines are not being closed in 2D (see Saffman [43, p. 65]).

Angular momentum (Conserved in 3D unbounded flows) (Conserved in 2D
unbounded flows with zero circulation) (Not defined in 2D unbounded with Γ 
= 0)

Au,3D =
∫

x × u dx (Auez) =
∫

x × u dx (2.205)

I2,2D =
∫ ∣∣x

∣∣2 ωz dx (2.206)

I h2,2D =
∑

p

|x p|2αp (2.207)

Angular impulse (Conserved in 3D unbounded flows) (Conserved in 2D unbounded
flows with zero circulation) (Conserved in 2D unbounded inviscid flows with non-
zero circulation)

A3D = 1

3

∫
x × (x × ω) dx = −1

2

∫
r2ω dx (Aez) = −1

2

∫
r2ωzez dx

(2.208)

Kinetic Energy (Conserved in 3D unbounded inviscid flows) (Conserved in 2D
unbounded flows with zero circulation) (Not defined in 2D unbounded flows with
non-zero circulation)

Eu,3D = 1

2

∫
u · u dx Eu,2D = 1

2

∫
u · u dx = 1

2

∫
|∇�|2 dx (2.209)

Hamiltonian (In some cases Eu = E , see e.g. the book of Akhmetov [2, p. 13])
(Conserved in 3Dunbounded inviscid flows) (Conserved in 2Dunboundedflowswith
zero circulation) (Conserved in 2D unbounded inviscid flows with zero circulation)

E3D = 1

2

∫
ω · ψ dx E2D = 1

2

∫
ωz� dx = 1

2

∫∫
G(x − x ′)ωz(x)ωz(x

′)dxdx ′

(2.210)

ERing = π

∫

S
ωφψφ ρdρdz Eh

2D =
∑

p,p′
αpα

′
pGε

(
x p − x p′

)
(2.211)

Helicity (Related to the degree of knottedness of the vortex lines) (Conserved in 3D
unbounded inviscid flows)

J3D = 1

2

∫
ω · u dx J2D = 1

2

∫
ω · u dx = 0 (2.212)
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Vortical Helicity

Q3D = 1

2

∫
ω · (∇ × ω) dx Q2D = 1

2

∫
ω · (∇ × ω) dx = 0 (2.213)

Enstrophy (Conserved in 2D unbounded flows with zero circulation) (Conserved in
2D unbounded inviscid flows with zero circulation)

E3D = 1

2

∫
ω · ω dx E2D = 1

2

∫
ωzωz dx = 1

2

∫
(Δ�)2 dx (2.214)

E h = 1

2

∑

p

Vp|ωh
p|2 (2.215)

Palinstrophy (Means “again rotation” see [14, p. 571])

P3D = 1

2

∫
|∇ × ω|2 dx P2D = 1

2

∫
(∇ω) · (∇ω) dx = 1

2

∫
|∇Δ�|2 dx

(2.216)

2.6 Main Theorems Involving Vorticity

2.6.1 Kelvin’s Theorem

The three sources of production of circulation are identified in the right hand side
of the equation of conservation of circulation (Eq. 2.156). Kelvin’s theorem applies
in a context where these sources are zero, that is under the assumption of an ideal,
barotropic fluid under conservative volume forces. Under these assumptions the cir-
culation around any closed material curve is conserved when followed in its motion.
Similarly, using Stoke’s theorem, the flux of vorticity through a material surface
Sm(t) is conserved in its motion. Kelvin’s theorem is thus written:

dΓ

dt
= 0 or

d

dt

∫

Σ(t)
ω · ndS = 0 (2.217)

2.6.2 Lagrange’s Theorem

Lagrange’s theorem applies under the same assumptions of Kelvin’s theorem with
the addition of the following condition: the flow is irrotational at a given time t0 (i.e.
∀x, ω(x, t0) = 0). As a consequence of Kelvin’s theorem, the flow stays irrotational
for all successive times. Lagrange’s theorem is written formally as:
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∀t ≥ t0, ∀x, ω(x, t) = 0 (2.218)

For a barotropic and perfect fluid, Lagrange’s theorem is used for instance in the
case of a fluid which is at rest at the initial time, or for a steady flow with uniform
velocity far-upstream. FromLagrange’s theorem, it is seen that such flowwill remain
irrotational.

2.6.3 Helmholtz Theorem

Helmholtz laws were presented when studying the kinematics of vorticity in
Sect. 2.2.3. The following theorem is a dynamic theorem which is a direct conse-
quence of Kelvin’s theorem, it is hence applied under the same assumptions (ideal,
barotropic fluid under conservative forces). Helmholtz theorem applies to vorticity
tubes, surface and lines, which are in general not of the same nature as material
surfaces or lines (see Sect. 2.2.1).

Helmholtz theorem is stated as follows: “For an ideal and barotropic fluid under
conservative volume forces, vorticity tubes, surfaces and lines arematerial surfaces or
lines. Hence, they follow the fluid’s motion.” This is shown by considering a vorticity
surface S0 at a given time t0. A vorticity surface is such that on any point of S0, the
tangent vector to the surface is oriented along the vorticity vector. Consequently, for
any geometrical surface Σ0 included in the vorticity surface S0, the flux of vorticity
through this surface will be zero:

∫

Σ0

ω · ndΣ0 = 0 (2.219)

If one considers the particles belonging to the geometrical surface Σ0 at t0, then Σ0

is seen as a material surface that will be writtenΣ(t0). Following the motion of these
particles, at a given time t > t0, the particles forms the material surface Σ(t). In the
same way, all the particles that belonged to S0 at t0 form a surface denoted S(t) at t .
Kelvin’s theorem is applied to the material surface Σ(t) between the instant t0 and
t :

d

dt

∫

Σ(t)

ω · n dΣ(t) = 0 ⇒
∫

Σ(t0)
ω · n dΣ(t0) =

∫

Σ(t)
ω · n dΣ(t) (2.220)

From Eq.2.219 it follows that
∫
Σ(t) ω ·n dΣ(t) = 0. It is concluded that the vorticity

vector is tangent to the surface Σ(t). The procedure is valid for any surface Σ0, and
hence the surface S(t) is a vorticity surface. From this, it is seen that the vorticity
surface S0 was transportedwith the fluid,which isHelmholtz’s theorem.The intensity
Γ of a vortex tube is conserved through itsmotion. This is found by applyingKelvin’s
theorem to a path surrounding the vortex tube.
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2.6.4 Biot–Savart Law

Introduction The Biot–Savart law is named after the two scientists who developed
it in 1820 to solve Poisson’s equation. The Helmholtz decomposition presented in
Sect. 2.2.4 led to two different Poisson’s equation (see Eq.2.149). The second one
is seen as the inversion of the vorticity definition ω = curl u in order to obtain u =
f (ω). Stating the conditions for which this inversion is possible and unique is beyond
the scope of this section. The reader is referred e.g. to the book of Saffman [44]. As
an example, the inversion is possible and unique if the following conditions are met:
the fluid is incompressible, the vorticity field is compact, no solid boundaries are
present (implying also that the domain is unbounded) and the velocity vanishes at
infinity.

The Biot–Savart law is obtained from the resolution of Poisson’s equation by
convolution with the Green function. General derivations involving the solution of
Poisson’s screened equationmaybe found inSectionB.1.Green’s function evaluation
for Poisson’s equation is found in Section B.1.4. The derivation of the Biot–Savart
law from a distribution of vorticity is found in Section B.2.1. Further derivations re
found in the work of Wu and Thomson [54], and Walther [51, p. 20])

TheBiot–Savart law introduces a causal link between vorticity and velocity so that
one refers to the velocity induced by the vorticity. Yet, as mentioned by Morino [32,
p. 69] this link is more of a mathematical nature than of a physical nature. It is indeed
an artifact of incompressible flow to consider that the vorticity has an instantaneous
impact on the entire domain.

Biot–Savart law in threedimensionsThevelocityfield induced at a pointM(x, y, z)
by a vorticity distribution ω in a domain Ω is given by the Biot–Savart law as:

u(M) = 1

4π

∫

Ω

ω(M ′) × M ′M
‖M ′M‖3 dv(M ′) (2.221)

This velocity field originates from a vector potential ψ such that u = ∇ × ψ , with

ψ(r) = GΔ
- ∗ ω = 1

4π

∫

Ω

ω(r ′)
∣∣r − r ′∣∣dv(r

′) (2.222)

For a volume V with distributed vorticity, the Biot–Savart law is:

u(x) = −1

4π

∫∫∫

V

(
x − x ′)

‖x − x ′‖3 × ω(x ′)dv(x ′) = 1

4π

∫∫∫

V
gradx

[
1

|x ′ − x |
]

× ω(x ′)dv(x ′)

(2.223)

The notation gradx is introduced to stress that the differentiation is according to x
and not x ′. For a vorticity surface S, the Biot–Savart law is:
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u(x) = −1

4π

∫∫

S

(
x − x ′)

‖x − x ′‖3 × γ (x ′)dS(x ′) = 1

4π

∫∫

S
gradx

[
1

|x ′ − x |
]

× γ (x ′)dS(x ′)

(2.224)

For a curvilinear vorticity segment, the Biot–Savart law is:

u(x) = −1

4π

∫ x2

x1

(
x − x ′)

‖x − x ′3‖ × Γ dx ′ = 1

4π

∫ x2

x1

gradx

[
1

|x ′ − x |
]

× Γ dx ′

(2.225)

Biot–Savart law in two dimensions The two-dimensional plane is here assumed to
be orthogonal to ez . The Biot–Savart law in two dimensions is obtained by resolution
of the Poisson equation but it can also be obtained by integration of the 3D relations
along the z axis. Writing x the projection of the point X onto the two-dimensional
plane, the integral along z give:

∫

z

(X − X ′)
‖X − X ′‖3 dz = 2

(x − x ′)
‖x − x ′‖2 (2.226)

Writing (x − x ′) = (rx , ry), the Biot–Savart law in this two-dimensional plane for a
given vorticity distribution ω = ωzez is:

u(x) = −1

2π

∫∫

S

(
x − x ′)

‖x − x ′‖2 × ωz(x
′)ezdS(x ′) = −1

2π

∫∫

S

(ry,−rx )ωz(x ′)
‖x ′ − x‖2 dS(x ′)

(2.227)

ψz(x) = 1

2π

∫

S
log

[
L

∣∣x − x ′∣∣

]

ωz(x
′)dS(x ′) (2.228)

with L any reference length since the vector potential is defined up to a constant.

Unification of notations for 2D and 3D It is common to introduce notations that
unify the 2D and 3D cases. The number of dimension will further be written n.
Adopting the notations of [6], the Biot–Savart law is written in the following forms:

u(z, t) = ∇ × (GΔ
- ∗ ω) = (

K ∗ ω
)
(z, t) =

∫
K (z′ − z)ω(z′, t) dz′ (2.229)

with K ≡ Kn : Rn → R
n is an integral matrix-valued kernel referred to as the Biot–

Savart kernel, G ≡ GΔ
-
n : Rn → R is the Green function (with the “minus sign

convention” of Eq.B.2) associated with the Laplace operator in dimension n, and
the convolution of two vector-functions is performed component per component.
K is seen as the rotational counterpart of the Green function associated with the
Laplace operator. The meaning of K is thus different in two and three dimensions.
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The notation K = ∇ × G is sometimes used but should be considered with care
since G is scalar. To stress out this fact, the notation K = [∇×]G will be used. More
generally, the notation [r×] is introduced with different meaning depending on the
dimension:

[r×] =
⎡

⎣
0 −rz ry
rz 0 −rx

−ry rx 0

⎤

⎦ (in 3D) , [r×] =
[
ry

−rx

]
(in 2D) (2.230)

The Green functions associated to the Laplace operator in 2 and 3 dimensions are
(see e.g. [19] and Section B.1.4):

GΔ
-
2
(r) = − 1

2π
log‖r‖, GΔ

-
3
(r) = 1

4π‖r‖ (2.231)

In the above the “minus sign convention” of Eq.B.2 has been used. The opposite
functions are obtained with the opposite convention. In three dimensions, the kernel
is written indifferently (by identification with Eq.2.223):

K 3(r) = − 1

4π‖r‖3 [r×] =
⎡

⎣
0 −∂z ∂y
∂z 0 −∂x

−∂y ∂x 0

⎤

⎦GΔ
-
3
(r) = [∇×]GΔ

-
3

(2.232)

Further, using the radial symmetry G(r) = G(r) one has ∂x = x/r∂r , ∂y = y/r∂r ,
∂z = z/r∂r . Using the above definition of [r×], the last equality of Eq.2.232
becomes:

K 3(r) = 1

r

(
∂rGΔ

-
3
(r)
)

[r×] (2.233)

For r = (rx , ry, 0), the in-plane component of the cross product [r×]v receives only
contribution from the out of plane component of v. The vorticity component is in
any-case only directed along z in 2D, so thatω = ωzez is seen as a scalar in Eq.2.229.
The kernel in two-dimensions may thus be written indifferently as:

K 2(r) = −1

2π‖r‖2 (r×) = −1

2π‖r‖2
[
ry

−rx

]
=
[

∂y
−∂x

] −1

2π
log‖r‖ =

[
∂y

−∂x

]
GΔ

-
2
(r)

(2.234)
Further, using the radial symmetry G(r) = G(r) one has:

K 2(r) = 1

r

(
∂rGΔ

-
2
(r)
)

[r×] (2.235)

The following relations unify the 2D and 3D case:

K (r) = [∇×]G(r) = 1

r
(∂rG(r)) [r×] (2.236)
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A regularizationof the kernel is usually applied to avoid its singularity as r approaches
zero. Examples of regularization are found in Sect. 41.8.

2.7 Vortices in Viscous and Inviscid Fluid - Results
and Classical Flows

As noted by Sarpkaya [45, p. 7] “the solution of real fluid flow problems with vortex
models often forces one to think (at times to defend) simultaneously the behavior
of vortices in terms of viscous and inviscid concepts.”. The properties of vortices
in these two distinct cases are briefly discussed below and examples of analytical
viscous and inviscid vortices are given.

2.7.1 Vortex in Inviscid Fluid

Within the context ofKelvin’s theoremgiven in Sect. 2.6.1, the circulation around any
closed material curve is invariant with time. Under the same assumptions, Helmholtz
theorem imply that vorticity is transported by convection of the fluid. The circulation
intensity of a vortex tube is conserved throughout its motion and may be determined
by any circulation path surrounding this sole vortex tube. In potential flows, the
linearity of Poisson’s equation gives rise to the principle of superposition.

Inviscid vorticity patches Analytical of inviscid vorticity patches are given in a
dedicated section: Sect. 33.1.

Rayleigh stability criterion Rayleigh stability criterion for an inviscid flow con-
sisting of concentric circular streamlines is stated as: “A circulation always increas-
ing outwards ensures stability” Details of the derivation is given in the work of
Brenner [9].

2.7.2 Vortex in Viscous Fluid - Standard Solutions

Introduction In a viscous fluid, the circulation around a vortex tube depends on
the contour of integration and is not time-invariant since diffusion occurs. In this
regard, Taylor discussed the contour of integration around a viscous 2D airfoil (see
Sect. 3.1.5 and [47]).

For a viscous fluid, the principle of superposition of vortex fields does not apply
due to the non-linearity of the Navier–Stokes equation. It will be mentioned that the
Lamb-Oseen vortex is a canonical vortex solution of the Navier–Stokes equation.
Yet a superposition of several of these vortices do not form an exact solution of the
Navier–Stokes equation [45, p. 8].

http://dx.doi.org/10.1007/978-3-319-55164-7_41
http://dx.doi.org/10.1007/978-3-319-55164-7_33
http://dx.doi.org/10.1007/978-3-319-55164-7_3
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Note: The solution given below are solutions to the diffusion equation, so that the
convective part of the equation has been discarded. This can either be justified in the
case of lowReynolds number flow, or by noticing that the solutions are axisymmetric
such that the convection does not change the vorticity distribution.

Rankine vortex The Rankine vortex is a crude but simple model of a viscous vortex.
It is not a solution of the Navier–Stokes equations. The vortex rotates as a solid body
in its core and follows a potential flow outside of it. The tangential velocity field
possess an artificial discontinuity at a radius corresponding to the core radius rc (see
e.g. [45, p. 8]):

uθ =
{

Γ
2πr r > rc
Γ
2π

r
r2c

r < rc
(2.237)

Lamb-Oseen Vortex The Lamb-Oseen vortex is an exact solution of the 2DNavier–
Stokes equations. It corresponds to an axisymmetric viscous vortex in an unbounded
incompressible domain [29]. The vorticity equation in polar coordinates is given in
Eq.2.265. Using ω = ω(r) and ur ≡ 0, leads to:

∂ω

∂t
= ν

[
∂2ω

∂r2
+ 1

r

∂ω

∂r

]
(2.238)

The solution is a Gaussian vorticity distribution:

ω(r, t) = Γ

4πνt
exp

(
− r2

4νt

)
(2.239)

for which the velocity field solution is:

uθ (r, t) = Γ

2πr

[
1 − exp

(
− r2

4νt

)]
(2.240)

The standard deviation of the Gaussian vorticity distribution is σω = √
2νt . The

radius of maximum tangential velocity is rm = 2.24
√

νt [45, p. 8]. Since the veloc-
ity field consists of concentric streamlines, the convection and the diffusion are
decoupled. The Lamb-Oseen vortex is thus a good candidate for studying different
viscous schemes [3].

“Wavelet”vortexFor thevalidationof viscous implementation,Cottet andKoumout-
sakos [13, p. 136] use a one dimensional solution of the diffusion equation for which
the initial vorticity distribution is:

ω(x, 0) = xe−x2 (2.241)
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The distribution corresponds to the first derivative of the Gaussian function without
scaling. This distribution will be further referred to as the wavelet vortex in this
document. The solution of the diffusion equation with initial value Eq.2.241 is:

ω(x, t) =
∫ ∞

−∞
G (x − y, νt)ye−y2dy = xe−x2/(1+4νt)

(1 + 4νt)3/2
(2.242)

where G (x, σ ) defines a Gaussian [13, p. 136].

Viscous diffusion of a vortex sheet The diffusion of an infinite vortex sheet of con-
stant intensity possesses an analytical solution (see Batchelor [4, p. 187], Lewis [30,
p. 375]). The normal to the vortex sheet is taken as the y axis and the strength is
assumed to be γ = 2U . The solution of the diffusion equation ∂ω

∂t = ν ∂2ω
∂y2 is

ω(y, t) = U√
πνt

e−y2/4νt (2.243)

The velocity u is directly obtained by integration of the vorticity ω = ∂u/∂y as:

u(y, t) = U√
πνt

y∫

0

e−y′2/4νtdy′ = U erf
(
y/

√
4νt
)

(2.244)

where the characteristic length of the shear layer is proportional to
√

νt . Lewis [30,
p. 375] studied the diffusion about a vortex sheet (numerically finite) using the
random walk method and also uses a superposition of Lamb-Oseen solutions [30,
p. 484]. Though convenient for numerical investigations, it is yet to be noted that
the superposition of Lamb-Oseen vortices is not a solution to the (non-linear)
Navier–Stokes equations.

2.7.3 Life of a Vortex - Vortex Decay, Collapse and Stability

Only references on the topic are given in this paragraph. Spalart studied the decay
of airplane trailed vortices in 1998 [46]. In the work of Okulov and Sørensen [33]
the stability of helical vortex systems is studied.
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2.8 Surface Representations - Vortex Sheets

2.8.1 Introduction

The current section focuses on few properties of vortex sheets. More information is
found for instance in the book of Batchelor [4, p. 96]. The interpretation of a vortex
sheet in terms of doublet distribution is discussed by Hess [20]. The convection of a
doublet distribution is found in the article of Voutsinas [50].

2.8.2 Vortex Sheets Kinematics

Induced velocity From the Biot–Savart law, Eq.2.224, the velocity induced by a
vortex sheet S at a point P = x not located on S is:

u(x) = −1

4π

∫∫

S

(
x ′ − x

)

‖x ′ − x‖3 × γ (x ′)dS(x ′) = 1

4π

∫∫

S
gradx

[
1

x ′ − x

]
× γ (x ′)dS(x ′)

(2.245)

When the point P passes through the surface S, the velocity u is subjected to a
discontinuity such that:

[[
u
]]

� u+ − u− = γ × n (2.246)

and conversely

γ = [[
u
]]× n (2.247)

where n is the unit vector normal to S at P . For a point located on S on the side (+)

or (−), one has thus [39]:

u±(x) = 1

4π
PV
∫∫

S
gradx

[
1

x ′ − x

]
× γ (x ′)dS(x ′) ∓ 1

2
n(x) × γ (x) (2.248)

Convection velocity To account for the possible presence of a free-stream velocity
U∞, the total velocity is further written U = u +U∞. The convection velocity of a
vortex sheet is taken as the mean between the upper and lower velocity:

Um = 1

2

(
U+ +U−

)
(2.249)

If there is pressure continuity through S, then |U+| = |U−|. This is in particular the
case for wing wakes modelled as vortex sheets. In the specific case where |U+| =
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Fig. 2.5 Sketch of velocities and vortex sheet intensity in the plane tangent to the vortex sheet.
Five cases are shown for illustration purposes. In the top-left figure, the velocities about the sheet
have the same norm and the mean velocity Um is thus parallel to the sheet intensity γ

|U−|, then from Eq.2.246 it follows that γ is parallel to the average velocity Um
about the sheet.

Following the work of Kerwin [26], the half difference of velocity across the sheet
is introduced as:

Ud = U+ −U−
2

(2.250)

It follows immediately that:

U+ = Um +Ud , U− = Um −Ud , γ = 2[n × V d ] (2.251)

Illustration of the different components are illustrated in Fig. 2.5. The figure is shown
in a plane tangent to the vortex sheet. This representation is uncommon but fruitful.

2.8.3 Vortex Sheets Dynamics

The force exerted by the fluid on a vortex sheet at a point P is:

F = −ρ

∫∫

S
γ (x) ×Um(x)dS(x) (2.252)
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As mentioned in Sect. 2.8.2, the pressure continuity through S implies |U+| = |U−|
and then from Eq.2.246 it follows that γ is parallel to the average velocity Um
about the sheet and hence F = 0. This should in particular be the case for wing
wakes modelled as vortex sheets. This is why wakes are said to be “force-free”. The
equilibrium position of such wake sheet is thus defined by the condition of constant
pressure through the sheet.

2.8.4 Vortex Sheet Convection and Stability

The convection and stability of vortex sheets is discussed e.g. by Lewis [30, p. 326]
and Batchelor [4]. The Kelvin Helmholtz instability is discussed in these references.
The roll-up of a vortex sheet behind a square wing was studied by Rehbach in
1973 [39]. The convection of a doublet distribution is found in the article of Voutsi-
nas [50]. The following references are also relevant for the topic: [7, 8, 28, 42].

2.8.5 Vortex Surfaces in 2D

The induced velocity equations of a vortex sheet are obtained by integration of the
Biot–Savart law. A vortex sheet may be thought as a continuous distribution of point
vortices since the point vortex corresponds to the kernel of the Biot–Savart integral
(see Eq.32.9).

Flat panel of constant strength In a Cartesian coordinate system attached to the
sheet, the induced velocity is:

u(x, y) = −1

2π

∫ x2

x1

γ (ξ)y

(x − ξ)2 + y2
dξ = γ

2π

[
atan

x − ξ

y

]x2

x1

(2.253)

v(x, y) = 1

2π

∫ x2

x1

γ (ξ)(x − ξ)

(x − ξ)2 + y2
dξ = −γ

4π

[
log
(
(x − ξ)2 + y2

)]x2
x1

(2.254)

The stream function is:

�(x, y) = γ

2π

∫ x2

x1

log

[
1

√
(x − ξ)2 + y2

]

dξ (2.255)

= γ

4π

[
(x − x1) log

[
(x − x1)

2 + y2
]+ 2y atan

(
x − x1

y

)

+(x2 − x) log
[
(x − x2)

2 + y2
]− 2y atan

(
x − x2

y

)
+ 2(x1 − x2)

]

The velocity potential is:

http://dx.doi.org/10.1007/978-3-319-55164-7_32
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Φ(x, y) = − γ

2π

∫ x2

x1
atan

(
y

x − ξ

)
dξ (2.256)

= − γ

2π

[
1

2
y log

[
(x − x1)

2 + y2

(x − x2)2 + y2

]

+ (x − x1) atan

[
y

x − x1

]
− (x − x2) atan

[
y

x − x2

]]

Flat infinite vortex sheet of constant strength In a Cartesian coordinate system
attached to the sheet, the induced velocity is:

u(x, y) = −1

2π

∫ +∞

−∞
γ (ξ)y

(x − ξ)2 + y2
dξ = γ

2π

[
atan

x − ξ

y

]+∞

−∞
=
{ −γ

2 , y > 0
γ

2 , y < 0
(2.257)

v(x, y) = 1

2π

∫ +∞

−∞
γ (ξ)(x − ξ)

(x − ξ)2 + y2
dξ = 0 (2.258)

2.9 Incompressible Flow Equations in Polar
Coordinates - 2D and 3D Flows - Axisymmetric Flows

Introduction In this section, polar coordinates are understood as cylindrical polars
and spherical polars. A cylindrical coordinate system (r, θ, z) is adopted instead
of the ISO standard 80000-2 notations: (ρ, φ, z). The standard notations (r, θ, φ)

are used for the spherical coordinate system. Care should be used when compare
equations obtained using both coordinate systems.

The definitions of the various operators in these coordinate systems are given in
Sect.C.3. The notations from the Helmholtz decomposition introduced in Sect. 2.2.4
are used: u = u0 + uΦ + uω. The rotational part of the velocity derives from a
vector potential ψ such that uω = ∇ × ψ . Only the rotational part of the velocity

contributes to the vorticity and henceω � ∇×u ≡ ∇×uω = −∇2ψ . The divergence
part of the velocity derives from a scalar potential Φ such that uΦ = gradΦ. The
divergence of uω is zero by construction. The incompressible assumption implies
that div u ≡ div uΦ = ∇2Φ = 0 ≡ div uω.

The equations are presented for arbitrary 2D and 3D flows and axisymmetrical
flows around the z-axis with and without swirl. In axisymmetrical flows without
swirl, the flow is effectively two-dimensional but is still of a 3D nature. The velocity
may be defined by a stream function which is different than the one obtained in 2D
potential flows. It is referred to as the Stokes stream function and is noted �. It is
stressed that the vector potential ψ is not a stream function in 3D: it is not constant
along streamlines. The stream function in 2D corresponds to the vector potential:

� ≡ ψz (2D) (2.259)

Stokes stream function in 3D cylindrical coordinates is:
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� � r ψθ (Cylindrical coordinates (r, θ, z), r =
√
x2 + y2) (2.260)

Stokes stream function in 3D spherical coordinates is:

� � ψφ r sin θ (Spherical coordinates (r, θ, φ), r =
√
x2 + y2 + z2) (2.261)

2.9.1 2D Arbitrary Flow (Cylindrical Coordinates)

The cylindrical coordinate system (r, θ, z) is adopted. The 2D assumption implies
∂z ≡ 0. For a 2D flow, the rotational part of the velocity uω is:

uω = ∇ × ψ = 1

r

∂ψz

∂θ
er − ∂ψz

∂r
eθ (2.262)

The vorticity is

ωz = (∇ × u)·ez ≡ (∇ × uω)·ez = 1

r

(
∂

∂r
(ruθ ) − ∂ur

∂θ

)
(2.263)

= −1

r

∂

∂r

(
r
∂ψz

∂r

)
− 1

r2
∂2ψz

∂θ2
= −∇2ψz

(2.264)

The stretching term (ω·∇)u is identically 0 in two dimensions. The vorticity equation
given by Eq.2.175 reduces then to:

∂ωz

∂t
+ (u · ∇)ωz = νΔωz

∂ωz

∂t
+
[
ur

∂ωz

∂r
+ uθ

r

∂ωz

∂θ

]
= ν

[
1

r

∂

∂r

(
r
∂ωz

∂r

)
− 1

r2
∂2ωz

∂θ2

]
(2.265)

The continuity equation writes:

∇ · u = 1

r

∂(rur )

∂r
+ 1

r

∂uθ

∂θ
= 0 = ∇2Φ,

(
∇ · uω = ∂2ψz

∂r∂θ
− ∂2ψz

∂θ∂r
≡ 0

)

(2.266)

2.9.2 3D Arbitrary Flow (Cylindrical Coordinates)

The cylindrical coordinate system (r, θ, z) is adopted. The rotational part of the
velocity and the vorticity are:
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uω = ∇ × ψ =
(
1

r

∂ψz

∂θ
− ∂ψθ

∂z

)
er +

(
∂ψr

∂z
− ∂ψz

∂r

)
eθ + 1

r

(
∂

∂r
(rψθ ) − ∂ψr

∂θ

)
ez

(2.267)

ω = ∇ × u =
(
1

r

∂uz
∂θ

− ∂uθ

∂z

)
er +

(
∂ur
∂z

− ∂uz
∂r

)
eθ + 1

r

(
∂

∂r
(ruθ ) − ∂ur

∂θ

)
ez (2.268)

The vorticity also satisfies the Laplace equation ω = −∇2ψ . For an incompressible
flow, the continuity equation writes:

∇ · u = 1

r

∂(rur )

∂r
+ 1

r

∂uθ

∂θ
+ ∂uz

∂z
= 0 = ∇2Φ (2.269)

The vorticity dynamics are governed by Eq.2.175 as:

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + νΔω (2.270)

Each term is written in cylindrical coordinates using the following:

(
A · ∇) B =

(
Ar

∂Br
∂r

+ Aθ

r

∂Br
∂θ

+ Az
∂Br
∂z

− Aθ Bθ

r

)
er νΔω = ν

(
Δωr − ωr

r2
− 2

r2
∂ωθ

∂θ

)
er

+
(
Ar

∂Bθ

∂r
+ Aθ

r

∂Bθ

∂θ
+ Az

∂Bθ

∂z
+ Aθ Br

r

)
eθ + ν

(
Δωθ − ωθ

r2
+ 2

r2
∂ωr

∂θ

)
eθ

+
(
Ar

∂Bz

∂r
+ Aθ

r

∂Bz

∂θ
+ Az

∂Bz

∂z

)
ez + νΔωzez

2.9.3 3D Axisymmetric Flows with Swirl (Cylindrical
Coordinates)

The cylindrical coordinate system (r, θ, z) is adopted. The axisymmetry implies that
∂θ ≡ 0.

Conservation laws - Flow equations The continuity equation is:

∇ · u = 1

r

∂(rur )

∂r
+ ∂uz

∂z
= 0 = ∇2Φ (2.271)

The vorticity equation from Eq.2.175 writes:
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∂ωr

∂t
+
(
ur

∂ωr

∂r
+ uz

∂ωr

∂z

)
=
(

ωr
∂ur
∂r

+ ωz
∂ur
∂z

)
+ ν

(
Δωr − ωr

r2

)

∂ωθ

∂t
+
(
ur

∂ωθ

∂r
+ uz

∂ωθ

∂z
+ uθωr

r

)
=
(

ωr
∂uθ

∂r
+ ωz

∂uθ

∂z
+ ωθur

r

)
+ ν

(
Δωθ − ωθ

r2

)

(2.272)
∂ωz

∂t
+
(
ur

∂ωz

∂r
+ uz

∂ωz

∂z

)
=
(

ωr
∂uz
∂r

+ ωz
∂uz
∂z

)
+ νΔωz

Kinematics: Vorticity, vector potential and Stokes stream function For an incom-
pressible axisymmetric flow, the vorticity ω = curl u = curl uω is

ω = −∂uθ

∂z
er +

[
∂ur
∂z

− ∂uz

∂r

]
eθ + 1

r

∂(ruθ )

∂r
ez (2.273)

The Laplace equation ∇2ψ = −ω also gives

−ω = ∇2ψ =
(

Δψr − ψr

r2

)
er +

(
Δψθ − ψθ

r2

)
eθ + Δψzez (2.274)

The relation uω = curl ψ is

uω = −∂ψθ

∂z
er +

[
∂ψr

∂z
− ∂ψz

∂r

]
eθ + 1

r

∂(rψθ)

∂r
ez (2.275)

uωr = −∂ψθ

∂z
, uωθ = ∂ψr

∂z
− ∂ψz

∂r
, uωz = 1

r

∂ (rψθ)

∂r
(2.276)

Stokes stream function is defined as:

� � r ψθ (Cylindrical coordinates (r, θ, z), r =
√
x2 + y2) (2.277)

Introducing this notation into Eq.2.276 leads to:

uωr = −1

r

∂�

∂z
, uωz = 1

r

∂�

∂r
,

(
uωθ = ∂ψr

∂z
− ∂ψz

∂r

)
(2.278)

This notation is useful for “vortex-rings”-like flows where uθ = 0 (see Sect. 2.9.4).
The function � is then seen to act like a stream function. Indeed, in such flows ψθ is
not constant along streamlines and inversely proportional to r (see discussion around
Eq.2.282).
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2.9.4 3D Axisymmetric Flows Without Swirl (Cylindrical
Coordinates)

Integrations of the Biot–Savart law in this case is found in the book of Pozrikidis [38,
p. 586].

Kinematics From Eq.2.273, it is readily seen that if there is no swirl (uθ ≡ 0),
then the vorticity is purely along eθ . Writing, ω = ωeθ , the vorticity definition from
Eq.2.273, and the velocity from Eq.2.278 writes:

ω = ∂ur
∂z

− ∂uz

∂r
, uωr = −1

r

∂�

∂z
, uωz = 1

r

∂�

∂r
, (2.279)

The vorticity is expressed in term of the vector potential, or the stream function, from
the Laplace equation ∇2ψ = −ω or Eq.2.279 as:

ω = ∂uωr

∂z
− ∂uωz

∂r
= −1

r

[
∂2�

∂r2
+ ∂2�

∂z2

]
+ 1

r2
∂�

∂r
(2.280)

= −∇2ψθ + ψθ

r2
= −1

r

∂

∂r

(
r
ψθ

∂r

)
− ∂2ψθ

∂z2
+ ψθ

r2
= −1

r

[
∂2rψθ

∂r2
+ ∂2rψθ

∂z2

]
+ 1

r2
∂rψθ

∂r

The above expressions are relevant for vortex rings, the Hill’s vortex, or irrotational
flows (ω = 0) where analytical solution in terms of � are sought (see e.g. 34). It
is recalled that the variation of a variable along a streamline is given in the material
derivative by the term (u ·∇)•. Using Eq.2.279, it is immediately seen that the value
of the Stokes stream function is constant along a streamline:

[
(u · ∇)�eθ

] · eθ = ur
∂�

∂r
+ uz

∂�

∂z
= 0 (2.281)

On the other hand, the vector potential is not constant along a streamline, viz.:

[
(u · ∇)ψθeθ

] · eθ = ur
∂ψθ

∂r
+ uz

∂ψθ

∂z
= ψθ

r
(2.282)

Equations for the total circulation, the Linear impulse and Hamiltonian are found
respectively in Eqs. 2.199, 2.202 and 2.210.

Flow equations The continuity equation from Eq.2.271 remains unchanged:

∇ · u = 1

r

∂(rur )

∂r
+ ∂uz

∂z
= 0 (2.283)

The tangential component of vorticity dynamics equation Eq.2.272 reduces to

http://dx.doi.org/10.1007/978-3-319-55164-7_34
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dω

dt
= ∂ω

∂t
+
(
ur

∂ω

∂r
+ uz

∂ω

∂z

)
= ωur

r
+ ν

[
1

r

∂ω

∂r
+ ∂2ω

∂r2
+ ∂2ω

∂z2
− ω

r2

]

(2.284)

Inviscid steady flows When ν = 0 and ∂/∂t = 0, Eq.2.284 reduces to:

ur
∂ω

∂r
+ uz

∂ω

∂z
= ωur

r
(2.285)

Using the above equation, the following is obtained:

d(ω/r)

dt
= ur

∂(ω/r)

∂r
+ uz

∂(ω/r)

∂z
= 1

r

[
ur

∂ω

∂r
+ uz

∂ω

∂z

]
− ωur

r2
= 0 (2.286)

As noted in the book of Akhmetov [2, p. 9], it follows that in steady axisymmetric
ring flows the quantity ω/r is constant along a streamline and depends only on the
value of the stream function �. The condition of steadiness is written in the form:

ω

r
= f (�) (2.287)

where f is an arbitrary function of�. Combining the steady conditionwith Eq.2.280
leads to

∂2�

∂r2
+ ∂2�

∂z2
− 1

r

∂�

∂r
= −r2 f (�) (2.288)

The analogy of this equation with plasma physics is discussed in the book of Akhme-
tov [2, p. 21]. A solution to this equation was given by Hill for f (�) = cst (see
Sect. 34.2, [21]).

Flow deriving only from a vector potential If u = uω, the velocity is directly
determined by the Stokes stream function � according to Eq.2.278.

2.9.5 3D Arbitrary Flow (Spherical Coordinates)

A spherical coordinate system (r, θ, φ) is adopted in this section. Care should be
used when comparing the equations with the ones from the cylindrical coordinates
sections since the variables r and θ are different. The vorticity and the rotational part
of the velocity are:

http://dx.doi.org/10.1007/978-3-319-55164-7_34
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ω = ∇ × u = 1

r sin θ

(
∂

∂θ
(uφ sin θ) − ∂uθ

∂φ

)
er +

(
1

r sin θ

∂ur
∂φ

− 1

r

∂

∂r
(ruφ)

)
eθ

+ 1

r

(
∂

∂r
(ruθ ) − ∂ur

∂θ

)
eφ (2.289)

uω = ∇ × ψ = 1

r sin θ

(
∂

∂θ
(ψφ sin θ) − ∂ψθ

∂φ

)
er +

(
1

r sin θ

∂ψr

∂φ
− 1

r

∂

∂r
(rψφ)

)
eθ

+ 1

r

(
∂

∂r
(rψθ ) − ∂ψr

∂θ

)
eφ (2.290)

For an incompressible flow, the continuity equation writes

∇ · u = 1

r2
∂(r2ur )

∂r
+ 1

r sin θ

∂

∂θ
(uθ sin θ) + 1

r sin θ

∂uφ

∂φ
= 0 (2.291)

The vorticity equation is lengthy to develop but it can easily be obtained using the
definitions of the various operators in spherical coordinates given in Sect.C.3.

2.9.6 3D Axisymmetric Flows with Swirl (Spherical
Coordinates)

A spherical coordinate system (r, θ, φ) is adopted in this section. The axisymmetry
implies ∂φ ≡ 0. The velocity and vorticity are:

ω = ∇ × u = 1

r sin θ

∂

∂θ
(uφ sin θ)er − 1

r

∂

∂r
(ruφ)eθ + 1

r

(
∂

∂r
(ruθ ) − ∂ur

∂θ

)
eφ

(2.292)

uω = ∇ × ψ = 1

r sin θ

∂

∂θ
(ψφ sin θ)er − 1

r

∂

∂r
(rψφ)eθ + 1

r

(
∂

∂r
(rψθ ) − ∂ψr

∂θ

)
eφ

(2.293)

The vorticity equation is lengthy to develop and it is thus not presented in this section.

2.9.7 3D Axisymmetric Flows Without Swirl (Spherical
Coordinates)

A spherical coordinate system (r, θ, φ) is adopted in this section. Care should be
used when comparing the equations with the ones from the cylindrical coordinates
sections since the variables r and θ are different. The axisymmetry implies ∂φ ≡ 0
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and the absence of swirl implies uφ ≡ 0. The following assumes that potential part
is zero, i.e. uΦ ≡ 0 and hence u ≡ uω.

Kinematics From the conditions stated above, the vorticity consists of a component
along eφ , that will be further written ω = ωeφ :

ω = ∇ × u = 1

r

(
∂

∂r
(ruθ ) − ∂ur

∂θ

)
eφ (2.294)

From Eq.2.293, the fact that uφ = 0 implies that ψr and ψθ do not play a role in the
velocity field and can thus be chosen as zero. This leads to:

u = ∇ × ψ = 1

r sin θ

∂

∂θ
(ψφ sin θ)er − 1

r

∂

∂r
(rψφ)eθ (2.295)

ur = 1

r sin θ

∂(ψφ sin θ)

∂θ
, uθ = −1

r

∂(rψφ)

∂r
(2.296)

Introducing Stokes stream function in spherical coordinates

� = ψφ r sin θ (Spherical coordinates (r, θ, φ), r =
√
x2 + y2 + z2) (2.297)

Then the velocity u = ∇ × (ψφeφ) = ∇ × ( �
r sin θ

eφ) is:

ur = 1

r2 sin θ

∂�

∂θ
, uθ = − 1

r sin θ

∂�

∂r
(2.298)

The vorticity is expressed in terms of the Stokes stream function by inserting these
expressions into Eq.2.294:

ω = − 1

r sin θ

[
∂2�

∂r2
+ sin θ

r2
∂

∂θ

(
1

sin θ

∂�

∂θ

)]
(2.299)

Irrotational flows should thus be such that the above equation is 0 (see e.g. the
flow around a sphere in Chap.34). As noted in the book of Acheson [1, p. 173],
and as obtained in the cylindrical coordinate case (see Eq.2.281), the Stokes stream
function is constant along streamlines in such axisymmetric flow. This is shown using
Eq.2.298 as:

[
(u · ∇)�eφ

] · eφ = ur
∂�

∂r
+ uθ

r

∂�

∂θ
= 0 (2.300)

Conservation laws The continuity, with, and without swirl is the same equation.
From Eq.2.291 it writes:

∇ · u = 1

r2
∂(r2ur )

∂r
+ 1

r sin θ

∂

∂θ
(uθ sin θ) = 0 (2.301)

http://dx.doi.org/10.1007/978-3-319-55164-7_34
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Inviscid steady flows For steady axisymmetric flows without swirl, the vorticity
equation was seen to reduce to Eq.2.286 in cylindrical coordinates. This equation is
readily transformed to spherical coordinates as:

d

dt

( ω

r sin θ

)
= (u · ∇)

( ω

r sin θ

)
= 0 (2.302)

whereω is theφ-component ofω. Sinceω/(r sin θ) is constant along streamlines, the
condition for steady flow writes (as was done in cylindrical coordinates, Eq. 2.287)

ω

r sin θ
= f (�) (2.303)

Expressing the vorticity using Eq.2.299 leads to an equation for � (similar to the
one in cylindrical coordinates given in Eq.2.288):

− f (�) r2 sin2 θ = ∂2�

∂r2
+ sin θ

r2
∂

∂θ

(
1

sin θ

∂�

∂θ

)
(2.304)

= ∂2�

∂r2
+ 1

r2

(
∂2�

∂θ2
− cos θ

sin θ

∂�

∂θ

)
(2.305)

2.10 2D Potential Flows

The potential flow assumption corresponds to the irrotational flow of an ideal, homo-
geneous, incompressible fluid under conservative volume forces. The potential flow
assumptions do not apply in places dominated by viscous effects like boundary layers
and trailed vortex sheet. In this section the main equations of 2D potential flows
are presented. Examples of potential flow elements/solutions will be presented in
Chap.32. Since 2D flows are considered, derivatives along the z direction are iden-
tically zero. The vector potential is written ψ = (0, 0, �), where ψz = � is the
stream function. As a consequence of the continuity equation, the velocity field is
expressed in the two following forms:

u = gradΦ (2.306)

u = curl ψ = grad� × ez (2.307)

Using Cartesian (x, y) or polar coordinates (r, θ), this writes:

u = ∂Φ

∂x
= ∂�

∂y
ur = ∂Φ

∂r
= 1

r

∂�

∂θ
(2.308)

v = ∂Φ

∂y
= −∂�

∂x
uθ = 1

r

∂Φ

∂θ
= −∂�

∂r
(2.309)

http://dx.doi.org/10.1007/978-3-319-55164-7_32


72 2 Theoretical Foundations for Flows Involving Vorticity

Poisson equations involved The irrationality condition ωz ≡ 0 implies:

ωz = (∇ × u)·ez = ∂v

∂x
+ ∂u

∂y
= 1

r

(
∂

∂r
(ruθ ) − ∂ur

∂θ

)
= −∇2� = 0 (2.310)

The incompressibility conditions ∇·u ≡ 0 implies:

∇ · u = ∂u

∂x
+ ∂v

∂y
= 1

r

∂(rur )

∂r
+ 1

r

∂uθ

∂θ
= ∇2Φ = 0 (2.311)

Flux across a surface and stream function Flux across a surface delimited by a
curve A-B in the x − y plane and of unitary length in the z direction, (see e.g. [48,
p. 10]) is

F =
∫ B

A
udy − vdx =

∫ B

A

∂�

∂y
dy + ∂�

∂x
dx =

∫ B

A
d� = [�]BA (2.312)

The flux is thus zero for iso-� value lines. Since the flux across a streamline is zero,
these lines �cst are streamlines, which justifies the naming of stream function.

Boundary conditions The velocity field is computed from the stream function or
the potential which both satisfy the Laplace equation. Nevertheless, the boundary
conditions are different. Boundary conditions for the potential are:

n · gradΦ = 0 on Sbody (2.313)

Φ → U0 y when |x | → ∞ (2.314)

Boundary conditions for the stream function are:

�(x, y) = constant on Sbody (2.315)

� → U0 y when |x | → ∞ (2.316)

� andΦ are harmonic functions since they satisfyLaplace equations and are assumed
twice continuously differentiable. Further, from thedefinitionof the velocity potential
and the stream function, Φ and � satisfy the Cauchy-Riemann conditions:

(u =)
∂Φ

∂x
= ∂�

∂y
, (v =)

∂Φ

∂y
= −∂�

∂x
(2.317)

The streamlines �(x, y) = cst and the iso-potential lines Φ(x, y) = cst form
a network of orthogonal curves. It results that these two functions are conjugate
harmonic functions and it invites us to define a complex potential as:

f (z) = Φ(x, y) + i�(x, y) (2.318)
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where z = x + iy. The complex velocity is defined as:

w(z) = d f

dz
= u(x, y) − iv(x, y) = (ur (r, θ) − iuθ (r, θ)) e−iθ (2.319)

2.11 Conformal Map Solutions

The mathematical technique of conformal mapping is convenient to solve 2D poten-
tial flows analytically or numerically. The analytical solutions are in particular useful
to validate 2D airfoil panel codes.

2.11.1 Conformal Mapping - Definitions and Properties

Two complex planes of complex variable z = x + iy and Z = X + iY are here
considered.

Conformal map The transformation Z = h(z) which maps each point m of the z
plane to a pointM of the Z -plane is a conformal map if it conserves anglesmagnitude
and orientation.

Holomorphic functions If the function Z = h(z) is holomorphic4 around z0 and
such that h′(z0) 
= 0, it has an inverse function z = H(Z) in the neighborhood of z0,
and the set {h, H} defines a conformal mapping of the z-plane into the Z -plane in
the same neighborhood. To verify the above, the differential of each plane is written:
dZ = |h′(z)|ei arg h′(z)dz. An elementary vector around z0 is hence elongated with
a factor |h′(z)| and rotated by an angle arg h′(z) by the mapping. The angles are
conserved by such transformation, hence the above property.

Singular points A point z0 such that h′(z0) = 0 for the map Z = h(z) is called a
singular point. The map h is not conformal in the neighborhood of a singular point.

Properties - In the neighborhood of a zero of order n for h′, the map Z = h(z)
multiply angles by n + 1.
- If f (z) corresponds to the complex potential of a flow in the z-plane, the flow
transformed in the Z -plane by the conformal mapping Z = h(z) has the following
complex potential and speed:

F (Z) = f (H(Z)) (2.320)

W (Z) � dF

dZ
= w (H(Z)) H ′(Z) (2.321)

4The term analytic can also be used since complex analytic functions coincides with holomorphic
functions.
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The following properties follows:

- The orthogonal grid of equipotential and stream-lines of the z-planes are mapped
to the equipotential and stream-lines of the Z planes unless z, with exception for the
singular points of h(z).
- Circulation and flow rate is conserved through a conformal map.
- Sources and vortices are mapped to sources and vortices of the same intensity.
- A doublet of intensity μeiα located at z0 is mapped to a doublet of intensity
h′(z0)μeiα located at Z0 = h(z0).
- A cyclic flow of the z-plane is mapped to a cyclic flow in the Z -plane with same
cyclic constant.

2.11.2 Reference Airfoil Flow: Flow Around a Cylinder
and Kutta Condition

The cyclic flow around a lifting cylinder is a classical 2D potential flow result. It is
presented in Sect. 32.4.3. This flow is presented here since several conformal maps
transform this flow to a flow around an airfoil of a given geometry. The notations
used are introduced in Fig. 2.6. The tangential velocity around a lifting cylinder is:

uθ = −2U 0 sin(θ − α) + Γ

2πrc
(2.322)

where U0 is the free stream velocity of incidence α and Γ is the circulation around
the cylinder. There are potentially two solutions θs that satisfies the stagnation point
equation uθ = 0. Ifβ stands for the angle to the rear stagnation point, and rc the radius
of the circle (see Fig. 2.6), then the Kutta condition requirement (no flow around the
rear stagnation point, see Sect. 3.1.4) leads to:

Γ = 2πrc sin(β − α) (2.323)

where from geometrical considerations:

rc =
√

(a − Xc)2 + Y 2
c , β = atan

−Yc
a − Xc

= asin
Yc
rc

(2.324)

2.11.3 Joukowski’s Conformal Map

A family of airfoil shapes are obtained using Joukowski’s conformal map. The trans-
formation of the velocity field around a circle given in Sect. 2.11.2 provides the
velocity field around the transformed airfoil. For a a real constant, Joukowski’s con-
formal map Z �→ z is defined as:

http://dx.doi.org/10.1007/978-3-319-55164-7_32
http://dx.doi.org/10.1007/978-3-319-55164-7_3
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Z �→ z : z = H(Z) = Z + a2

Z2
(2.325)

The inverse transformation is given as:

Z(z) = −a

[(
z − 2

z + 2

) 1
2

+ 1

][(
z − 2

z + 2

) 1
2

− 1

]−1

= a

4
(z + 2)

[(
z − 2

z + 2

) 1
2

− 1

]2

(2.326)

Properties

• Joukowski’s map Z �→ z has two singular points in Z = ±a. The segment |x | < a
may be removed from the z-plane to make h : z �→ Z well defined.

• The image of the circle |Z | = a (i.e. Xc = Yc = 0) is the segment |x | = 2a. There
is a bijection between the outside of the circle and the cut z-plane.

• The singular points Z = ±a are first order zeros of H ′(Z). Angles are locally
multiplied by two through the map Z �→ z. Any curve passing by Z = ±a will
have a corner.

• The point Z = ∞ is the only fixed point of the transformation.

Relation to airfoil properties In practice, Joukowski’s conformal map is used to
transform a circle which is located around the point Zc and which intersect the
real axis at x = a. Realistic airfoil shape in the z plane are then produced by this
transformation. The following notations are introduced (see Fig. 2.6):

Zc = meiδ, z = Reiθ (2.327)

r2c = m2 + c2 − 2ma cos δ, r2c = m2 + R2 − 2mR cos(δ − θ) (2.328)

R = a [1 + ε (− cos δ + cos(δ − θ))] + o(ε2), ε = m/a (2.329)

Using these notations, the thickness and camber are determined by the position of
the center as:

Fig. 2.6 Notations used for
the circle in the Z -plane

X

Y

r

Z = (X ,Y )

Zc = meiθ

= (Xc,Yc)

(a,0)

rc β
δm



76 2 Theoretical Foundations for Flows Involving Vorticity
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c
=−0.2
y
c
=0.2

Fig. 2.7 Example of Joukowski airfoil obtained for Xc = −0.2 and Yc = 0.2. The airfoil coordi-
nates have been normalized to a unit chord

t

l
= 3

√
2

4
ε (thickness)

h

l
= 1

2
ε sin δ (camber) (2.330)

where l = 4a is the airfoil chord. The trailing edge angle τ is zero for the Joukowski
airfoils. The trailing edge is said to be a cusped trailing edge.An example of airfoil
shape obtained using the transformation is shown in Fig. 2.7.

2.11.4 Karman-Trefftz Conformal Map

The Karman-Trefftz conformal map is an extension of Joukowski’s conformal map.
For (a, λ) two real constants, the Karman-Trefftz conformal map Z �→ z is defined
as:

Z �→ z : z = H(Z) = λa
(Z + a)λ + (Z − a)λ

(Z + a)λ − (Z − a)λ
(2.331)

which is also written:

z − λa

z + λa
= (Z − a)λ

(Z + a)λ
(2.332)

The derivative of the mapping function is then:

dz

dZ
= 4λ2a2

(Z + a)λ−1(Z − a)λ−1

[
(Z + a)λ − (Z − a)λ

]2 (2.333)

The inverse transformation is given as:

Z(z) = −a

[(
z − λ

z + λ

) 1
λ

+ 1

][(
z − λ

z + λ

) 1
λ

− 1

]−1

(2.334)
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Fig. 2.8 Examples of
Karman-Trefftz airfoils
obtained for Yc = 0.2,
τ = 20◦ and Xc = 0 (top)
Xc = −0.2 (bottom). The
airfoil coordinates have been
normalized to a unit chord
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Properties

• The parameter λ is related to the trailing edge angle as:

τ = π(2 − λ) (2.335)

• Forλ = 2,Karman-Trefftz’s transformgives Joukowski’smap,which has a cusped
trailing edge (τ = 0).

Example of airfoil shapes obtained using the transformation is shown in Fig. 2.8.

2.11.5 Van de Vooren Conformal Map

With (a, λ, l, ε) four real constants, the Van de Vooren conformal map Z �→ z is
defined as:

Z �→ z : z = H(Z) = (Z − a)λ

(Z − aε)λ−1
+ l (2.336)

Relation to airfoil properties In practice this map is applied to a circle of radius
a centered in the origin of the Z plane to provide a realistic airfoil shape in the z
plane. In such case, the points Z = a and Z = −a will correspond respectively to
the trailing and leading edge of the airfoil shape in the z plane. When the chord is
chosen to be c = 2l, the parameter a is then found to be:

a = c(1 + ε)λ−12−λ (2.337)

Coordinates in the z plane of such airfoil are found in [25, p. 163]. The advantage of
this transformation is that its parameters can directly be related to common airfoil
parameters: l is related to the chord, ε to the thickness and λ to the trailing edge
angle. The parameter λ is related to the trailing edge angle (with the same relation
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Fig. 2.9 Examples of Van de Vooren airfoil obtained for trel = 0.15 and τ = 17◦. The airfoil
coordinates have been normalized to a unit chord

as the Karman-Trefftz transform):

τ = π(2 − λ) (2.338)

An example of airfoil shape obtained using the transformation is shown in Fig. 2.9.

2.11.6 Matlab Source Code

AMatlab source code to compute the Karman-Trefftz map is given below. The code
computes the airfoil geometry, the pressure distribution on the profile surface and
the velocity field about the airfoil.

%% Initialization
clearvars; close all; clc;
%% Parameters for Karman Trefftz airfoil
U0 = 1 ; % Free Stream Velocity
alpha_deg = 05 ; % Angle of Attack [deg]
xc = -0.2; % Circle Center Location (<0)
yc = 0.1 ; % Circle Center
tau = 10 ; % Tail Angle
% --- Display parameters
n=100; % Number of points for pressure distribution
nx=200; ny=200; % grid points in cart. coordinates (in Z-plane)
nStreamlines = 21; %Number of Streamlines to plot
XLIM =[-3.5 3.5]; YLIM=[-3 3];
%% Main function call (with grid for contour plots , but not

necessary)
[Xg ,Yg]= meshgrid(linspace(XLIM (1),XLIM (2),nx),linspace(YLIM (1),

YLIM (2),ny));
[X_p ,Y_p ,Cp ,Ug ,Vg ,CP] = fProfileKarmanTrefftz(xc ,yc ,tau ,n,U0 ,

alpha_deg ,Xg ,Yg);
%% Plotting pressure distribution about the airfoil
figure , hold on , grid on , box on;
plot((X_p -min(X_p))./(max(X_p)-min(X_p)), Cp, ’k.-’)
xlabel(’x/c [-]’); ylabel(’C_p [-]’);
title(sprintf(’Karman -Trefftz C_p \alpha = %.1f deg.’,alpha_deg));
xlim ([0 1]); axis ij
%% Plotting airfoil , streamlines and pressure distribution around

the foil
figure ,grid on ,hold on;axis equal; box on;
contourf(Xg ,Yg ,CP ,15); fill(X_p ,Y_p ,’w’);
Y0=linspace(YLIM (1),YLIM (2),nStreamlines); X0=Y0*0+ XLIM (1);
hlines=streamline(stream2(Xg ,Yg ,Ug ,Vg ,X0 ,Y0));set(hlines ,’Color ’,’

k’)
ylim(YLIM);xlim(XLIM);title(’Karman -Trefftz Cp and streamlines ’);
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function [X_profile ,Y_profile ,Cp ,Ug ,Vg ,CP ,Gamma] =
fProfileKarmanTrefftz ( xc ,yc ,tau ,n,varargin)

% returns Karman -Trefftz profiles , and optionally pressure
distribution and velocity field

% AUTHOR: E. Branlard
% INPUT:
% xc ,yc % Circle Center Location
% tau % Tail Angle in deg
% n % Number of points along mapped foil surface
% OUTPUT:
% X and Y coordinates of airfoil
% Cp : pressure coeff at foil surface
% Xg ,Yg ,Ug ,Vg ,CP : grid points , velocity field and pressure

coeff
% EXAMPLES:
% [X_p ,Y_p] = fProfileKarmanTrefftz (xc ,yc ,tau ,n);
% [X_p ,Y_p ,Cp] = fProfileKarmanTrefftz (xc ,yc ,tau ,n,U0 ,alpha_deg);
% [X_p ,Y_p ,Cp ,Ug ,Vg ,CP] = fProfileKarmanTrefftz (xc ,yc ,tau ,n,U0 ,

alpha_deg ,Xg ,Yg);
%% --- Optional arguments
bComputeGridVelocity =0; bComputeAero =0;
if nargin >4

bComputeAero =1; U0=varargin {1}; alpha=varargin {2}; % deg !!!
if nargin > velocity computation on polar Grid

bComputeGridVelocity =1; Xg=varargin {3}; Yg=varargin {4};
end

end
Cp=[]; U=[]; V=[]; CP =[]; Gamma =[];
%% Main parameters
a = 1.0 ; % x intersectoin
rc = sqrt((a-xc)^2 + yc^2); % radius of circle
beta = asin(-yc/(rc)) ; % Angle to rear stagnation point
lambda = 2-tau /180 ;
%% Coordinates of profile (using transform of the circle)
vtheta_circ = 0:2*pi/n:2*pi -pi/n;
z0 = (xc + i*yc) ; % center of circle
z_circ = z0 + rc*exp(i*vtheta_circ);
% --- Karman -Trefftz Conformal map - Profile Shape
[Z_profile ,dZdz] = fConformalMapKarmanTrefftz (z_circ ,a,lambda);
X_profile=real(Z_profile (:)); Y_profile=imag(Z_profile (:));
%% Aero computation if required
if bComputeAero

%% ---Pressure distribution on the airfoil
Gamma = 4*pi*rc*U0*sin(beta -alpha*pi /180); % from Kutta condition
% Velocity at circle sruface
[ u_circ , v_circ ] = fUi_Cylinder2D(real(z_circ),imag(z_circ),xc ,

yc ,rc ,U0 ,alpha ,Gamma);
% Velocities , -Cp on surface
W_circ = (u_circ -i*v_circ)./dZdz ; % [u-iv]_Z = [u-iv]_z/DZ/Dz
U_circ = real(W_circ); V_circ = -imag(W_circ); % velocity in Zeta

-plane
Q = sqrt(U_circ .^2 + V_circ .^2); % velocity Magnitude
Cp = 1-(Q./U0).^2 ; % pressure coefficient
%% Pressure distribution on a grid (using direct transform and a

polar grid)
if bComputeGridVelocity

% Inverse Karman Trefftz Conformal map
Zg = Xg + 1i*Yg;
[z,dzdZ] = fConformalMapKarmanTrefftz (Zg ,a,lambda ,true );
x = real(z); y = imag(z);
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[u,v] = fUi_Cylinder2D(x,y, xc ,yc ,rc , U0 , alpha , Gamma);
W = (u-1i.*v).*dzdZ;
Ug = real(W); Vg = -imag(W);
Q = sqrt(Ug.^2 + Vg.^2) ; % velocity magnitude
CP = 1-(Q./U0).^2 ; % pressure coefficient

end
end
%% Standardizing coordinates
% [P PS SS TE chord IPin IPout ]= fProfileStandardize (X_profile ,

Y_profile ,[]);

function [z_out ,dz_out] = fConformalMapKarmanTrefftz (z_in ,a,l,
bFlagReverse);

% Karman Trefftz conformal map (and inverse map)
% AUTHOR: E. Branlard
if ~exist(’bFlagReverse ’,’var’); bFlagReverse=false; end;
if ~bFlagReverse % from z to Z plane
z=z_in;
Z =l*a*((z+a).^l + (z-a).^l)./((z+a).^l - (z-a).^l);
dZdz =(4*(l*a)^2) *(((z-a).^(l-1)).*((z+a).^(l-1)))./((((z+a).^l) -((z

-a).^l)).^2);
z_out= Z ; dz_out = dZdz;
else % from Z to z plane
Z=z_in;
z =-a.*( ( ((Z-l)./(Z+l)).^(1/l) )+1 ) ./ ( (((Z-l)./(Z+l))

.^(1/l)) -1);
dzdZ =1./((4*(l*a)^2) *(((z-a).^(l-1)).*((z+a).^(l-1)))./((((z+a).^l)

-((z-a).^l)).^2));
z_out=z; dz_out=dzdZ;
end

function [U,V] = fUi_Cylinder2D(X,Y,xc ,yc ,rc ,U0 ,alpha ,G)
% Flow about a 2D cylinder , free stream U0 , circulation G. NOTE:

alpha[deg]
r = sqrt((X-xc).^2 + (Y-yc).^2);
theta = atan2(Y-yc ,X-xc) ;
alph = alpha*pi/180 ;
U = U0*cos(alph)-(U0*((rc./r).^2).*cos (2*theta -alph))-G.*sin(theta)

./(2* pi.*r);
V = U0*sin(alph)-(U0*((rc./r).^2).*sin (2*theta -alph))+G.*cos(theta)

./(2* pi.*r);
U(r<rc -10* eps)=0; V(r<rc -10* eps)=0;
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