
Preface

The significant growth of world’s population and the rapid expansion of cities generate great
challenges for decision makers and put an increasing number of people at hazards. Even
though it is impossible for human being to prevent natural disasters, there have been great
efforts to create knowledge, design methods, and frameworks to assess, prepare, and mitigate
the potential effects of natural hazards. Among natural disasters, landslides pose considerable
risks to people’s livelihood and to the environment. They cause significant disruption and
economic losses by the devastation of major infrastructures such as settlements, transportation,
power and communication lines, and other utilities. Several landslide triggering factors such as
intense rainfall, earthquakes, volcanic eruptions, hurricanes, and human activities threaten
many parts of the world and increase the potential of landslides. Hence, it has been important
to put significant efforts to advance landslide studies and design effective and practical tools
that could be used by decision makers.

Landslide is defined as “the movement of a mass of rock, debris, or earth down a slope.”
They result from the failure of hill slope materials driven by the force of gravity. Landslides
are also known as slope failure and they are classified into several types according to the type
of mass movement. The basic types of landslide movements are fall, topple, slide, flow, and
spread. Landslides occur almost worldwide and cause significant disasters with very great
impacts to the society. They are studied in many countries, and scientific and engineering
fields and a wide variety of innovations have been proposed to enhance our understanding
of their mechanisms. In general, landslides occur in a variety of landscapes characterized by
the cliff, steep slopes, and unstable geology. There are many other factors contribute to the
landslide occurrence such as slope curvature, weathering, water content, sediment availability,
climate, vegetation, and anthropogenic inputs. However, most of the time, landslides are
triggered by one factor or combination of factors such as heavy rainfall, earthquakes, or glacial
erosions. Thus, it is important for scientists to understand the links between these factors and
the concept of landslide risk. This has allowed them to accurately predict the distribution of
future landslides, estimate and simulate their extents, and quantify their impacts to the human
life and property.

Assessment of landslides usually involves several modeling techniques using a wide range
of data sources. Overall landslide assessments comprise detection of landslide scarps, pre-
diction of the spatial distribution of potential future landslides, modeling hazards and vul-
nerability, and estimating landslides risks and their impacts. For the detection of landslide
scarps, the key methods are interpretation of aerial photographs, change detection, topographic
and geomorphological analysis of laser scanning data. In addition, a wide range of
knowledge-based, statistical, and machine learning methods are used for predicting potential
future landslides in a given area. For example, the popular methods are analytic hierarchy
process, frequency ratio, logistic regression, and support vector machines. On the other hand,
techniques for modeling landslide hazards are generally well documented. Their concepts are
based on integrating the spatial and temporal variations of triggering factors with potential
landslide zones. Furthermore, to model landslide risks, understanding of the elements at risk
including exposure information is considered a critical factor. Exposure information is
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produced by obtaining the best available data, statistics, spatial and attribute data about
buildings, demographics, community infrastructure, and agricultural commodities. This
information allows to model landslide vulnerability through the use of curves that describe a
probable damage severity or economic loss for a particular type of infrastructure when it is
subjected to some level of hazard. Finally, modeling of landslide risk is based on statistical
information about past events and their estimated impacts. Overall, risk models can be used to
perform cost–benefit analysis for various forms of mitigation involving short-term solutions,
such as early warning and response, along with long-term solution, such as land use planning
and improvements to building codes and infrastructure.

The practical development of landslide risk models requires comprehensive data for each
step of modeling. In the recent times, LiDAR (light detection and ranging) is widely used for
landslide investigations to create accurate digital elevation models which enable extracting
several precise topographic, geomorphological, and hydrological factors used in several steps
of overall landslide assessments. The key advantages of using LiDAR for landslide studies are
high-resolution landslide contours, which permits identifying landslide scarps and displaced
materials and delineating geomorphological features of landslides such as scarps, mobilized
material, and foot. Other advantages include automating landslide mapping, penetrating
vegetation canopies, and supporting simulations of debris flows and rock falls at small scales
due to their high-density points collected over the focused area.

Landslides occur worldwide; however, rainfall-induced slides tend to be much greater in
tropical hilly areas. Mountainous terrain and heavy tropical rains put dense populations and
infrastructures at risk. Thus, monitoring different types of landslides can be useful for miti-
gating the effects of these disasters and properly plan for potential future events.

This book at the first describes the fundamental concept of using LiDAR for landslide
applications and assessment. A general overview of laser scanning systems in the context of
landslide studies is explained to support understating the followed materials of the book. As a
preliminary step, landslide and debris flow inventory mapping and characterization is pre-
sented with diverse illustrations. This is followed by a detailed landslide susceptibility map-
ping procedures including optimization of landslide conditioning factors, effects of spatial
resolution of DEM, and detailed comparative analysis of a large number of models used in the
literature. Besides, identification of debris flow source areas and its assessment using empirical
models will be discussed. In addition, landslide risk assessment using multihazard scenarios
will be described. Furthermore, LiDAR techniques in rockfall hazard assessments is also
investigated and discussed in details.

This book is organized into 17 chapters.
Chapter 1 briefly discusses about the active remote sensing systems, such as light detection

and ranging (LiDAR) which are widely used in landslide disaster management and risk
mitigation. The main advantage of these technologies is the production of high-resolution
digital elevation models (DEMs). Such models allow detailed mapping of terrain and
extraction of geomorphological features, which are extremely important in landslide assess-
ment. Therefore, this chapter provides an overview of the use of LiDAR in landslide inves-
tigations. First, it introduces the main components of LiDAR systems and the basic concept of
laser measurements and then discusses the accuracy and resolution of typical laser scanning
systems. Second, it provides information about LiDAR data processing (i.e., point cloud
filtering, geometric calibration). Third, it discusses the main products of LiDAR that are useful
for landslide investigation and modeling. Finally, it describes and illustrates several landslide
applications where LiDAR data are beneficial.

Chapter 2 proposes a semiautomatic supervised approach for the detection of landslides in
man-made slopes. Several techniques have been proposed for landslide mapping using remote
sensing data in the literature, especially in unstable slope areas. Generally, cut slopes are
created to mitigate the risk of land failure for areas that have high probability of failures. This
method creates new challenges for landslide mapping in these areas. Five classifiers were
evaluated for object-based landslide detection using airborne LiDAR data coupled with
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orthophotos. This chapter aims to: (1) to prepare spectral, spatial, and texture features, as well
as LiDAR-derived parameters for landslide detection using supervised classification schemes;
(2) to evaluate five well-known classifiers (i.e., Bayes k-nearest neighbor, support vector
machine (SVM), random forest (RF), and decision tree) for landslide detection, thereby
determining the best algorithms; and (3) to produce an inventory map of landslides and
man-made slopes of the study area using the best classifiers found in the second objective.
Results of landslide factor and feature analyses showed that landslides and cut slopes are
extremely difficult to separate using only LiDAR-derived parameters. Orthophotos are useful
information for the separation of landslides from other features, such as grassland, buildings,
and water bodies. Spatial and texture features are also important for landslide detection. A field
validation was also applied using a landslide inventory map collected from multiple field
investigations. This inventory map shows landslide locations, type, geometry, and direction.
Landslide inventory was also used to train the classifier, thus improving sampling accuracy.
The result of the analysis showed that SVM and RF achieved relatively high user and producer
accuracies, and indicated a good classification of landsides and cut slopes simultaneously. In
comparison, SVM performed better than RF for landslide and cut slope classification. Overall
assessment indicated that the separation between cut slopes and landslides using LiDAR data
and orthophotos in supervised classification is possible and can be improved. The resulting
landslide inventories are valuable resources for both the geomorphological investigation of
landslide events and hazard assessment and susceptibility analysis in landslide-prone regions.

Chapter 3 discusses about a new approach for detection of different types of landslides such
as shallow and deep seated. A good landslide inventory map is a prerequisite for analyzing
landslide susceptibility, hazard, and risk as well as for studying the evolution of a landscape
affected by landslides. Using traditional methods for landslide detection is challenging because
of the presence of dense vegetation in landslide locations and the time-consuming large-scale
projects that are concomitant with these methods. Data derived from LiDAR can depict ground
surface and provide valuable information on the topographic features of locations hidden
under dense vegetation. This study presents an automatic LiDAR-based landslide detection
method and discusses its capability to differentiate between shallow and deep-seated landslides
as well as its transferability. An existing supervised approach was adopted to optimize seg-
mentation parameters (i.e., scale, shape, and compactness). Subsequently, a correlation-based
feature selection technique was used to select relevant attributes for developing the set of rules.
The rules were developed using a decision tree algorithm. An object-based approach was
applied to identify the locations and characteristics of landslides. To validate the method, the
area under the curve was used. The accuracy of landslide detection on the test site was 0.82,
and the accuracy of detecting shallow and deep-seated landslides were 0.80 and 0.83,
respectively. The intensity derived from the LiDAR data and texture significantly affects the
accuracy of differentiating shallow from deep-seated landslides. Therefore, the current study
demonstrated that LiDAR data are highly efficient in detecting landslide characteristics in
tropical forested areas.

Chapter 4 presents a Taguchi-based Random Forest technique for landslide detection from
LiDAR and QuickBird satellite image. Landslide mapping in tropical regions is challenging
because of the rapid vegetation growth. Hence, increasing the performance of landslide
mapping with remote sensing skills is essential. This chapter proposes an efficient method-
ology to detect and map the landslide-prone areas located in Bukit Ma’okil, Johor, Malaysia,
using an integration of high-resolution LiDAR with high-resolution QuickBird satellite ima-
gery. An object-based classification method was used to distinguish the landslide-prone areas
from non-landslide features. The Taguchi technique and Random Forest (RF) methods were
employed to optimize the segmentation process and to select important features, respectively.
The rule-based technique was also used for object-based classification. The Taguchi opti-
mization applied in the current research allowed the selection of suboptimal segmentation
parameters by conducting 25 experiments, each evaluated by kappa coefficient. The appli-
cation of the RF method significantly contributed in selecting the most relevant features for
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ruleset development and classification. Landslide and non-landslide locations were detected,
and the confusion matrix was used to examine the proficiency and reliability of the results. The
overall accuracy was 90%. The current research integrated object-based analysis and opti-
mization method as a pioneering landslide detection application to reduce time for image
classification. The successful production of a reliable and accurate landslide inventory map
confirmed the efficiency of the methodology. Therefore, the results derived from the proposed
method can assist researchers and planners in implementing and expediting landslide inven-
tory mapping.

In contrast to Chap. 4, Chap. 5 presents debris flow detection using LiDAR data in a
tropical forested area. Debris flow is one of the most destructive mass-wasting events. Debris
flow is also referred as mudslide, lahars, or debris avalanche, which is a rapid mass movement
mainly triggered by intense precipitation or rapid snow melt that starts on steep mountain
channels. The loosen materials are saturated with water-formed debris flows. Debris flow can
be catastrophic because it is associated with the loss of human life and property destruction.
Given the rapid population growth, especially in mountainous region, source areas prone to
debris flow should be identified. In this study, LiDAR, a high-resolution airborne laser
scanning data, was used to obtain debris flow-related parameters. First, a digital elevation
model (DEM) was generated from the LiDAR point clouds as a primary source of data. The
parameters were constructed in GIS environment, which contains slope, plan curvature and
flow accumulation derived from a DEM. The datasets were converted to ASCII grids for
importation in Flow-R (Flow path assessment of gravitational hazards at a Regional scale)
software. Many softwares were developed to understand debris flow behavior. In this research,
Flow-R model was used because it can produce significant results based on the quality of the
DEM, thereby obtaining reliable results for identification of debris flow sources. Various DEM
resolutions (1, 2, 5, and 10 m) were generated for identification of debris flow source areas and
consequent determination of an optimized resolution. Landslide inventory map, which was
prepared mostly from field investigation, was used for validation. The landslide inventory map
was buffered to 20 and 50 m for each DEM resolution. The results from buffered zones were
later used to generate the intersection between the buffered zones and the source area produced
from Flow-R. Additionally, high-resolution ortho-images were used as supplementary data to
visualize the location of debris flow source areas. The results revealed that DEM with 1-m
resolution produced the highest accuracies among all DEM resolutions. According to the
sources and landslide inventory data, buffering and intersection were 72% and 93% from 20-
and 50-m resolutions, respectively. On the contrary, the DEM of 2-m resolution achieved 45%
and 79% of buffering and intersection from 20 and 50 m, respectively. The DEM of 5-m
resolution achieved the accuracies of 17% and 31%. Finally, the lowest accuracy was pro-
duced by DEM with 10-m resolution at 3% for each 20 and 50 m from buffering and
intersection methods. The present findings showed a good compromise between landslide
inventory location and modeling source resulting from 1-m DEM resolution. Nevertheless,
results obtained from 2 and 5 m still produced significant information about debris flow source
areas (but not at an optimum detection), whereas DEM with 10 m produced poor result.

Chapter 6 discusses about the optimization of landslide conditioning factors using LiDAR
data. Landslide susceptibility modeling (LSM) is the basic step in overall hazard and risk
assessment. This chapter presents the optimization of landslide conditioning factors and an
analysis of their effects to improve the accuracy of landslide susceptibility models and provide
insights into landslide conditioning factors. A landslide inventory map with 132 landslides
was prepared based on multisource remote sensing data. A total of 15 landslide conditioning
factors were used, including LiDAR-derived and non-LiDAR-derived factors. First, multi-
collinearity analysis was conducted to remove highly correlated factors from further analysis.
Second, ant colony optimization was used to select significant landslide conditioning factors
from the initial 14 factors for further analysis. Data mining techniques, including support
vector machine (SVM) and random forest (RF), were used to analyze the effects of the selected
landslide conditioning factors on the prediction rate accuracy of the susceptibility models.
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Several landslide susceptibility maps were produced for the study area, and the best map was
recommended for future land use planning. Results of the multicollinearity analysis showed
that the topographic roughness index was highly correlated with the remaining factors, and
thus, this factor was removed and not used in LSM. In the factor analysis, 8 underlying factors
were extracted from the 15 landslide conditioning factors. All the factors were well repre-
sented by the 8 extracted factors because the corresponding communalities (i.e., correlation
with the retained factors) were generally high. After multicollinearity and the factor effect were
analyzed, 6 experiments classified into 2 main groups were conducted. In the first group, all
the 14 factors were examined, whereas the second group included only the LiDAR-derived
factors. In the first group, the 3 experiments included 5 factors, 10 factors, and all the 14
factors. In the second group, the 3 experiments involved 3 LiDAR factors, 6 LiDAR factors,
and 8 LiDAR factors, which were the total number of LiDAR factors derived from the digital
elevation model. These subsets were evaluated using the SVM and RF models. On the one
hand, the highest accuracy was achieved using the RF model and 10 factors selected from the
14 initial factors. On the other hand, the lowest accuracy was achieved using the SVM model
and only the LiDAR-derived factors. The results showed that LSM should be developed using
only significant factors, whereas non-LiDAR factors were important to achieve accurate
landslide mapping for a study area.

Chapter 7 discusses about the effect of spatial resolution of DEM in landslide susceptibility
mapping. As mentioned previously, landslide susceptibility maps are the main products
required for hazard and risk assessments, as well as for land use planning. Spatial data play an
essential role in determining the quality of landslide susceptibility maps. Therefore, the spatial
resolution of digital elevation models (DEMs) was assessed in this study, and an optimal
spatial resolution for landslide susceptibility mapping (LSM) at small-scale catchments was
determined. A total of 192 landslide inventories were collected from multisource remote
sensing data for the study area. In addition, 13 landslide conditioning factors were derived
from a LiDAR-based DEM and existing geodatabases of the study area. Logistic regression
was used as the modeling technique to produce landslide susceptibility maps. The accuracy
of the susceptibility maps was assessed using several accuracy metrics, namely the area under
the curve of a receiver operating characteristic, the kappa coefficient, overall accuracy, and
spatial agreement. The spatial agreements were determined using empirical information
entropy and average susceptibility values. Results indicated that the importance and multi-
collinearity of the landslide conditioning factors are sensitive to the spatial resolution and
source of the DEM. The optimal spatial resolution was 2 m with a predictive accuracy of
0.963, a kappa coefficient of 0.88, and an overall accuracy that approximates 94.02. The
entropy map showed that the produced models generally presented high spatial similarities
(entropy value � 0.33), which covered nearly 71% of the study area. Furthermore, the 30-m
LiDAR DEM was more capable of predicting future landslides and identifying landslide
scarps and flanks than the 30-m DEM based on the Advanced Spaceborne Thermal Emission
and Reflection Radiometer. Therefore, a finer spatial resolution does not always guarantee a
higher prediction rate. In addition, the selection of DEM spatial resolution and source depends
on the objective of the study and the amount of details required in landslide susceptibility
maps.

Chapter 8 presents an application of k-nearest neighbor (kNN) and logistic regression
(LR) models in landslide susceptibility mapping using LiDAR-derived data. Landslide sus-
ceptibility mapping plays an important role in urban planning and disaster management for
hilly regions. Such task requires various information on the environmental, geotechnical, and
economic aspects of landslides. This paper presents a landslide susceptibility analysis for
Bukit Antarabangsa, Ulu Klang, Malaysia, with kNN and LR models. Data on 31 landslide
events that occurred in the study area were obtained from different sources. Eleven landslide
conditioning factors, including altitude, slope, aspect, curvature, stream power index, topo-
graphic wetness index, soil, geology, land use/land cover, distance from rivers, and distance
from roads, were considered in landslide susceptibility mapping. The main goal of this study is
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to examine the efficiency of the kNN algorithm in landslide susceptibility mapping. This
algorithm has seldom been adopted in this field of study. Comparative assessment was con-
ducted by applying an LR model to evaluate the reliability of the proposed kNN algorithm.
The results of the two models were compared and validated. Same conditioning factors were
employed to build both models. The capabilities of kNN and LR methods were evaluated with
the area under curve technique. Results show that kNN performs better than the LR model.
The success and prediction rates obtained from the testing results of the kNN algorithm are
86.28% and 82.64%, respectively. The success and prediction rates obtained from the vali-
dation results of LR are 75.65% and 72.18%, respectively. kNN algorithm can be used in
spatial planning and can help in hazard mitigation.

Chapter 9 presents an application of support vector machine (SVM) and its different kernels
in landslide susceptibility mapping. The lack of reliable and comprehensive physical
approaches for landslide susceptibility mapping (LSM) has motivated the use of statistical and
machine learning techniques, such as the frequency ratio, weights of evidence, logistic
regression, and artificial neural networks. However, the support vector machine (SVM) has
become increasingly popular because of its capability to deal with high-dimensional spaces
and perform high-accuracy classification. In SVM, the model is trained on a training dataset
with associated input and target output values. This study illustrates the application of a
geographical information system-based SVM modeling for mapping landslide susceptibility
along Jalan Kota in Bandar Seri Begawan, Brunei, to evaluate the spatial correlation between
landslides and each conditioning parameter. These parameters are altitude, slope, aspect,
curvature, stream power index, topographic wetness index, topographic roughness index,
geology, soil, land use/land cover, rainfall, and distance from rivers, roads, and faults. Fur-
thermore, four kernel types, namely radial basis function (RBF), polynomial, sigmoid, and
linear kernels, were applied to examine the performance of SVM kernels. Finally, the effi-
ciency of the output maps was validated using area under curve, which measured the pre-
diction and success rates for each kernel. Among the applied kernel types, RBF performed
better than the others, with a success rate of 88.21% and a prediction rate of 82.90%. Results
of the validation process proved the reasonable strength and feasibility of SVM (particularly
RBF–SVM) in LSM. The proposed model can assist local managers and government officials
in Brunei to formulate landslide mitigation strategies.

Chapter 10 discusses about the quality of landslide inventory by using different approaches.
Landslide susceptibility modeling (or mapping) has been extensively explored in research.
However, its quality is affected by uncertainties in landslide inventory data. The quality of
landslide inventory is examined by experts using aerial orthophotos and field investigations,
which are time-consuming and costly given several landslide records in the inventory data-
base. Therefore, the current study developed an ensemble method based on the idea of active
learning to overcome the landslide inventory data uncertainties. Integrating active learning
modeling into landslide susceptibility assessment can improve the accuracy and generaliz-
ability of the models as it automatically removes problematic landslide inventories. The
specific objective is to evaluate the ensemble disagreement active learning for the spatial
prediction of shallow landslides in Cameron Highlands, Malaysia. The study is conducted
using LiDAR data (i.e., vertical and horizontal accuracies are 0.15 and 0.3 m, respectively).
Nine landslide conditioning factors are prepared and 192 landslide inventories are collected
from various sources such as aerial photographs and high-resolution satellite images (i.e.,
SPOT 5). Results revealed that the active learning approach combined with common models
such as support vector machines (SVM) and logistic regression (LR) can improve the per-
formance of the models. The success rates of the SVM and LR models are 0.81 and 0.84,
respectively, whereas the prediction rates are 0.75 and 0.84. After the integration of active
learning to the models, the success rates increased to 0.88 and 0.89 for the SVM and LR
models, respectively. Furthermore, the prediction rates increased by 0.18 and 0.5 accordingly
for the SVM and LR models. Therefore, findings indicate that the use of active learning in
landslide susceptibility modeling can improve the success and prediction rates of the SVM and
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LR models. In addition, this study suggested that the use of active learning can decrease
collinearity among the landslide factors, thereby improving the final models.

Landslide susceptibility maps help to understand the spatial distribution of landslide
probability, and they also improve landslide risk assessment and land use planning. The
advancement in computer hardware and software has improved the accuracy of many land-
slide susceptibility models. These models are grouped into five categories: expert, bivariate
statistical, multivariate statistical, machine learning, and hybrid methods. Each category has
several models and possesses respective advantages and disadvantages. The advantage of
expert-based models is that they do not require landslide inventory data for model training;
however, their disadvantage is the subjectivity of the judgment of the importance of landslide
conditioning factors. Bivariate statistical models compute the contribution of landslide con-
ditioning factors for landslide occurrence; however, their main drawback is the assumption of
conditional independence. Multivariate statistical models analyze the interaction of all
parameters in controlling the occurrence of landslides; their drawback is the collection of data
over a large area regarding landslide distribution and factor maps. Machine learning models
account for nonlinear relationships and handle uncertainty in landslide inventory data; their
drawback is their time-consuming nature and their susceptibility to overfitting of the data.
Hybrid models can overcome several of the disadvantages of the individual models, but the
complexity of hybrid models is often high. Given the various advantages and disadvantages
of the aforementioned methods, today’s land use planners face the challenge of selecting the
most appropriate model for their needs. Therefore, the main objective of Chap. 11 is to
evaluate the performance and sensitivity of 14 models, frequency ratio (FR), statistical index
(SI), weights of evidence, logistic regression (LR), partial least squares, discriminant analysis,
analytic hierarchy process, fuzzy AHP, support vector machine (SVM), random forest,
decision tree, FR–SVM, LR–RF, and SI–LR, to provide clear guidelines for land use planners
in selecting the most appropriate model. A test site in Cameron Highlands was selected. The
results showed that the best model is the hybrid FR–LR model, with a prediction rate of 0.83.
This model could predict over 75% of the landslide inventories in the very high susceptible
class. It also demonstrated good spatial agreements with several other models.

In contrary to the previous chapters, Chap. 12 presents a detailed landslide hazard, vul-
nerability, and risk assessment along a stretch of North–South Expressways in Malaysia.
Landslides result in high economic and social losses in Malaysia, especially for highway
concessionaries such as the PLUS Expressways Berhad. This study aims to perform landslide
vulnerability and risk modeling for cut slopes along the Gua Tempurung area on the North–
South Expressway in Malaysia. This area was selected because of the frequent occurrences of
landslides along the expressway. Highway concessionaries such as the PLUS Expressways
Berhad allot a large portion of their annual budget to ensuring the safety of this expressway
and making it resilient against natural hazards. Landslide hazards, vulnerability, and risk
zoning maps are considered in the decision-making process involving land use/land cover
(LULC) planning and overall road management in prone areas. The accuracy of the results is
directly related to the spatial data and the methods for obtaining such data. In the present work,
we produced a landslide inventory map depicting the 17 landslide locations identified through
a field survey. The landslide inventory data were randomly divided into a training dataset:
60% (10 landslide locations) for training the models and 40% (7 landslide locations) for
validation. In the first step, a susceptibility map was constructed using the logistic regression
method, in which weights were assigned to each conditioning factor according to its corre-
lation with landslide occurrence. High-resolution LiDAR was used to derive the landslide
conditioning factors for the spatial prediction of landslide-prone regions. Eight conditioning
factors, namely altitude, slope, aspect, curvature, stream power index (SPI), topographic
wetness index (TWI), terrain roughness index (TRI), and distance from river, were used for the
weight calculation. The susceptibility mapping results were validated with the area under the
curve (AUC). The assessment showed 84.91% and 83.00% success and prediction rates,
respectively. In the second stage, a hazard map was calculated using the average of the
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triggering factor (rainfall) for 2014 because most of the landslides in the inventory took place
during this year. Overall landslide susceptibility and hazard maps were prepared for the 5-km
corridor of the highway. However, only the cut slopes were considered in the vulnerability and
risk analysis because they pose a threat to highway users as a result of their frequent reoc-
currence. In the third step, elements at risk, such as risk to road users, relative risk of failure,
likely effect on traffic, and likely repair costs, were considered in the vulnerability assessment.
Each cut slope was examined under these said elements at risk. Subsequently, a value rep-
resenting the sensitivity of each slope was assigned and considered as the vulnerability value.
Finally, a risk map for each cut slope was produced using the derived vulnerability and hazard
information. The map of the risky cut slopes may assist PLUS Expressways Berhad in
improving highway management.

Landslide hazard and risk maps are essential for hazard mitigation, risk management, and
effective land use planning. Chapter 13 presents a multihazard scenario-based landslide risk
maps for the Ringlet area located in Cameron Highlands, Malaysia. The main source of data is
a digital elevation model (DEM) produced from a high-resolution LiDAR data. In addition,
detailed land use maps, adequate landslide inventory data, and rainfall information were used
to implement the proposed method. First, the landslide susceptibility map was produced by the
logistic regression (LR) model with 12 landslide conditioning factors: altitude, slope, aspect,
curvature, stream power index (SPI), topographic wetness index (TWI), terrain roughness
index (TRI), distance from a river, distance from roads, distance from lineament, sediment
transport index, and geology. Next, landslide hazard maps were produced using five different
scenarios: (1) the average intensity of rainfall in any day in a year, (2) the abnormal intensity
of rainfall recorded in a day, (3) 5-year return period, (4) 10-year return period, and (5) 15-year
return period with average intensity of rainfall per day. Then, the landslide vulnerability map
was produced using an exposure-based method by utilizing the detailed land use map and
information from experts and previous works. Finally, five risk maps were produced for the
study area using the five hazard scenarios. The results indicated that the LR model could
predict the future landslides with an accuracy of 84.87%. The average annual economic risk
for landslides was MYR 5,981,379.00 in the study area.

The mapping of debris flow risk areas is an important concern because debris flows could
result in social losses in hazardous regions, especially in mountainous areas. However, debris
flow risk assessment through procedure-based modeling at a medium scale is complex because
of several reasons, such as the complex nature of the phenomenon, the inconsistency of local
conditioning factors, and the variability of modeling factors. A wide range of debris flow
modeling methods has been explored in literature. An effective modeling approach should
provide debris flow susceptibility zonation using only minimum data requirements. In
Chap. 14, distributed empirical models are used for medium-scale debris flow susceptibility
assessments with a light detection and ranging-derived digital elevation model. For debris flow
modeling, Flow-R (Flow path assessment of gravitational hazards at a Regional scale) is
applied for path assessment of debris flow at regional and medium scales. The Flow-R model
requires minimum data input and is flexible to use because of its simple user interface. The
second model, rapid mass movement simulation, is used to simulate the run-out of mass
movement on a 3D terrain. Although only a preliminary assessment of debris flow effects is
presented, the assessment can be useful for land planners and government agencies in their
modeling of debris flows and assessment of further effects. The procedure provided in this work
can also be replicated in other areas through detailed analyses based on available input data.

Chapter 15 presents a thorough review on rockfall susceptibility, hazard, and risk assessment
using different approaches. Rockfalls occur worldwide and annually cause considerable damage
to human life and properties. Therefore, comprehensive research is required to understand the
triggering and auxiliary elements of the hazards of rockfalls as well as to assess and identify
mitigation processes for these calamities. Such research can be used as a reference for managing
future rockfall disasters. Rockfall hazard has recently attracted significant attention and has
motivated numerous studies. Moreover, such studies have gained importance in various
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disciplines with the developments of remote sensing and geographical information system
technologies. Current geoinformation techniques have been used to gather information for
rockfall analyses. This chapter primarily explains the general principles of and themethodologies
for rockfall analyses, including rockfall types, causes, and mechanisms, as well as data sources,
modeling approaches, and light detection and ranging techniques for rockfall assessment.

Rockfall magnitude and frequency vary both spatially and temporally. Therefore, elimi-
nating such phenomenon is a challenge. Proper modeling and assessment can aid defining the
areas at risk thus remedial the effect of rockfall catastrophe. Chapter 16 describes the location
and rockfall characteristics of the study area. The materials used in this study also have been
described. Multicriteria method for rockfall source areas identification has been applied in this
research. Rockfall trajectories modeling and the velocity associated with them have been
explained. Raster modeling using geostatistical method has been applied in this research to
represent the spatial distribution of rockfall. Finally, spatial modeling with AHP method has
been performed in this study to produce rockfall hazard map. As a result, rockfall trajectories
and their characteristics were derived and rockfall hazard map for each scenario was obtained.
In addition, barrier location was suggested and its efficiency eliminating rockfall hazard was
demonstrated.

In general, this book presents the use of LiDAR in landslide assessments providing useful
information and recent findings which will be useful for researchers, graduate and postgraduate
students, and decision makers both in government and private agencies. This book describes the
main applications of landslides such as supervised/machine learning-based detection and
characterization of landslide scarps, spatial prediction of the landslide. It gives a detailed
discussion on factor optimization and effects of the spatial resolution of DEM on landslide
susceptibility mapping. This book also demonstrates identification of the source of debris flow
and its susceptibility assessment by LiDAR data. In addition, this book gives a space for
multiscenario landslide hazard assessment using airborne laser scanning data, landslide vul-
nerability, and risk assessment for multihazard scenarios. Finally, this book describes the
LiDAR techniques in rockfall hazard assessment in tropical regions. Many case studies pre-
sented in this book help decision makers to follow as guidelines for comprehensive landslide
hazard and risk assessment using very high-resolution laser scanning data. This book can be
helpful and valuable for new students/researchers to understand the concept and use of LiDAR
in many landslide applications. The contribution of each chapter of this book advances the
landslide studies, opens new areas, and generates new ideas for better landslide assessment.

I could not have produced this book without the efforts of many people who I would like to
thank here. Foremost among them my own research team members at Department of Civil
Engineering, Universiti Putra Malaysia, and authors from each of the chapters who worked
closely with me to meet the deadlines in developing the scope of each chapter. Thanks to all
my coauthors of individual chapters of this book.

The publication of this book would not have been possible without an excellent cooperation
from my colleagues at Springer Verlag, Germany. Special thanks to Dr. Nabil Khelifi for
motivating and encouraging me to write this book. At Springer Verlag, the efforts from
Reyhaneh Majidi are appreciable.

Finally, I would like to thank my family, wife Sheila, my two adorable kids, Krish Pradhan
and Darsh Pradhan, for their wonderful support and patience in allowing me to spare time to
complete this book.

Kuala Lumpur Biswajeet Pradhan
April 2017
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