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2.1 Introduction

In recent years, airborne-derived products from light detec-
tion and ranging (LiDAR) measurements, such as
high-resolution digital elevation models (DEMs), slope,
curvature, shaded relief, and maps of landslides obtained
from beneath dense vegetation, are becoming increasingly
important for producing a detailed landslide inventory map
(Eeckhaut et al. 2007). LiDAR applications include the
construction of DEMs and shaded relief maps, detection of
historical landslides under forested area, creation of topo-
graphic contours, tracking of multitemporal digital terrain
model (DTM) of landslides, hydrological modeling, land-
form and/or soil classification, and understanding fine-scale
landslide patterns (McKean and Roering 2004). The rapid-
ness of LiDAR technology in landslide mapping of terrains
through quantitative or visual analysis provides several
advantages.

Landslide inventory maps provide baseline information
of landslide types, location, distribution, and boundaries in
landslide-prone areas. In addition, landslide inventory pro-
vides information on displacement and slope measurements
that affect a failure (Galli et al. 2008). Moreover, landslide
inventories are significantly useful for various purposes,
such as recording of landslide magnitude, implementing the
initial stage for landslide susceptibility, and hazard and risk
assessments.

Object-based image analysis (OBIA) is a well-known
technique resulting from the recent advances in computer
vision and machine intelligence, with the main purpose of

automatically extracting both man-made and natural objects
from remote sensing images (Akcay and Aksoy 2008).
OBIA, in which the information content of an object is used
to classify a landscape, is a step toward replicating human
interpretation process (Navulur 2006). In addition, OBIA
can detect landslides accurately and meaningfully by inte-
grating contextual information to image analysis (Martha
2011), which reduces the time and cost for producing a
decent landslide inventory map, especially in large areas.
Several techniques have been proposed for landslide map-
ping, such as field observation and aerial photointerpreta-
tion; however, these techniques have some limitations, such
as lack of proper resolution for aerial photographs required
for the mapping of small-scale landslides caused by mor-
phologic feature obscuration by thick vegetation cover,
time-consuming, and difficulties in field mapping (Gorum
et al. 2011). Remote sensing data and methods have been
proven efficient in landslide mapping because of their wide
area coverage, relatively cheap cost, and remarkably
high-resolution data for landslide mapping, in which even
minor landslides can be mapped easily. Landslide inventory
maps resulting from the application of OBIA techniques can
be easily converted to GIS data, which is considered as an
initial stage for a more advance analysis, such as suscepti-
bility, and hazard and risk analysis.

Landslides can be triggered by various factors. These
factors can be man-made (such as mineral mining, road
cutting, and urbanization) or natural (e.g., extreme rainfall
events and earthquakes (Zêzere et al. 1999). However, in
tropical areas, a rapid and accurate method for landslide
mapping is required because of the rapid growth of vege-
tation that covers the land surface characteristics in those
areas. Furthermore, several cut slopes are generally created
to mitigate the risk of land failure for areas that have high
probability to fail because of the frequent occurrence of
landslides. These requirements create new challenges for
landslide identification and mapping in these areas. Thus,
new methods should be developed for automatic landslide
detection to produce high-quality landslide inventory map.
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2.2 Study Area and Data

2.2.1 Location of Study Area

Taman Ringlet is the first town along the Cameron High-
lands stretched from Tapah, Cameron Highlands, Peninsular
Malaysia. This town is a small hill that is well known for tea
and strawberry farming. The town is located at an altitude of
1140 m above the sea level. Geographically, Taman Ringlet
is located at latitude 04° 24′ 45″N and longitude 101° 23′
30″E.

Three different subsets were selected for analysis, as
shown in Fig. 2.1. One of the subsets was used to develop
the methodology of landslide detection, whereas the other
two were used to test the proposed method in other areas.
The process of selecting subset locations was carefully
implemented, with each subset having the same land cover
classes but with different coverage percentage. Figure 2.1
shows that the training site and Testing Site 1 have more
urban coverage compared to subset Testing Site 2, where
thick vegetation covers almost the entire area.

2.2.2 LiDAR Data

Study and data collection was implemented over Ringlet and
nearby surrounding area, which covered a total area of
25 km2. The LiDAR data were recorded for the entire
25 km2 with a flight height of 1510 m. Data were obtained
on January 15, 2015. Data capturing performed well with
eight points per square m and gave a pulse rate frequency of
25,000 Hz. Furthermore, the captured data were within the
root-mean-square of 0.15 and 0.3 in the vertical and hori-
zontal axes, respectively; thus, the accuracy of the captured
data was reasonable. Along with LiDAR point clouds,
orthophotos were also collected by the same system, as
shown in Fig. 2.2.

2.2.3 Geological Characteristics
of the Study Area

Cameron Highlands District is located in the eastern part of
the main range, which is composed of granites (Bignel and

Fig. 2.1 Geographic location of the study area
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Snelling 1977). However, scattered outliers (roof pendants)
of metasediments can be seen clearly in Fig. 2.3. Bignel and
Snelling (1977) classified the granites of Cameron Highlands
District as megacrystic biotite granite. Cobbing et al. (1992)
mentioned that the associated microgranite and some of the
granites may be mineralized and may contain muscovite.
Furthermore, Chow et al. (2003) stated that metasediments
consist of phyllite, schist, limestone, and slate. They also
stated that minor intercalations of volcanic rocks and sand-
stones were found. Figure 2.3 shows the geological map of
the study area and its surrounding areas. Post-Triassic–
Mesozoic granites comprise most of the granite rocks,
whereas a few are patches of metamorphic rocks that are
mostly composed of Silurian–Ordovician schist, phyllite,
limestone, and sandstone. As for the soil type, steep land soil
covers the entire scene.

2.3 Methodology

Figure 2.4 shows the overall flowchart of the methodology
implemented in this study. High-resolution LiDAR data
with 1-m spatial resolution were used as a main data along
with aerial photographs covering the Ringlet and its sur-
rounding regions. For the ancillary data, a landslide
inventory map showing the location of historical landslides
was used. The overall methodology comprises three main
phases: The first phase is the pre-processing and prepara-
tion of data; the second phase is image segmentation and
object creation; and the final phase is image classification,
and the detection of landslides and man-made slopes. The
third step also includes result validation using a landslide
inventory map created from field investigations based on
site visits.

Fig. 2.2 Aerial photograph of the training site
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Fig. 2.3 Geological
characteristic maps of the entire
study area

Fig. 2.4 Overall methodology
flowchart
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2.3.1 Data Pre-processing and Preparation
of Landslide Factors

Calibrated raw LiDAR data are typically processed into
flight lines of 3D points and saved in LASer (LAS) format.
The first step of LiDAR data pre-processing is a visual
review of the flight lines to inspect the breaks or gaps
between or within flight lines (Chen et al. 2004). Afterward,
LiDAR data were validated with several control points.
These data were obtained from the field to ensure accurate
collection. Typically, these known features are in open areas
free of vegetation, such as airport runways, roads, and tar-
geted survey points. Some systematic errors can be corrected
by additional bore sighting and calibration; however, if the
digital data are inaccurate or corrupted, the mission may
have to be repeated (Chen et al. 2004). Basically, the two
former steps should be done before the acquisition team
leaves the field. If errors are discovered at this stage, the
system can be redeployed for another mission. After the
LiDAR data were reviewed and a few reference points were
validated, noise points were then filtered out; these noises
could be of an extremely high or low value with unrealistic
elevation values or with unexpected values in the project
area (Fang and Huang 2004). After noise removal, layer
extraction was done by attributing all the remaining points
into layers using the multiple return system (Hodgson et al.
2005).

Subsequently, landslide conditioning factors (i.e., digital
surface model (DSM), DTM, curvature, slope, hill shade,
and altitude) were prepared. This process starts with the
conversion of the LAS format to raster using ArcMap soft-
ware by applying the Triangular Irregular Network (TIN)-
based interpolation to create the DSM layer (Fig. 2.5a) with
a spatial resolution of 1 m. Next, DEM layer (Fig. 2.5b) was
generated by filtering out the point cloud into ground and
non-ground points using the former interpolation technique.
The 3D spatial analysis tool in ArcMap software was used to
extract slope, curvature, hill shade, and altitude layers
(Fig. 2.5c–f, respectively) from the DSM and DEM layers.
Evidently, slope is the principal factor affecting landslide
occurrences (Pradhan and Lee 2010). Slope is considered as
an important factor for land stability because of its direct
impact on landslide phenomenology (Martha et al. 2011).
That is, a steeper slope means higher risk of landslide caused
by gravity-induced high shear (Long 2008). The hill-shade
map shows a good image and movement of the terrain,
which supports landslide mapping (Olaya 2009). Curvature
layer defines the convex/concave character of the surface.
Curvature values are calculated as positive, negative, and
zero values, which refers to concavity, convexity, and flat-
tening ground surface, respectively (Pradhan and Lee 2010).
Plan curvature is considered important, because it reliably

indicates convergence and divergence of slope surfaces in
depletion (concave forms of the landslide crowns, tension
cracks and depressions, and zones of local water accumu-
lation) and accumulation zones (convex forms of the land-
slide foot and toe; (Ohlmacher 2007).

2.3.2 Image Segmentation

Before classifying a feature of interest, such as landslides,
delineating image objects that separately or aggregately
discriminate a specific feature (i.e., trees, buildings, and
parcels of land) is important. This process is called image
segmentation, which divides an image into objects or regions
based on the homogeneity of pixel values (Martha 2011).
The precision and quality of segmentation have a direct
impact on the accuracy of the generated classification map
(Laliberte et al. 2004).

This research analysis was conducted in eCognition
software. Several types of algorithms can be found for the
purpose of image segmentation, with multiresolution, quad
tree, and chessboard being the most efficient ones (Definiens
2007). These algorithms provide an effective application for
segmentation and perform good accuracy results.

Multiresolution algorithm, which belongs to the
region-based algorithm category, was utilized in this study
for segmentation (Möller et al. 2007). This algorithm per-
forms various steps, which is initiated with one pixel and
continues until all the criteria specified by the user are
covered (Benz et al. 2004). Multiresolution segmentation
algorithm uses three parameters: scale, shape, and com-
pactness. Selecting the value of these three parameters
should be carefully implemented to achieve meaningful
classification results (Gibril et al. 2016). In this study, a
trial-and-error approach was used to select the parameters,
and evaluation was based on visual interpretation.

2.3.3 Classification

Image segmentation was also examined visually. The soft-
ware calculated different parameters for each object,
including the mean of slope, curvature, DEM, brightness,
and density, as well as geometrical parameters, such as shape
index, texture, length/width, area, and compactness. Each of
these parameters was later used to classify an image object
into several classes using supervised object-based classifi-
cation approach.

2.3.3.1 Classifier
Classifier algorithm allows analysts to apply
machine-learning functions in a two-step process. First, a
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classifier is trained using the classified domain objects as
training samples. The trained classifier was stored as a
string variable in the configuration settings. Second, the
trained classifier was applied to the domain, classifying the
image objects according to the trained parameters. Classi-
fication accuracy ensures the proper selection of the sam-
pling method (Chen et al. 2014). In this study, training
samples were selected randomly and distributed fairly over
the entire study area, in which 60% of the samples were

used for training purpose and 40% were used for testing
the result.

Generally, five different algorithms [i.e., Bayes, k-nearest
neighbor (k-NN), decision tree (DT), random forest (RF),
and support vector machine (SVM)] can be applied to the
classifier algorithm. Each of the aforementioned algorithms
is best suited for a specific purpose. In this study, these
algorithms were tested to identify the optimum algorithm for
landslide and cut slope detection.

Fig. 2.5 Landslide conditioning
factors: a DSM; b DEM; c slope;
d curvature; e altitude; and f hill
shade
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2.3.3.2 Bayes
Conditional independence assumption is a machine-learning
classification system derived from Bayes’ theorem, which
strongly supports the assumption of the independence
between features (Soria et al. 2011). One advantage of this
classifier is the simplicity of its construction, which does not
need any complicated estimation schemes of iterative

parameters (Wu et al. 2008). In addition, Naive Bayes
(NB) classifier is unaffected by noise or irrelevant attributes.
Numerous successful experiments and studies of this clas-
sifier have been conducted in the literature (Xie et al. 2005).

Given an observation consisting of k-attributes xi, i = 1,
2…, K (xi is a landslide conditioning factor), and yj,
j = landslide, man-made slopes are the output class. NB

Fig. 2.5 (continued)
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estimates the probability P(yj/xi) for all possible output class.
The class can be predicted depending on the largest posterior
probability using Eq. (2.1).

yNB ¼ arg maxP yj
� �

yi 2 ½landslide; non-landslide�
Yn
i¼1

Pðxi=yjÞ ð2:1Þ

The prior probability P(yj) can be estimated using the
proportion of the observations with output class yj in the

training dataset. Conditional probability is calculated using
Eq. (2.2).

p
xi
yj

� �
¼ 1ffiffiffiffiffiffi

2p
p

d
e�ðxi�lÞ

2=2d2 ; ð2:2Þ

where µ is mean, and d is standard deviation of xi.
The Bayes classifier has a simple design and assumptions

and was applied successfully in many practical situations.

Fig. 2.5 (continued)
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The basic assumption of this classifier (conditional inde-
pendence) is rarely true in real-world applications (Zhang
2004). Caruana and Niculescu-Mizil (2006) applied a com-
prehensive comparison with other classification methods,
which showed a better performance compared with other
approaches (e.g., boosted tree). Friedman et al. (1997) stated
that Bayes classifier requires only a small number of training
data to evaluate the necessary classification parameters,
which is considered an advantage.

2.3.3.3 k-NN
k-NN is one of the simplest algorithms (Mitchell 1997);
k-NN classifies pixel instance x containing xi coordinates
(including an n-dimensional input space x = (x1, x2, …, xn)|
x ε Rn, where dimensions represent the values of the con-
ditioning factors related to that particular pixel) by class
values cj of the k-closest neighboring pixels xr surrounding
x (cj is previously assigned in the training set by a practi-
tioner as fc(xr)). The nearest neighbors are defined in terms
of Euclidean distance d(x, xr). Thus, the classifier initially
calculates the distances to k-neighbors for each x instance in
the training set. Subsequently, a simple voting system
assigns cj class value (landslide class) to that particular pixel
by class, which predominates the neighboring instances
(Eq. 2.3), or alternatively assigns its mean value to the pixel
if the data are ordinal numerical [Eq. (2.4); Fig. 2.6].

f 0c  arg max
Xk
i¼1

f d x; xrð Þ; fc xrð Þð Þ;
8 x ^ xrð Þ 2 nominal data type

ð2:3Þ

f 0c  arg max

Pk
i¼1 fc xrð Þ
k

; 8 x ^ xrð Þ 2 ordinal data type

ð2:4Þ
Typically, k-NN does need conventional training/testing

procedures; f 0c is simply calculated based on the remaining
(testing) part of the dataset, which is similar with the training
mode (Varmuza and Filzmoser 2016). The number of
neighbors is necessarily an odd number (k = 1, 3, 5, 7…) to
avoid even votes. Closer neighbors tend to have a greater
impact; thus, it is further desirable to ponder the proximity of
each neighbor, thereby upgrading to weighted k-NN
(Mitchell 1997). Thus, the algorithm becomes global
(Sheppard’s method) but requires sorting and weighting of
distances per each pixel element (and each conditioning
factor is assigned to it) in the training set, resulting in a
hardware-demanding and time-consuming procedure.

Therefore, k-NN classifier can be biased if all, relevant
and irrelevant, conditioning factors are fed together to the
algorithm because it builds a weighted or regular k-NN
relation per each conditioning factor, thus misleading the
classification. In other words, k-NN is extremely sensitive to

Fig. 2.6 k-NN classification
principle. Unclassified instance
(?) is classified by the majority of
neighbors into landslide (circle)
or non-landslide (square)
instance. Note that for k = 3, the
instance is classified as landslide;
for k = 4, the instance remains
unclassified (2:2 even votes); and
for k = 5, the instance is classified
as non-landslide
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the relevance of the conditioning factor with landslide
occurrence; thus, a strict attribute selection should be per-
formed prior to the analysis. Alternatively, Euclidean dis-
tance axis can be stretched in the case of weighted k-NN, so
different conditioning factors will have different weights
according to their relevance. Nonetheless, this process does
not solve the computational demands of this algorithm,
especially when mixed data types are present, which
results in a double procedure because of varied distance
calculations.

Nevertheless, the distances are the classification criteria;
thus, k-NN algorithm is straightforward and does not require
a true black-box model. Furthermore, the algorithm can
originate from a remarkably sparse data that are randomly
sampled throughout the training set, which are sometimes
convenient but are of little relevance to the concept of
landslide assessment and prediction of the spatial landslide
distribution. k-NN classifier is also convenient for experi-
menting because it only needs one parameter, which is the
number of k-neighbors k, to be optimized.

2.3.3.4 SVM
Support vector machine (SVM) is a supervised learning
method that analyzes data and recognizes patterns. In other
words, given a labeled training data (supervised learning),
the algorithm outputs an optimal hyperplane that categorizes
new samples (Vapnik and Vapnik 1998). SVM classifies the
original entry space into a more detailed feature space using
training samples. Thereafter, the ideal hyperplane within this
feature space is assigned by doubling the class boundary
margins (Abe 2005). The nearest training samples to the
ideal hyperplane are called support vectors. After deter-
mining the decision surface, it will be used to classify new
data. Consider a training dataset of instance-labeled pairs (xi,
yi) with xi 2 Rn, yi 2 (1, −1), and i = 1… m. In this study of
landslide and man-made cut slope detection, x is a vector of
entry space, which includes slope, curvature, hill shade, soil
type, distance to road, and altitude.

The two classes (1, −1) stand for the pixels of landslide
and man-made slope, respectively. Finding the ideal hyper-
plane separation that discriminates the two classes from the
set of training data is the aim of SVM classification. In case
of linear data separation, a separating hyperplane can be
defined as follows:

yi w � xiþ bð Þ� 1� di; ð2:5Þ
where w is a coefficient vector that determines the orienta-
tion of the hyperplane in the feature space, b is the offset of

the hyperplane from the origin, and di is the positive slack
variables (Cortes and Vapnik 1995).

Determining an optimal hyperplane leads to solving the
following optimization problem using Lagrangian multipli-
ers (Samui 2008):

minimize
Xn
i¼1

ai � 1
2

Xn
i¼1

Xn
j¼1

aiajyiyj xixj
� � ð2:6Þ

subjected to
Xn
i¼1

aiyi ¼ 0; 0� aj�C; ð2:7Þ

where ai are Lagrange multipliers, C is the penalty, and the
slack variables di allow the violation of penalized constraint.

The decision function, which is used to classify new data,
can then be written as

g xð Þ ¼ sign
Xn
i¼1

yiaixiþ b

 !
: ð2:8Þ

In some cases, where determining the separating hyper-
plane is impossible through the linear kernel function, data
entry can be transferred to a high-dimensional feature space
using a few nonlinear kernel equations. The classification
decision equation is then written as

g xð Þ ¼ sign
Xn
i¼1

yiaikðxixjÞþ b

 !
; ð2:9Þ

where k xixj
� �

is the kernel function.

2.3.3.5 DT
Decision tree (DT) is a nonparametric supervised learning
method that is usually used for data mining. In this method, a
series of decisions are made to segment the data into
homogeneous subgroups. DT model is more likely to look
like a tree with several branches. In some cases, DT can be
remarkably complex with the involvement of a large number
of splits and nodes. DT aims to build a model that can
estimate the value of a target variable depending on several
input variables regarded as training samples. The tree model
can be learned by breaking the main set into subsets
depending on an attribute value test. Thereafter, this opera-
tion is repeated for each derived subset in a repetitive
manner called recursive partitioning (Last et al. 2002). Once
the subset of all nodes has the same value as the target
variable, or when the breaking operation does not add any
more value to the predictions, the recursion step is
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considered complete. The main objective of using a
tree-building algorithm is to determine a set of if-then logical
or split conditions.

Important DT Parameters
The minimum number of samples needed per node that are
defined by the parameter is called Min sample count. Finding
the optimum-sized tree can be challenging, because the pre-
diction of a tree with a few splits may be inaccurate. Con-
versely, a tree with a multitude splits will add unnecessary
complications to the analysis operation. Cross-validation can
be performed to address this issue by setting cross-validation
folds using eCognition parameters. In this process, comput-
ing for the classification tree is done by learning the samples
and then evaluating the prediction accuracy by testing these
samples. Cross-validation gives a poor indication in
cases where the test sample cost is more than the learning
sample cost and a good indication in instances with a
different-sized tree.

2.3.3.6 RF
Random forest (RF) is a machine-learning algorithm used
for the purpose of classification and regression, as proposed
by (Breiman 2001). This supervised method was success-
fully applied in several areas and domains. Remote sensing
field is one of the major domains and has been applied in
landslide detection (Chen et al. 2014), urban trees (Puissant
et al. 2014), agricultural soil mapping (Grimm et al. 2008),
and biomass estimation (Mutanga et al. 2012). RF is a
multiple DT classifier based on classification and regression
tree [CART; (Breiman et al. 1984)]. This method imple-
ments a bootstrap sampling for each DT, which enables the
estimate calculation of errors to be based on the remaining
instances, which is known as “out-of-bag” (OOB). RF
applies a different process to determine the best split
threshold, in comparison with CART. RF is considered as a
random subset of the original set of the feature, whereas
CART considers all variables at each node. Users can esti-
mate the variables per the number of node by using the
square root of the total variable number. Two mechanisms,
sampling and the use of random variables for each node,
generate significantly different uncorrelated trees. Further-
more, having a relatively large number of trees is necessary
to obtain the full variability of the training data, which gives
good classification performance with high accuracy. The
final step is assigning a feature into a class by considering
the votes of all the trees in the forest. The class will then be
assigned based on majority voting. The RF package (Liaw
and Wiener 2002) for the open-source statistical language R
(R Development Core Team 2013) was used for all experi-
ments in this study.

Random forest (RF) has several advantages. First, RF is a
nonparametric method; thus, the values of variables are not
required to follow a particular statistical distribution. Sec-
ond, it is insensitive to overfitting and noise. Furthermore,
RF is relatively fast compared with other techniques, such as
the boosted method (Breiman 2001). The calculation time
for training RF is defined by Eq. (2.10).

cT
ffiffiffiffiffiffiffiffi
MN
p

logN; ð2:10Þ
where c is a constant dependent of data complexity (i.e.,
small or large dataset), T is the number of tree, M is the
number of variables, and N is the number of instances
(Breiman 2003).

When RF and SVM, whose complexities vary between
N2 (when c is small) and N3 (when c is large), are compared
(Bottou and Lin 2007), RF will give a better adaption for
larger datasets. Also, RF requires less tuning (Rodriguez-
Galiano et al. 2012) and can implement the actual measures
of variables, which can be estimated by alternating the value
of variables on the OOB sample and calculating the differ-
ence in OOB errors before and after the alternation process.
Those measures are used to analyze and interpret the clas-
sification (Rodriguez-Galiano et al. 2012) and define the
type of sensor (Guo et al. 2011). Otherwise, defining the
scale of segmentation (Duro et al. 2012) is more suitable for
identifying a particular geographic object.

2.3.3.7 Landslide and Cut Slope Detection
The supervised landslide detection and cut slope detection
were done in two successive steps. The first step was training
the classifier with an adequate number of samples. The
samples were selected randomly based on landslide inven-
tory data. In this study, 60% of the samples were selected for
training the classifier for the classes: landslide, cut slope, and
non-landslide. These samples were examined based on the
aerial photographs, slope, and hill-shade layer of the study
area to ensure that each sample was selected accurately. The
classifiers were then trained using these samples. In the
second step, in each classifier method, several user-defined
parameters should be carefully selected. In this study, the
user-defined parameters were selected based on a
trial-and-error approach. Table 2.1 shows the classifiers with
their user-defined parameters that were selected for super-
vised landslide detection.

2.3.3.8 Validation
The efficiency and quality of the presented methodology for
each study and research must be properly examined and
tested, which can be achieved by a proper validation tech-
nique. In this study, the validation was done in three steps:
The first step is to examine the classification results visually;
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the second step is to transfer the methodology to a different
subset of the study area and examine the ability of the
method to detect landslides and cut slopes; and the final step
is field validation, which is a site visit to the field, and is
necessary to confirm the location and boundary of few
landslides detected by the methodology presented in this
study.

Visual Interpretation
In the first validation step, where the results of each classifier
are examined visually, some classifiers (e.g., Bayes) pro-
duced results with high level of uncertainty and misclassi-
fication, thereby making visual interpretation useful for the
rejection of the result of such classifier. In addition, a few
classifiers have numerous user-defined parameters (e.g., DT
and RF), which need to be fine-tuned; visual interpretation is
considerably useful for this purpose.

Transferring to Testing Subset
The efficiency and quality of the presented methodology
should be properly examined and tested. In this research, the
study area was divided into three different subsets, and the
same methodology was replicated on the testing sites to
examine its validity and accuracy. Dividing the study area
into three different subsets was implemented carefully. The

first subset (Fig. 2.7a) has the smallest land area (2 km2) and
was used to develop the method. The first subset was easy to
process and interpret because of its small size. Moreover, the
training subset has various types of land-use classes (e.g.,
landslides, cut slopes, vegetation, and urbanization) that are
fairly distributed over the entire study area, thereby making
it a challenging task during the development of the
methodology. The other two subsets, which have a larger
land area of 4 km2, were used to test the proposed method.
The first testing subset (Fig. 2.7b) is considerably similar to
the training subset but larger in size. Conversely, the second
subset (Fig. 2.7c) has different distribution of land-use
classes; the vegetation covers almost 85% of the entire area.

Field Validation
Multiple field visits were conducted using Global Position-
ing System (GPS) devices to examine the location and the
boundary of detected landslides. Documenting these land-
slides in the field was challenging, because most of the
landslides are in private farms, and other landslides are
within thick-vegetated forests. Only landslides parallel to the
road or in open areas were well documented through mul-
tiple field inspections. Most of the landslides were covered
by vegetation and became invisible because of the rapid
growth of vegetation in tropical areas, thereby posing a new

Table 2.1 Selected value of
each parameter for each
classification algorithm used

Classifier Parameter Selected value

Bayes NA NA

k-NN K 1

SVM Kernel type Linear

C 1

DT Depth 0

Min sample count 0

Use of surrogates Yes

Max categories 16

Cross-validation folds 3

Use of 1 standard error (SE) rule No

Truncate pruned tree Yes

RF Depth 0

Min sample count 0

Use of surrogates Yes

Max categories 16

Active variables 0

Max tree number 50

Forest accuracy 0.01

Termination criteria type Both
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challenge for documentation. Figure 2.8 shows some
examples of landslides from the study area of Ringlet.

Accuracy Assessment
Accuracy assessment is based on the comparison of super-
vised object-based classification result with an actual land-
slide inventory map. Actual landslide inventory data are
generally derived from ground truth data, ground reference
data, or other dependable datasets. Performing accuracy
assessment of the features detected through remote sensing
images is highly pertinent (Lillesand et al. 2004).

Ground truth information (or reference data source)
consists of gathered observation about features and phe-
nomena that are captured by data. In terms of validation,
ground truth information is used for the accuracy assessment
of landslide inventory map. Land cover maps from remotely
sensed data have minor practical value without accuracy
assessment. Accuracy assessment aims to evaluate the pat-
tern classification landslide location map. In addition, this
assessment reports the importance of classification schemes,
so other researchers can easily interpret and apply them.
Accuracy assessment involves two steps:

Fig. 2.7 Subsets of the study area
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1. Collection of ground truth data. Ground truth data are
independent from the training data that have been used in
the process of image classification. Based on the
methodology, ground truth data are collected in specific
locations to be found in remotely sensed data. Sources of

ground truth data consist of high-spatial resolution
remotely sensed data, such as aerial photography, a
high-resolution satellite imagery (including Ikonos,
Quick-bird, and Worldview2), or a field survey mea-
surement using GPS.

Fig. 2.8 Photographs taken during field validation
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2. Comparison. Ground truth data are compared with data
that are determined from different classes to classify the
imagery.

A confusion matrix is a cross-tabulation of the classified
and actual class labels for the study area (Foody 2004). This
matrix is a square array of dimension r � r, where r is the
number of categories. Confusion matrix represents the cor-
relation between two samples of measurement from the
classified region. The overall, user, and producer accuracies,
and the kappa coefficient can be measured using confusion
matrix. The overall accuracy is attained by dividing the
aggregate of the main diagonal entries of the confusion
matrix by the entire number of samples. The kappa coeffi-
cient (K) was measured using Eq. (2.11).

K ¼ h1� h2
1� h2

ð2:11Þ

2.4 Results

2.4.1 Landslide Detection Results

Several supervised classification methods were applied for
landslide detection, including Bayes, DT, RF, k-NN, and
SVM. The results of classification using k-NN, DT, and
Bayes algorithms showed poor accuracy results, because
most of the landslides were not detected correctly. Further-
more, landslides were misclassified as man-made cut slopes
and bare lands in some cases. SVM and RF algorithms
performed better compared with the previous three; many
landslides were correctly detected, positioned, and delin-
eated. Two testing sites were used to evaluate the consis-
tency of the used classifiers for landslide detection. This
section presents the results of landslide detection in the two
sites. The first testing site contained several landslides, while
few were detected in the second testing site.

2.4.2 Results of Landslide Detection
in the Training Site

2.4.2.1 RF
In this study, RF classifier was also used for landslide
detection. Results of RF landslide detection are shown in
Fig. 2.9. Initial observations for the map indicate that this
method performed better than k-NN, DT, and, Bayes

algorithms. Evidently, most of the landslide inventories were
detected accurately. Few cut slopes were misclassified as
landslides, as shown in the northeastern part of the study
area. RF detected 30 out of the 40 landslide inventories
found in the study area. However, some landslides were
undetected despite being visible in the middle part of the
study area. The challenge with RF algorithm is that it
requires the fine-tuning of several parameters. The current
study optimized the parameters by trial-and-error approach.
However, best results were not achieved. Using more robust
algorithms for fine-tuning the parameters of RF could
improve the landslide detection results.

2.4.2.2 SVM
Support vector machine (SVM) has been widely used for
landslide susceptibility mapping, and its advantages are well
established in several landslide studies. In this study, SVM
was used for landslide detection. Figure 2.10 shows the
results of SVM landslide detection. Results indicate that
SVM is the best among the other four methods; most of the
landslides were detected, few cut slopes were misclassified
as landslides, and few landslides were undetected. SVM
works on the concept of optimization and error reduction;
therefore, it performs well for landslide detection. Having
accurate landslide inventories is difficult; thus, a methodol-
ogy that can detect and reduce errors is significantly
important. SVM utilizes this concept; thus, it detected
landslides accurately, leaving only few undetected.

Figure 2.10c shows a landslide photograph taken during
the field visit. The capturing angle does not show the entire
boundary of the landslide; thus, proper documentation of the
landslide was challenging.

2.4.3 Results of Landslide Detection
in Testing Site 1

2.4.3.1 RF
The result of RF landslide detection for Testing Site 1 is
shown in Fig. 2.11. The first examination of the map shows
that several landslides were accurately detected, and few cut
slopes were misclassified. This shows the main difference
between the result of RF and those of other methods presented
previously. The RF algorithm tends to separate landslides
from cut slopes better than Bayes, DT, and k-NN techniques.
Although RF requires several user-defined parameters for
fine-tuning, its results are better than the other techniques,
using several combinations of the parameters.
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2.4.3.2 SVM
A landslide inventory map for Testing Site 1 was produced
by SVM method, as shown in Fig. 2.12. This method is
shown to be suitable for the training site. When the results
were examined, the algorithm produced a good landslide
inventory map; the landslides were accurately detected, and
few cut slopes were misclassified.

2.4.4 Results of Landslide Detection
in Testing Site 2

2.4.4.1 RF
Figure 2.13 shows the results of landslides detected using RF
for Testing Site 2. Results are far from excellent, as many

landslides were undetected. However, this method remains
better than Bayes, DT, and k-NN, because few cut slopes were
misclassified. This result shows that RF is a good classifier for
landslide detection in the presence of man-made slopes.

2.4.4.2 SVM
Figure 2.14 shows the result of SVM landside detection in
the presence of man-made slopes for Testing Site 2. SVM
produced an accurate landslide inventory map with few
undetected landslides. In addition, results show that SVM is
better than RF through visual examination. Several land-
slides in the upper left part of the study area were detected
by SVM but not by RF. However, both the SVM and RF
performed well in landslide detection when man-made
slopes are present in the study area.

Fig. 2.9 Detected landslides using RF classification algorithm
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2.4.5 Cut Slope and Landslide Detection Results

This section presents the results obtained from landslide and
cut slope mapping of the training site and two testing sites.
Figure 2.15 shows the detected landslides and cut slopes by
SVM and RF models. These two algorithms were considered
as the most effective among others because of their high
accuracy. The map shows the detected landslides in dark
blue, the cut slopes in light blue, and the other features in
pink. Both landslides and cut slopes are randomly distributed
in the study. However, the study area exhibited a clustered
pattern of landslides in the upper right corner, characterized
by having a high slope, concave curvature, and is mostly
barren.

Figures 2.16 and 2.17 show the landslides and man-made
slopes of the two testing sites. The landslides are shown in
dark blue, whereas man-made slopes are highlighted in light
blue. The landslides and cut slopes are randomly distributed
in the study area. The area has large and small landslides and
cut slopes. Landslides may also vary in types in this study
such as landslides and debris flows. Figure 2.17 illustrates
few landslides and cut slopes in Testing Site 2. Most of the
landslides and man-made slopes are located in the north part
of the area; the middle and south parts are mostly forested
area. Some landslides may have occurred in forest area,
which could not be detected because LiDAR point clouds
only have one return. Multiple LiDAR data returns are
important to detect landslides in forested areas. Overall, 123

Fig. 2.10 Detected landslides using SVM classification algorithm
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landslides and 205 cut slopes were detected in the first
testing site. Similarly, 18 landslides and 51 man-made slopes
were detected in the second testing site.

2.4.6 Results of Image Segmentation

Once the input layers were prepared, spectral and
LiDAR-based features were combined in one raster dataset
for segmentation. Then, a multiresolution segmentation
algorithm was utilized for segmentation. The parameters of
segmentation were set as scale (60), shape (0.1), and com-
pactness (0.5). These values were selected based on
trial-and-error experiments in eCognition software. Seg-
mentation result of the training site is shown in Fig. 2.18.

Landslide features are accurately delineated. Accurate seg-
mentation is important for efficient landslide detection by
various features. For example, in Fig. 2.18a, the segments
show that the landslide scarp is accurately defined, whereas
in Fig. 2.18b, the landslide scarp is only partially defined.
Moreover, in Fig. 2.18c, the landslide scarp is defined
inaccurately.

Some landslides are defined accurately because of fewer
variations in slope, curvature, and altitude values. Landslide
scarps are defined inaccurately, because the slope, curvature,
and height values vary significantly within the landslide
objects. Therefore, one landslide scarp may be segmented as
two or more landslide objects, thereby reducing the accuracy
of landslide detection as several spatial features can be
useless.

Fig. 2.11 Detected landslides using RF classification algorithm
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2.4.7 Results of Accuracy Assessment

Table 2.2 shows the overall accuracies and kappa indices of
landslide detection using several classifiers and datasets. For
the training site, the SVM method had the highest overall
accuracy (0.90) and kappa index (0.83), in contrast to the DT
algorithm that had the lowest overall accuracy and kappa
index of 0.61 and 0.37, respectively. In general, the accuracy
assessment shows that SVM and RF performed well in
landslide detection compared to other methods. For Testing
Site 1, the highest and lowest overall accuracies were 0.80

and 0.61 for SVM and Bayes methods, respectively. More-
over, the highest and lowest kappa indices were 0.74 and
0.33 for the same classifiers, respectively. Thus, RF is
considered as a good classifier for landslide detection.
Results confirmed that SVM and RF are the best methods for
landslide detection. For Testing Site 2, RF had the highest
overall accuracy of 0.91, followed by SVM with 0.90. The
lowest overall accuracy was achieved by Bayes algorithm
with 0.65. The kappa indices indicate that SVM is better
than RF and other methods. The kappa index of SVM and
RF is 0.85 and 0.80, respectively. Quantitative assessments

Fig. 2.12 Detected landslides using SVM classification algorithm
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show that SVM and RF can be good classifiers for super-
vised landslide detection in LiDAR data and orthophotos.

The study aimed to detect landslides in the presence of
man-made slopes and produce an accurate inventory
map. Man-made or cut slopes create challenges in landslide
detection because their geometry and geomorphology are
relatively similar. This study attempted to separate these
classes. Table 2.3 shows the user and producer accuracies
obtained from various classifiers for cut slope and landslide
classes. Although Bayes method achieved the highest user
accuracy, evaluation of simultaneous user and producer
accuracies is important. This evaluation ensures that the
detected landslides are accurate and that only few landslides
will be undetected. The highest user and producer accuracies
for landslide class were achieved by Bayes and SVM

methods, whereas the highest user and producer accuracies
for cut slope were observed for Bayes (1) and RF methods
(0.90). However, SVM and RF achieved relatively high user
and producer accuracies simultaneously, indicating a good
classification of landsides and cut slopes. SVM performed
better than RF for landslide and cut slope classification.

For Testing Site 1, the highest user and producer accu-
racies for landslide class were achieved by RF and Bayes
algorithms, whereas the highest user and producer accuracies
for cut slope were found for SVM and RF algorithms. Kappa
indices showed that SVM and RF are best for landslide and
cut slope separation. The highest kappa index was achieved
by SVM (0.78, 0.78) and RF (0.67, 0.83) for landslide and
cut slope classes, respectively. In addition, the user and
producer accuracies and kappa indices for Testing Site 2

Fig. 2.13 Detected landslides using RF classification algorithm
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confirmed that SVM and RF classifiers are the best algo-
rithms for landslide detection. Overall assessment shows that
the separation between cut slopes and landslides using
LiDAR data and orthophotos through supervised classifica-
tion is possible and can be improved. The current study
achieved satisfactory results of landslide detection and sep-
aration between landslides and man-made slopes; however,
further research is needed to detect the type of and improve
the accuracy in cut slopes. The proposed supervised frame-
work provides a rapid and efficient guideline for landslide
mapping, which is valuable for landslide susceptibility
mapping, and hazard and risk assessments.

2.5 Discussion

Several methods of determining segmentation parameters,
such as supervised and Taguchi approaches (Gibril et al.
2016), were reviewed. In supervised approaches, segmenta-
tion is usually optimized based on multiple features found in
the image of the study area. Conversely, in Taguchi
approaches, segmentation parameters are optimized for a
single feature only. Because several types of landslides are
present in the study, optimizing the parameters for only one
feature without considering the type of landslide created a
huge challenge for the Taguchi approach. Supervised method

Fig. 2.14 Detected landslides using SVM classification algorithm
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is a good option after the Taguchi method. Although super-
vised approaches are user independent and require less time
than trial-and-error method, they also depend on the selected
subsegments that aimed to be merged into a target segment.

Preparing the input layers, selecting a classifier, and the
fine-tuning of user-defined parameters of the classifier are
important in supervised landslide detection (W. Chen et al.
2014). The current study analyzed several input layers
derived from LiDAR-based DEM and DSM for improved
landslide detection. Significant layers were selected based on
their importance for landslide detection using the training
site and analyzed through trial-and-error approach. Overall,

13 features, including spectral, LiDAR, spatial, and texture,
were used. Furthermore, several classifiers were analyzed by
measuring their accuracies for landslide detection. The
user-defined parameters of the classifiers were also
fine-tuned by trial-and-error method.

From LiDAR point clouds, six features were produced:
DEM, DSM, height, slope, curvature, and hill shade.
Training site elevation ranged from 997 to 1270 m. Con-
versely, the height feature showed that the height of objects
in the study areas varies from 0 m (flat objects) to 100 m
(hilly lands). In addition, slope of the study area includes flat
and hilly lands. The slope ranged from 0 to 87°. As in

Fig. 2.15 Landslide and cut
slope mapping (Training Site)
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segmentation results which is shown in Fig. 2.18, the study
area has flat, concave, and convex type of curvature surfaces.

Figure 2.19 shows that landslides and cut slopes are
difficult to separate using only LiDAR-derived parameters
because both landslides and cut slopes have relatively sim-
ilar characteristics. Therefore, investigating other parameters
and orthophotos is important.

Three spectral bands (R, G, and B) of the orthophotos
were used for landslide detection. Orthophotos are useful
information to separate landslides from other features,
such as grassland, buildings, and water bodies. Analysis of
typical values of spectral bands for landslide and
non-landslides is presented in Fig. 2.20. The chart pre-
sents the minimum, maximum, and mean values of RGB

Fig. 2.16 Landslide and cut
slope mapping (Testing Site 1)

Fig. 2.17 Landslide and cut
slope mapping (Testing Site 2)
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Table 2.2 Overall accuracies
and kappa indices of landslide
detection

Dataset Classifier Overall accuracy Kappa index

Training Site Bayes 0.75 0.46

k-NN 0.65 0.4

DT 0.61 0.37

RF 0.82 0.7

SVM 0.9 0.83

Testing Site 1 Bayes 0.61 0.33

k-NN 0.72 0.51

DT 0.72 0.53

RF 0.78 0.64

SVM 0.86 0.74

Testing Site 3 Bayes 0.65 0.37

k-NN 0.71 0.43

DT 0.78 0.56

RF 0.91 0.8

SVM 0.9 0.85

Fig. 2.18 Segmentation results
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Table 2.3 User and producer
accuracies obtained from various
classifiers for cut slope and
landslide classes

Dataset Classifier Class User Producer KIA

Training Site Bayes Landslide 1 0.5 0.44

Cut slope 1 0.26 0.22

Others 0.7 1 1

k-NN Landslide 0.37 0.45 0.27

Cut slope 0.54 0.65 0.53

Others 0.82 0.71 0.4

DT Landslide 0.58 0.35 0.25

Cut slope 0.42 0.75 0.59

Others 0.77 0.67 0.36

RF Landslide 0.92 0.6 0.53

Cut slope 0.69 0.9 0.86

Others 0.86 0.88 0.72

SVM Landslide 0.82 0.95 0.93

Cut slope 0.8 0.8 0.74

Others 0.98 0.92 0.83

Testing Site 1 Bayes Landslide 0.85 0.2 0.15

Cut slope 0.66 0.4 0.27

Others 0.58 0.96 0.84

k-NN Landslide 0.77 0.45 0.37

Cut slope 0.51 0.75 0.63

Others 0.82 0.8 0.55

DT Landslide 0.6 0.45 0.34

Cut slope 0.52 0.73 0.62

Others 0.86 0.82 0.62

RF Landslide 0.94 0.58 0.52

Cut slope 0.56 0.91 0.86

Others 0.91 0.8 0.6

SVM Landslide 0.79 0.76 0.71

Cut slope 0.69 0.71 0.65

Others 0.93 0.93 0.82

Testing Site 2 Bayes Landslide 1 0.33 0.26

Cut slope 1 0.33 0.26

Others 0.58 1 1

k-NN Landslide 0.4 0.66 0.54

Cut slope 0.75 0.5 0.44

Others 0.83 0.76 0.37

DT Landslide 0.66 0.57 0.5

Cut slope 0.8 0.44 0.36

Others 0.8 0.96 0.85

RF Landslide 1 0.71 0.67

Cut slope 0.85 0.85 0.83

Others 0.9 0.96 0.87

SVM Landslide 1 0.83 0.78

Cut slope 1 0.83 0.78

Others 0.83 1 1
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bands for landslide, cut slope, and other features in the study
area. The three classes have approximately similar average,
minimum, and maximum values of RGB bands. However,
slight differences in these bands can also separate the three
classes at some extent depending on the classifier used.
When these parameters are combined with other features,
they can work more significantly in landslide and cut slope
detection.

Spatial and texture features are also important for land-
slide detection. Area, length/width, compactness, shape
index, rectangular fit, and Gray-Level Co-Occurrence Matrix

(GLCM) mean are the spatial and texture features used in
this study. Figure 2.21 shows the extracted values of these
features for landslide and non-landslide features.

The chart of spatial parameters reveals that landslide and
cut slope can be well separated using these parameters than
other previously discussed parameters. The values of most of
the parameters for landslide, cut slope, and other features are
different. Minimum, maximum, and average values vary for
the three classes. Area, length/width, and texture are the
most important parameters for the separation of landslide
and cut slope features in the study area.

Fig. 2.19 Typical values of
LiDAR-based features for
landslide and non-landslide
features. Note (1) slope �10;
(2) hill shade, intensity, and DEM
�102

Fig. 2.20 Typical values of
spectral bands for landslide and
non-landslide features
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2.6 Conclusion

Landslides are one of the most destructive natural disasters
that mountainous areas, such as Malaysia, suffer from and
are known to threaten human lives and properties. Landslide
inventory maps are valuable sources of information and are
essential for various studies and investigations, such as
landslide susceptibility, and hazard and risk assessments, as
well as various decision-making processes and polices.
Providing an efficient method in detecting and distinguishing
landslides and man-made slopes is a challenging task; most
methods concentrate on landslide detection only, and these
methods require much time and are costly.

This study aims to provide a rapid and accurate method
that can create a landslide and man-made slope inventory
map semiautomatically. To achieve this goal, few steps were
applied: (1) the preparation and analysis of several spatial,
spectral, and texture features, and LiDAR-derived parame-
ters; and (2) the evaluation of five well-known classifiers to
determine the best algorithm for landslide and man-made
slope detection.

In general, five classifiers, i.e., Bayes, DT, k-NN, RF, and
SVM, were evaluated to propose a semiautomatic supervised
landslide and man-made slope detection approach using
airborne LiDAR data coupled with orthophotos.

The research findings provided an effective solution for
supervised and semiautomatic landslide and man-made
mapping in tropical areas. Analysis showed that RF and
SVM are the suitable classifiers for object classification
using LiDAR data. The accuracies of these models were
consistent in the three subsets of data that were used for
validations. Overall evaluations of the studied classifiers
showed that using supervised classification at object level,

separation between cut slopes and landslides using LiDAR
data and orthophotos is possible and can be improved.
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