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Abstract This chapter aims at applying a recently proposed estimator, called
eXogenous Kalman Filter (XKF), to the navigation of a fixed-wing unmanned aer-
ial vehicle (UAV) using inertial sensors, GNSS, and optical flow calculated from a
camera. The proposed system is a cascade interconnection between a globally expo-
nentially stable (GES) nonlinear observer (NLO) and a time-varying Kalman filter
based on a local linearization of the system equations about the output of the preced-
ing NLO. It is very well known that the linear time-varying Kalman filter is GES and
optimal in the sense of minimum variance under some conditions, but when a nonlin-
ear approximation (e.g., the extended Kalman filter) becomes necessary, generally
such positive properties cannot be guaranteed anymore. On the other hand, a NLO
often comes with strong, often global, stability properties, but without attention to
optimality with respect to unknownmeasurement and process noise. The idea behind
the XKF is to combine the advantages of the two composing estimators while sur-
passing the drawbacks from which they individually suffer. The theory is supported
by tests on both simulated and experimental data, where the XKF is compared to a
state-of-the-art solution based on the extended Kalman filter (EKF).

1 Background and Motivation

The problem of estimating the states of nonlinear systems has been approached in a
large number ofways. Themost popular and proficient tool has been theKalmanfilter
(KF) with its extensions. Under certain conditions, it guarantees optimal estimates
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in the sense of minimum variance, and its linear time-varying formulation is known
to be globally exponentially stable [1, 22, 36]. When the system to observe is not
linear, a linearized version is necessary. Linear approximation about a state estimate
can be performed using different techniques, leading to variants of the KF such as
the extended KF, unscented KF, Monte Carlo filter, and particle filter [6, 10, 13, 21].
The global stability properties of the resulting filters might not be guaranteed any-
more, as they usually depend on implicit conditions that cannot be verified on the
linearized system [32, 37].

The estimation of position, velocity, and attitude is a fundamental task in naviga-
tion of UAVs. Since the early 1990s [33], the field has seen the rise and development
of nonlinear observers as substitutes for Kalman filters. Particular effort has been put
in attitude estimation, which is typically performed by comparing a set of vectors
measured in the body-fixed coordinate frame with a set of reference vectors in a
reference frame [2, 3, 15, 28, 30], while others have also included the estimation
of position and velocity [12, 17, 20]. A typical payload of sensors for navigation
includes, but is not limited to, IMU, magnetometers, and GNSS receiver.

The use of nonlinear observers is attractive because they often come with globally
exponential stability properties, which guarantee a correct behavior in the presence
of uncertain initialization or unknown disturbances, and because their computational
footprint is small as a consequence of the reduced number of differential equations
involved. The design, however, does not take into account properties of the noise
affecting both the system model and the measurements, resulting in suboptimal
estimates.

The work presented here analyzes the properties and performance of a cascade
interconnection between a GES NLO and a linear time-varying Kalman filter (LKF),
and provides performance results based on experimental data. The objective is to
build an estimator that inherits the advantages of the constituting components and
discards their shortcomings. This method, called eXogenous Kalman filter (XKF),
was presented and its properties formally analyzed in [19], and tested on simulated
systems for both aerial and underwater vehicles [17, 39]. Here it is applied to a
camera-aided inertial navigation system for a UAV: the NLO stage is a variation of
the GES observer used in [12], it uses velocity and acceleration vectors in its output
injection term [9], and it is then connected to a LKF to build the proposed XKF,
and formally analyzed to conclude on its GES properties. Subsequently, it is tested
on experimental data collected during the flight of a fixed-wing UAV and compared
to the output of an EKF and of the NLO stage. As perfect reference values are not
available in the experimental data, additional simulations are presented to provide
another comparison between NLO, XKF, and EKF.

A fundamental component of the NLO is its body-referenced velocity, which
is calculated by means of the optical flow extracted from the camera images and
the information obtained by some of the other sensors available. The method was
discussed in detail in [9], and a summary is reported here.
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An alternative NLO is also tested, with the velocity vectors replaced by another
pair of vectors that also exploits the GNSS measurements; it can be a useful,
temporary solution in case faults appear in the system and invalidate the body-
referenced velocity vector.

2 Notation and Measurements

Vectors andmatrices are represented by lowercase and uppercase letters, respectively.
X−1 and X+ denote the inverse and pseudoinverse of a matrix, respectively, and XT

the transpose of a matrix or vector. The symbols x̄ and x̂ indicate the estimate
of x as output by the NLO and XKF, respectively, and x̆ = x − x̄ and x̃ = x − x̂
the respective estimation errors. The operator ‖ · ‖ denotes the Euclidean norm for
vectors and the Frobenius norm for matrices, In is the identity matrix of order n, and
0m×n is the m × n matrix of zeros. The function sat(·) performs a component-wise
saturation of its vector or matrix argument to the interval [−1, 1]. The operator S(x)
transforms the vector x into the skew-symmetric matrix

S(x) =
⎡
⎣

0 −x3 x2
x3 0 −x1

−x2 x1 0

⎤
⎦

The inverse operation is denoted as vex(·), such that vex(S(x)) = x . For a square
matrix A, its skew-symmetric part is represented by Pa(A) = 1

2 (A − AT ).
The reference frames considered in the paper are the body-fixed frame {B}, the

North-East-Down (NED) frame{N} (Earth-fixed, considered inertial) and the camera
frame {C}. The rotation from frame {B} to {N} is represented by the matrix Rn

b ≡
R ∈ SO(3), where SO(3) represents the Special Orthogonal group of dimension 3.
The camera is assumed to be fixed to the body and perfectly aligned to its axes, so
the camera frame and body frame represent the same coordinate system and can be
identified by {B} alone.

A vector decomposed in {B} and {N} has superscript b and n respectively. The
body (camera) location w.r.t. {N} is described by cn = [cnx , cny, cnz ]T . A point in the
environment expressed w.r.t. {N} is tn = [xn, yn, zn]T : note that a point located at
the mean sea level corresponds to zn = 0, and such it will be considered throughout
the paper. The same point expressed w.r.t. {B} is tb = [xb, yb, zb]T . It will also be
assumed that every point representing a feature captured by the camera is fixed w.r.t.
{N}. The gravity vector is defined as gn = [0, 0, g], with g the local gravitational
acceleration. The greek letters φ, θ , and ψ represent the roll, pitch, and yaw angles
respectively, defined according to the zyx convention for principal rotations [7]. A
2-D camera image has coordinates [r, s]T , aligned with the yb- and zb-axis respec-
tively (see Fig. 2). The derivative [ṙ , ṡ]T of the image coordinates is the optical flow
(OF).



28 L. Fusini et al.

2.1 Measurements

The experimental sensor suite consists of the following units:

• GNSS receiver: NED position pn and velocity vn;
• IMU: biased angular velocity ωb

m = ωb + bb, where bb represent the bias, and
specific force f b, which is assumed bias-compensated by using, for example, the
method in [11];

• machine vision based on downward-facing camera: body-fixed velocity vb;
• altimeter: height over ground cnz ;
• inclinometers: roll φ and pitch θ angles measurements.

3 Machine Vision

A machine vision system is designed to calculate the body-fixed velocity vb from
information available from camera, GNSS, altimeter, and inclinometers. A detailed
description of the method is found in [9, 29], while its most relevant aspects for the
present application are reported here.

3.1 Optical Flow

There exist several methods for computing the OF; for the present work, two specific
methods are combined. The first one is SIFT [26], which provided the overall best
performance in [29]. The total number of OF vectors in each image depends on
the number of features detected and matched together. Since the transformation in
Sect. 3.2 requires at least three OF vectors [9], it is necessary to make sure that
this is handled. SIFT does not guarantee three distinct OF vectors since relatively
homogeneous environments, such as snow or the ocean, increase the difficulty of
finding distinct features. Therefore, the OF vectors created by SIFT are combined
with a second method, which is based on region matching [8].

The region matching method used here is a template matching approach based
on normalized cross-correlation [34]. The displacements of twelve templates, cre-
ated symmetrically across the images, are used to find twelve OF vectors. Template
matches below a given threshold are discarded and the corresponding OF vector is
not used. Unreliable matches can occur in case of homogeneous terrain, changes in
brightness or simply when the area covered by the template has disappeared from
the image in the time between the capture of images. An example of OF vectors
computed with SIFT and template matching is displayed in Fig. 1.

Erroneous OF vectors are detected in case of mismatches, so it is desired to locate
and remove these vectors. For this reason, an outlier detector is implemented before
the vectors are used to calculate the body-fixed velocity. The outlier detector utilizes
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Fig. 1 Optical flow vectors. The red ones are generated by SIFT, the green ones by template
matching

a histogram to find the vectors that deviate from the median with respect to direction
and magnitude.

3.2 From Optical Flow to Body Velocity

For the OF computations to be useful as observer measurements, a transformation to
body-fixed velocity is necessary. The pinhole camera model is used [16, 38]: despite
being an ideal model, it gives results that are good enough for the purpose of this
work. The camera-fixed frame is related to the body-fixed frame as illustrated in
Fig. 2, where the optical axis of the downward-looking camera is aligned with the
body z-axis. The focal point of the camera is assumed to coincide with the origin of
{B}.

The relationship between apoint on the terrain tb = [xb, yb, zb]T and its projection
onto the image plane [r, s]T is, according to the pinhole camera model,

[
r
s

]
= f

zb

[
yb

−xb

]
, zb �= 0 (1)

where f is the focal length of the camera. As tb in itself is not available, a transfor-
mation [9, 29] is used to express tb as a function of roll, pitch, height over ground,
image features, and camera focal length



30 L. Fusini et al.

Fig. 2 Pinhole camera
model. The camera is
oriented downwards, while
xb is the direction of flight.
Ors and Ob are the origins
of the image plane and body
frame, respectively

⎡
⎣
xb

yb

zb

⎤
⎦ =

⎡
⎢⎢⎣

scnz
s sin(θ)+cos(θ)( f cos(φ)+r sin(φ))

− rcnz
s sin(θ)+cos(θ)( f cos(φ)+r sin(φ))

− f cnz
s sin(θ)+cos(θ)( f cos(φ)+r sin(φ))

⎤
⎥⎥⎦ (2)

All features tracked by the camera are assumed to be stationary with respect to {N},
therefore the UAV’s linear and angular velocities, vb and ωb, relative to a feature
tracked by the OF algorithm will be equal for every tracked feature at a given instant
in time. Furthermore, it is assumed that the terrain is flat, such that every feature is
located at the same altitude: this simplifies the analysis and is a reasonable assumption
for the experiment considered here, as the results show; for rough terrains, other
approaches are necessary [14].

For every feature j , the relationship between OF and body-fixed linear/angular
velocity is given as

[
ṙ j
ṡ j

]
= −Mj ( f, r j , s j , φ, θ, cnz )

[
vb

ωb

]
(3)

Mj = f

zbj

⎡
⎢⎣

0 1 − ybj
zbj

− ybj
2

zbj
− zbj

ybj x
b
j

zbj
xbj

−1 0
xbj
zbj

xbj y
b
j

zbj
− xbj

2

zbj
− zbj y

b
j

⎤
⎥⎦ (4)

where Mj ∈ R
2×6 is derived in [9]. The parameters in (3) on which Mj depends

appear explicitly after substituting the variables in (4) with (2). If the number of
features being tracked is k, then theOFvector has dimension 2k. AmatrixM ∈ R

2k×6

can be created by concatenating the matrices Mj , j = 1 . . . k, vertically, such that
each feature j adds two rows to M , and by calculating the pseudoinverse of M , the
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angular and linear velocities can be computed as

[
vb

ωb

]
= −M+

⎡
⎢⎢⎢⎢⎢⎣

ṙ1
ṡ1
...

ṙk
ṡk

⎤
⎥⎥⎥⎥⎥⎦

(5)

All the parameters constituting M are known, since they are either measured
(r j , s j , φ, θ, cnz ) or known upon assembling the payload ( f ).M+ exists only ifMT M
has full rank, such that it can be expressed as M+ = (MT M)−1MT . This can only
happen if the number of flow vectors is greater than or equal to three.

4 Design and Analysis

The NLO and LKF are designed around two slightly different versions of the strap-
down navigation equations, the difference being how the attitude of the UAV is
parameterized. In the NLO, the attitude is parameterized as a rotation matrix with
nine degrees of freedom, whereas the LKF uses Euler angles defined according to
the zyx convention for principal rotations [7]. The NLO uses the rotation matrix in
order to achieve a GES estimation error, but in the LKF this is replaced by Euler
angles to take advantage of the reduced number of states, which have a direct impact
on the computational footprint of the system. Additional details will be explained in
the following Sections.

4.1 Nonlinear Observer

When designing the NLO, the kinematic system to observe can be divided into an
attitude part ΣANLO and a translational motion part ΣT MNLO . Their equations are

ΣANLO

{
Ṙ = RS(ωb

m − bb)

ḃb = 0
(6)

ΣT MNLO

{
ṗn = vn

v̇n = R f b + gn
(7)

The following assumptions are made:

Assumption 1 A sufficient number of distinct image features are selected, such that
M has full rank and its pseudoinverse can be calculated as M+ = (MT M)−1MT .
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Assumption 2 The gyro bias bb is constant, and there exists a known constant
Lb > 0 such that ‖bb‖ ≤ Lb.

Assumption 3 There exists a constant cobs > 0 such that, ∀t ≥ 0, ‖ f b × vb‖ ≥
cobs .

Assumption3 imposes the noncollinearity of the vectors vb and f b, i.e., the angle
between them is nonzero and none of them can be identically zero. f b is the specific
forcemeasured by the IMU, and the gravity vector is alsomeasured by said sensor, so
that a UAV flying at constant speed has f b = −RT gn . In addition, a fixed-wing UAV
always has a positive forward speed during flight and typically never accelerates just
in the direction of gn , so that Assumption3 is never violated. If, on the other hand, a
helicopter-like vehicle is used, it often finds itself hovering or moving perpendicular
to the ground, situations that would violate Assumption3. Caution must be exercised
if the NLO is tested on vehicles other than fixed-wing UAVs.

Nonlinear Observer Equations

The NLO, graphically represented in Fig. 3, is based on the method proposed by [12]
and is chosen as

Σ̄ANLO

{ ˙̄R = R̄S(ωb
m − b̄b) + σKP J

˙̄bb = Proj(b̄b,−kIvex(Pa(R̄T
s KP J )))

(8)

Σ̄T MNLO

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̄pn = v̄n + Kpp(pn− p̄n) + Kpv(vn−v̄n)
˙̄vn = f̄ n + gn+Kvp(pn− p̄n) + Kvv(vn−v̄n)

ξ̇ = −σKP J f b + Kξp(pn− p̄n) + Kξv(vn−v̄n)

f̄ n = R̄ f b + ξ

(9)

The subsystem Σ̄ANLO represents the attitude observer, in which KP is a symmetric
positive definite gain matrix, σ ≥ 1 is a scaling factor that can be tuned to guarantee
stability, kI is a positive scalar gain, R̄s = sat(R̄), andProj(·, ·) represents a parameter

Fig. 3 Block diagram of the nonlinear observer
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projection [24] that ensures that ‖b̄b‖ does not exceed a design constant Lb̄ > Lb

(see Appendix). The matrix J is the output injection representing the attitude error,
whose design is inspired by the TRIAD algorithm [35]. It is defined as

J ( f b, f̄ n, vb, vn, R̄) := Ān A
T
b − R̄ Ab A

T
b (10a)

Ab := [
f b, f b × vb, f b × ( f b × vb)

]
(10b)

Ān := [
f̄ n, f̄ n × vn, f̄ n × ( f̄ n × vn)

]
(10c)

The body-fixed velocity vector vb is calculated by means of the OF, according to (5).
The subsystem Σ̄T MNLO represents the translational motion observer, where Kpp,

Kpv, Kvp, Kvv, Kξp, and Kξv are observers gains yet to be defined. The presence of
the term ξ lets the error dynamics of (9) be linear, which simplifies the analysis of
stability.

The error dynamics of (8)–(9) can be written as

Σ̆ANLO

{ ˙̆R = RS(ωb) − R̄S(ωb
m − b̄b) − σKP J

˙̆bb = −Proj(b̄b, τ (J ))
(11)

Σ̆T MNLO

⎧⎪⎨
⎪⎩

˙̆pn = v̆n − Kpp p̆n − Kpvv̆n

˙̆vn = f̆ n − Kvp p̆n − Kvvv̆n

˙̆f n = −Kξp p̆n − Kξvv̆n + d̆

(12)

where τ(J ) = −kIvex(Pa(R̄T
s KP J )) and d̆ = (RS(ωb) − R̄S(ωb

m − b̄b)) f b +
(R − R̄) ḟ b. Bydefining the error state w̆ = [( p̆n)T , (v̆n)T , ( f̆ n)T ]T , the error dynam-
ics (12) can be written in a more compact form as

˙̆w = (A − KC)w̆ + Bd̆ (13)

where

A =
[
06×3 I6
03×3 03×6

]
, B =

[
06×3

I3

]
,

C = [
I6 06×3

]
, K =

⎡
⎣
Kpp K pv

Kvp Kvv

Kξp Kξv

⎤
⎦ .

The NLO just presented differs from the one in [12] in how (10) is defined, that is
the magnetic field vectors are replaced by the OF velocity vectors.
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Stability Analysis

Theorem1 defines the conditions that render the equilibrium of (11)–(12) globally
exponentially stable (GES).

Theorem 1 Let σ be chosen sufficiently large and define HK (s) = (I s − A +
KC)−1B. There exists a γ > 0 such that, if K is chosen such that A − KC is Hur-
witz and ‖HK (s)‖∞ < γ , then the origin of the error dynamics (11)–(12) is GES.
Moreover, K can always be chosen to satisfy these conditions.

Proof See the proof of Theorem 3 in [12]. The magnetic field vectors are replaced
by the OF velocity vectors, but since both vb and vn are measured quantities, the
analysis remains unchanged under Assumptions1–3. �

It is clear that the only uncertainty considered in the design and analysis of theNLO
is the gyro bias, while all the high-frequency noise components affecting the system
can be entirely disregarded, despite being present. This constitutes an advantage of
the NLO over Kalman filter designs, as already anticipated in Sect. 1, but at the same
time it offers no insight into the behavior of the variance of the estimation error. This
is addressed in Sect. 4.2.

4.2 Exogenous Kalman Filter

One of the most popular tools for state estimation and filtering in navigation is the
EKF, which linearizes the system to observe about the trajectory estimated by the
filter itself, but whose stability properties are not clear due to its feedback structure.
TheXKF, conversely, linearizes the same system about the trajectory estimated by the
NLO, which is guaranteed to be GES, and has a cascade structure (see Fig. 4). Since
the linearization is made about an exogenous state trajectory, there is no feedback
loop that can destabilize the second-stage LKF, and it follows fromnonlinear stability
theory that the cascade interconnection inherits the stability properties of the global
NLO [19, 25, 31].

Observed System and Filter Equations

In order to reduce the number of states, the kinematic system considered for this
second-stage filter is represented slightly differently from (6)–(7), as

Θ̇ = T (Θ)(ωb
m − bb + nω) (14a)

ḃb = nb (14b)

ṗn = vn (14c)

v̇n = R( f b + ns) + gn (14d)
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Fig. 4 Block diagram showing the cascade interconnection between an NLO and LKF, compactly
called XKF, [19]

The attitude is now represented by the vector of Euler anglesΘ = [φ, θ, ψ]T with its
dynamic equation, where T (Θ) ∈ R

3×3 is the state-dependent transformation matrix
[7]. nb represents the process noise on the bias dynamics, and nω and ns are noise
on gyroscopes and accelerometers, respectively.

The output vector y = [y1, y2, y3, y4]T is necessary to implement the XKF. The
measurements used to build y are position (GNSS), NED velocity (GNSS), body
velocity (machine vision), and specific force (IMU), and are related to the states of
the system via

y1 = pn + np GNSS (15a)

y2 = vn + nvn GNSS (15b)

y3 = RT vn + nvb machine vision (15c)

y4 = −RT gn + (ωb
m − b̂b + nω) × (vb + nvb) + ns IMU (15d)

The quantities np, nvb , and nvn represent noise on the sensors. All noise components
in (14)–(15) are assumed to be Gaussian white noise. Note that (15d) is obtained
from

f b = −RT gn + ωb × vb + v̇b (16)

It is common in navigation to consider only f b = −RT gn , which might not yield
accurate results in systems with high dynamics such as UAVs, for which the cen-
tripetal acceleration ωb × vb is not neglectable. To verify the validity of this claim,
Fig. 5 illustrates the norms of the three terms on the right-hand side of (16) as obtained
during the flight test. It is clear that ωb × vb contributes significantly to f b, whereas
v̇b is always smaller and can be neglected. The peaks in ωb × vb correspond to turns



36 L. Fusini et al.

1050 1100 1150 1200 1250 1300
Time (s)

2

4

6

8

10

12

14

16

18

20

22
A

cc
el

er
at

io
n 

no
rm

 (
m

/s
2 )

R T gn

ωb × vb

v̇b

Fig. 5 Comparison of the norms of the different acceleration components

of the UAV: toward the end there are higher peaks because the UAV was preparing
for landing and needed to perform some particularly sharp turns.

A more compact form for (14)–(15) is

ẋ(t) = f (x(t), t) + G(t) nx (t) (17a)

y(t) = h(x(t), t) + E(t) ny(t) (17b)

where f , G, and E are smooth vector- and matrix-valued functions, x represents
the state vector, y the output, t the time, and nx and ny are vectors of process and
measurement noise, respectively. Let x̄ be an estimate for x , and assume it is bounded
as given by a global NLO, with bounded error x̆ = x − x̄ . A first-order Taylor series
expansion of (17) about x̄(t) gives

ẋ(t) = f (x̄(t), t) + F(x̄(t), t) x̆(t) + G(t) nx (t) + q1(x(t), x̄(t), t) (18a)

y(t) = h(x̄(t), t) + H(x̄(t), t) x̆(t) + E(t) ny(t) + q2(x(t), x̄(t), t) (18b)

where q1(x(t), x̄(t), t) and q2(x(t), x̄(t), t) are higher order terms and
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F(x̄(t), t) = ∂ f

∂x
(x̄(t), t) (19)

H(x̄(t), t) = ∂h

∂x
(x̄(t), t). (20)

Building up from the theory in [19], an estimator x̂ for x is then

˙̂x(t) = f (x̄(t), t) + F(x̄(t), t) xd(t) + K (t)(y(t) − h(x̄(t), t) − H(x̄(t), t) xd(t)),
(21)

where xd(t) = x̂(t) − x̄(t). Recall that the Kalman filter is optimal if nx is Gaussian
white noise with covariance matrix Q, ny is Gaussian white noise with covariance
matrixU , and nx and ny are uncorrelated. The gain matrix K can then be calculated
as K (t) = P(t)H(x̄(t), t)TU−1, with P the time-varying solution of the Riccati
equation

Ṗ(t) = F(x̄(t), t)P(t) + P(t)FT (x̄(t), t) + G(t)QGT (t) − K (t)UKT (t) (22)

The state estimation error is x̃ := x − x̂ = x̆ − x̂ − x̄ . Combining (18) and (21)
yields a linear time-varying system with a perturbation:

˙̃x(t) = A(x̄(t), t)x̃(t) + d(t), (23)

where

A(x̄(t), t) = F(x̄(t), t) − K (t)H(x̄(t), t) (24)

d(t) = G(t)nx + q1(x(t), x̄(t), t) + K (t)q2(x(t), x̄(t), t) + K (t)E(t)ny .

(25)

The following assumptions are standard conditions that ensure boundedness and
positive definiteness of the solution of the Riccati equation, and lead to nominal
global convergence of the Kalman filter [1, 22].

Assumption 4 The LKF tunable parameters P(0), Q, and U are positive definite
and symmetric.

Assumption 5 The system (F(x̄(t), t),G(t), H(x̄(t), t)) is uniformly completely
observable and controllable.

Stability of the XKF

The next theorem gives condition that ensure stability of the XKF.

Theorem 2 Suppose Assumptions1–5 hold. The origin x̆ = x̃ = 0 of the unforced
error dynamics of the cascade (8)–(9) and (17), i.e., of the XKF (with nx = 0 and
ny = 0), inherits the stability properties of the NLO.
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Proof By joining Assumptions 4 and 5 with the global exponential stability of the
NLO, the conclusions of the theorem follow from Theorem 2.1 in [19]. �

Assumptions1–3 are necessary for global exponential stability of the NLO.
Assumption4 can be satisfied by design. The requirements of Assumption5 are hard
to verify analytically a-priori. However, it is possible to calculate the observability
and controllability Gramians recursively at runtime, and since they always result full
rank, it can be inferred that Assumption5 is satisfied.

If nx and ny are bounded inputs instead of zero, having a GES NLO allows to
invoke Lemma 4.6 in [23], which implies that the origin of the error dynamics of
the XKF is input-to-state stable with nx and ny as inputs, and that the solutions are
uniformly ultimately bounded.

The stability properties of the XKF are inherited from the NLO, while the advan-
tage over the NLO is the use of minimum-variance objectives in the design of the
estimator. The linearization introduced with the LKF, however, creates an inevitable,
possibly biased, random error that might lead to suboptimality and is hard to analyze
in an experimental scenario. The best option in such cases is to resort to simulations
to investigate the structure of the error.

5 Results

The XKF is here tested on both experimental and simulated data. Root mean square
(RMS) errors are presented for both cases. In addition, a case study is presented
to test the viability of the NLO with different reference vectors, should the camera
system fail to provide useful OF estimates.

Fig. 6 The UAV Factory Penguin-B on the runway with the pilot, just before the experiment
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5.1 Experimental Setup and Results

The UAV employed is a UAV Factory Penguin-B (Fig. 6), equipped with a custom
payload that includes all the necessary sensors. The IMU is a Sensonor STIM300,
a low-weight, tactical grade, high-performance sensor that includes gyroscopes,
accelerometers, and inclinometers, all recorded at a frequency of 300Hz. The cho-
sen GPS receiver is a uBlox LEA-6T, which gives measurements at 5Hz. The video
camera is an IDS GigE uEye 5250CP provided with an 8mm lens. The camera
is configured for a hardware-triggered capture at 10Hz: the uBlox sends a digital
pulse-per-second signal whose rising edge is accurately synchronized with the time
of validity of the recorded GPS position, which guarantees that the image capture is
synchronized with the position measurements. The experiment has been carried out
on February 6, 2015 at the Eggemoen Aviation and Technology Park, Norway, in a
sunny day with good visibility, very little wind, an air temperature of about -8◦C.
The terrain is covered with snow and flat enough to let all features be considered as
lying at zero altitude relative to altitude measurements.

In order to produce OF vectors, all the camera images are processed with a res-
olution of 1600 × 1200 (width × height) pixels and in their original state, without
any filtering. The lens distortion of the camera is not accounted for, and no correc-
tion is applied to the images. SIFT is implemented with the open source computer
vision library (OpenCV) [5] with default settings. Each match is tagged with a value
indicating the accuracy of the match, and the smallest of these values is considered
to be the best match. To increase the reliability of the OF vectors, each match is
compared to the best one. Every match with an uncertainty more than double the
uncertainty of the best match is not used. Also the template matching algorithm is
implemented with OpenCV. The size of the templates is chosen to be 120× 90 pixels
and a correlation of 99% is required in order for a template match to be considered
reliable and used.

The NLO is implemented using forward Euler discretization with a time-varying
step depending on the interval of data acquisition of the fastest sensor, namely the
STIM300, and it is typically around 0.003 seconds. The various parameters and gains
are chosen as Lbb = 2◦/s, Lb̂b = 2.1◦/s, σ = 1, KP = diag[0.08, 0.04, 0.06], kI =
0.02, Kpp = 30I3, Kpv = 2I3, Kvp = 0.01I3, Kvv = 20I3, Kξp = I3, and Kξv =
50I3. All the gains are obtained by running the NLO several times and correct-
ing the gains until a satisfactory performance was achieved. The gyro bias estimates
are initialized with the standstill values, the other states with zero.

The covariance matrices Q and U are first tuned based on previous experience
with the same sensors and system model, and then more finely tuned with trial and
error. In both XKF and EKF, all estimates have zero initial value.

The reference provided for the position, velocity, and attitude is the output of the
EKF of the autopilot mounted on the Penguin-B; the autopilot uses a different set
of sensors than the one presented here. The path flown by the UAV and its NED
velocity are in Figs. 7 and 8. An exact reference for the gyro bias is not available, but
an approximation of the real value is calculated by averaging the gyro measurements
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Fig. 7 Path of the UAV during the experiment. The zero is the base station from where the UAV
was controlled

at standstill before and after the flight. The accelerometer bias is not estimated, but
it is computed the same way as the gyro bias and subtracted from the accelerometers
measurements before being used in the XKF (Figs. 7 and 8).

Ignoring for the sake of readability the time parameters, the equations imple-
mented to run the discrete LKF in the XKF are

K = P̄ H(x̄)[H(x̄)P̄ HT (x̄)]−1

x̂ = xt + K [y − ȳ − H(x̄)(x̂ − x̄)]
P̂ = [I − K H(x̄)]P̄[I − K H(x̄)]T + KUKT

xt = x̂ + h[ f (x̄) + F(x̄)(x̂ − x̄)]
Φ = I + hF(x̄)

Γ = hE

P̄ = Φ P̂ΦT + Γ QΓ T

Figures9, 10, 11 and 12 display the estimation errors of the NLO alone, of the
entire XKF, and of an EKF with the same tuning parameters and initialization as
the XKF. The time on the x-axes is the time elapsed since starting up the UAV; the
dataset represented corresponds to the entire flight of the UAV. The RMS errors are
reported in Table1. All estimators converge, as expected, and the XKF and EKF
perform better than the NLO.
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Fig. 8 NED velocity of the UAV during the experiment
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Fig. 9 Euler angles estimation error of the three methods with respect to the autopilot EKF



42 L. Fusini et al.

1050 1100 1150 1200 1250 1300

Time (s)

0

0.2

0.4

x 
(°

/s
)

1050 1100 1150 1200 1250 1300

Time (s)

0

0.05

0.1

y 
(°

/s
)

1050 1100 1150 1200 1250 1300

Time (s)

-0.8

-0.6

-0.4

-0.2

0

z 
(°

/s
)

NLO
XKF
EKF

Fig. 10 Gyro bias estimation error of the three methods with respect to the autopilot EKF
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Fig. 11 NED position estimation error of the three methods with respect to the autopilot EKF
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Fig. 12 NED velocity estimation error of the three methods with respect to the autopilot EKF

Table 1 RMS errors for the
experimental data

State NLO XKF EKF

Roll φ (◦) 1.887 1.363 1.355

Pitch θ (◦) 1.319 1.265 1.336

Yaw ψ (◦) 0.055 0.018 0.021

Gyro bias x (◦/s) 0.065 0.059 0.051

Gyro bias y (◦/s) 0.049 0.030 0.012

Gyro bias z (◦/s) 0.028 0.019 0.019

North position (m) 0.876 0.417 0.419

East position (m) 0.944 0.449 0.440

Down position (m) 0.330 0.176 0.156

North velocity (m/s) 0.291 0.286 0.257

East velocity (m/s) 0.352 0.285 0.251

Down velocity (m/s) 0.374 0.313 0.314
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Another term of comparison for the estimators is their behavior with large ini-
tialization errors. If, for example, the estimators are initialized with large attitude
estimation errors, the EKF yaw estimation error does not converge to zero, whereas
NLO and XKF converge due to their GES property.

There is no guarantee that theEKFonboard the autopilot is the device that gives the
best estimates with respect to the real, unknown values. For this reason, a simulation
is run in order to have access to perfect measurements of the states.

5.2 Simulation Setup and Results

The simulated flight has several changes of direction and slight changes in altitude.
Instead of simulating the entire machine vision system, a body velocity sensor is
simulated by adding Gaussian white noise to the known, exact value. The GPS-
measured position and velocity are modeled as Gauss–Markov processes with added
Gaussian white noise, according to the specifications in [4]. Gaussian white noise is
added to all the other sensors too, with standard deviations 0.135 deg/s for the rate
gyros, 0.02 m/s2 for the accelerometers, and 0.3m/s for the body-fixed velocity. A
constant bias is added to the gyro measurements.

Fig. 13 Euler angles estimation error of the three methods with simulated data
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Fig. 14 Gyro bias estimation error of the three methods with simulated data

Table 2 RMS errors for the
simulation

State NLO XKF EKF

Roll φ (◦) 0.288 0.044 0.040

Pitch θ (◦) 0.127 0.039 0.039

Yaw ψ (◦) 0.397 0.126 0.121

Gyro bias x (◦/s) 0.002 1.24e–04 1.23e–03

Gyro bias y (◦/s) 4.69e–04 8.22e–05 8.15e–05

Gyro bias z (◦/s) 0.001 2.69e–04 2.66e–04

North position (m) 0.189 0.153 0.153

East position (m) 0.179 0.146 0.141

Down position (m) 0.310 0.274 0.276

North velocity (m/s) 0.219 0.047 0.044

East velocity (m/s) 0.226 0.051 0.053

Down velocity (m/s) 0.359 0.047 0.047

The results are in Fig. 13, 14, 15 and 16 and the RMS errors in Table2. It is clear
that the NLO performs worse than the XKF and EKF, and it is particularly evident
in the position and velocity estimates that the NLO estimates have more noise.



46 L. Fusini et al.

Fig. 15 NED position estimation error of the three methods with simulated data

Fig. 16 NED velocity estimation error of the three methods with simulated data
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Table 3 RMS errors for the
NLO using acceleration and
heading from GPS

State NLO

Roll φ (◦) 2.681

Pitch θ (◦) 1.965

Yaw ψ (◦) 0.391

Gyro bias x (◦/s) 0.053

Gyro bias y (◦/s) 0.124

Gyro bias z (◦/s) 0.275

North position (m) 0.883

East position (m) 0.915

Down position (m) 0.306

North velocity (m/s) 0.852

East velocity (m/s) 0.687

Down velocity (m/s) 0.365

5.3 Case Study: Camera or OF Failure

A fundamental component of the NLO is the body-referenced velocity obtained via
machine vision. If the camera optical flow algorithm fails to function, the velocity
becomes unreliable and a new solution is necessary. The acceleration vectors alone
can help estimate the roll and pitch angles, whereas the yaw requires an additional
pair of vectors. Assuming that the course and heading of the UAV coincide, the vb

and vn vectors in the injection term can be replaced by

mn =
⎡
⎣
1
0
0

⎤
⎦ , mb =

⎡
⎣

cos(ψ)

− sin(ψ)

0

⎤
⎦ ≈ 1

‖vn‖

⎡
⎣

vnN−vnE
0

⎤
⎦ (26)

The vector mb is then calculated based on the GPS velocity readings. This solution
is clearly not ideal, for it would yield inaccurate results in the presence of strong
crosswinds leading to a crab angle, but it would work as a degraded accuracy mode.

The method is tested on the same experimental data used in Sect. 5.1. The RMS
error is in Table3. Plots are not presented due to lack of space. The results are in
general worse than those obtained using the camera, as expected, but would still be
a viable solution.

6 Conclusions

This chapter presented the results and experimental verification of the exogenous
Kalman filter for the estimation of a fixed-wing UAV navigation states. The theory
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behind the filterwas presented,with theorems proving the global exponential stability
properties of the method, followed by the experimental results, where the estimates
from the nonlinear observer, exogenous Kalman filter, and extended Kalman filter
were compared with the output (an extended Kalman filter itself) of the autopilot
onboard the UAV. The two Kalman filter solutions have better noise rejection, and
they were also tested on simulated data in order to be able to compare the estimates
with perfect reference values. Moreover, unlike the EKF, the XKF has proven GES
properties. An additional case study was presented to provide a degraded accuracy
solution in case of a camera failure, and allow the UAV to land safely.
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Appendix

The parameter projection Proj(·, ·) is defined as

Proj(b̂b, τ ) =
{(

I − c(b̂b)
‖b̂b‖2 b̂

bb̂bT
)

τ, ‖b̂b‖ ≥ Lb, b̂bT τ > 0

τ, otherwise

where c(b̂b) = min{1, (‖b̂b‖2 − L2
b)/(L

2
b̂
− L2

b)}. This operator is a special case
of that from Appendix E of [24]. Some of its properties are reported here: (i)
Proj(·, ·) is locally Lipschitz continuous, (ii) ‖b̂b‖ ≥ Lb̂ ⇒ b̂bTProj(b̂b, τ ) ≤ 0,
(iii) ‖Proj(b̂b, τ )‖ ≤ ‖τ‖, and (iv) −b̃bTProj(b̂b, τ ) ≤ −b̃bT τ .
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