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�Introduction

The antiphospholipid syndrome (APS) is characterized by antiphospholipid 
antibodies (aPL) in the plasma or serum of patients with thrombosis or pregnancy 
complications [1]. The APS is a misnomer, because the so-called aPL are directed 
not against phospholipids but against plasma proteins with affinity for anionic phos-
pholipids. Autoantibodies against many different plasma proteins have been 
described. In this chapter we will enumerate these proteins, discuss the arguments 
why they are linked to the syndrome and discuss why these proteins become pro-
thrombotic in the presence of autoantibodies.

�Plasma Proteins Involved in Antiphospholipid Syndrome

�β2-Glycoprotein I

β2-glycoprotein I (β2GPI) is a 50 kDa plasma protein with increasing evidence that it 
has important roles in innate immunity and coagulation [2–4]. Many studies show that 
anti-β2GPI antibodies (aβ2GPI), either mouse monoclonal or patient derived, induce a 
prothrombotic phenotype in mice that have been primed either with lipopolysaccharide 
(LPS) or an injury to the vessel wall [5, 6]. Studies that separate aβ2GPI-associated aPL 
from those in which aβ2GPI are removed by affinity chromatography show that the 
prothrombotic effect of aPL is present only in the aβ2GPI containing fraction [7]. 
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Further studies, characterizing correlations of the individual domains of β2GPI with 
thrombosis and fetal loss, show correlation for both manifestations only with anti-
domain I antibodies [8, 9]. Studies using aβ2GPI depleted of anti-domain I antibodies 
further demonstrate that domain I antibodies are pathogenic, while antibodies against 
the other domains are not [10]. The major epitope for the autoantibodies is located 
within the region of amino acids arginine 39 and arginine 43 and a minor epitope 
involving lysine19 [11]. Exogenous human domain I can inhibit the prothrombotic 
phenotype in a mouse model of APS [12]. When arginine 39 is replaced by serine, the 
inhibitory potential of domain I is lost. These experiments in mouse models show con-
clusively that β2GPI, in particular its first domain, is central to the pathogenesis of APS.

�Prothrombin

Antiprothrombin antibodies are commonly found in patients with APS. Prothrombin 
is one of the major coagulation factors in blood. However, antiprothrombin antibod-
ies do not correlate with thrombosis. A recently developed assay that measures 
autoantibodies against prothrombin complexed with phosphatidylserine (PS) shows 
better correlation of these antibodies with thrombosis [13]. Two studies show that 
antiprothrombin antibodies are prothrombotic in mouse models of APS [14, 15]. 
The thrombotic response to an induced vascular injury was much stronger with 
antiprothrombin than with control antibody. However, the antibodies used in these 
studies were not well characterized. In rare cases antiprothrombin antibodies can 
cause bleeding due to decreased levels of prothrombin because, in contrast to auto-
antibodies against β2GPI, antiprothrombin antibodies enhance clearance of pro-
thrombin from the circulation [16].

�Annexin A2

The annexins constitute a family of highly conserved, Ca2+-regulated, 
phospholipid-binding proteins that have many functions related to membrane-
mediated processes [17]. Annexin A2 influences haemostasis as it is a receptor 
for tissue plasminogen activator (tPA) on endothelial cells and for β2GPI. Annexin 
A2 knockout (−/−) mice show deposition of fibrin in the lungs, spleen, liver, and 
kidney as they age consistent with decreased fibrinolysis [18]. Annexin A2 auto-
antibodies develop in patients with APS; high titers of anti-annexin A2 autoanti-
bodies correlate with thrombosis [19]. Annexin A2 (−/−) mice, in a model of 
APS, reduce the prothrombotic effect of injected aPL, suggesting that the mecha-
nism by which annexin A2 is involved in APS is due to disruption of its fibrino-
lytic function by the autoantibodies [20].
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�Annexin A5

Annexin A5 is another member of the annexin family of calcium-dependent 
phospholipid-binding proteins. The anticoagulant properties of this protein result 
from its rapidly forming two-dimensional crystal arrays over the polar heads of the 
anionically charged membrane phospholipids [21]. Anionic phospholipids are 
required cofactors for the four critical phospholipid-dependent coagulation reac-
tions: the IXa-mediated tenase reaction, the tissue factor-VIIa-mediated tenase, the 
tissue factor-VIIa-mediated IXase reactions, and the prothrombinase reaction. 
Assembly of the annexin A5 array shields phospholipids from contributing to the 
enzymatic reactions. Annexin A5 knockout mice have increased placental thrombo-
sis and infarction but no increased propensity for systemic thrombosis [22].

Several studies explore the possibility that anti-annexin A5 antibodies correlate with 
clinical manifestations of APS [23]. IgG anti-annexin A5 antibodies occur in patients 
with pregnancy complications but not in those with venous or arterial thrombosis.

An alternative research path asks whether aPL antibody-mediated disruption of 
annexin A5 crystallization, on activated platelets and on phospholipid vesicles, 
leading to reduction of anticoagulant activity (called “A5 resistance”) correlates 
with adverse clinical outcomes. Recent data suggest that A5 resistance does corre-
late with increased risk of thrombosis and pregnancy complications. A recent paper 
[24] correlates A5 resistance with increased prevalence of thrombosis in a “real-
world” retrospective population and in a group of prospectively observed asymp-
tomatic patients. In both the retrospective and prospective groups, A5 resistance 
correlates with positivity for multiple criteria-based aPL assays.

In summary, A5 resistance correlates with an increased risk for thrombosis. The 
resistance is specifically mediated by anti-domain one of β2GPI [25] and potentially 
other aPL cofactor proteins, but it is not mediated by antibodies to annexin A5. To 
date, although anti-annexin A5 antibody assays may be associated with an APS 
process, it is not clear that they have a causal relationship to the disease.

�Platelet Factor 4 (CXCL4) and Other Platelet-Derived 
Chemokines

Platelet factor 4 (PF4) or CXCL4 is an 8kD molecule belonging to the CXC chemokine 
family. It circulates as a tetramer. It was first recognized to play a role in APS when plate-
let membrane protein extracts, from three healthy donors and seven APS patients, were 
passed through a β2GPI affinity column and analysed by mass spectrometry [26]. 
Experiments using in silico molecular docking models indicated that a tetramer of PF4 
act as a scaffold to which two molecules of β2GPI bound. According to this model, 
domain I of β2GPI became accessible for recognition by aβ2GPI, while domain V was 
available to interact with other proteins on the platelet membrane [26]. The multimeric 
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complex (PF4)4/(β2GPI)2/aβ2GPI can exist in solution. Furthermore, platelets from 
healthy individuals, primed with very small amounts of thrombin, were activated only 
when PF4, β2GPI and aβ2GPI were present and were associated with the phosphorylation 
of p38 MAP kinase. Natural dimerization of β2GPI is necessary for more effective recog-
nition by aβ2GPI, the whole complex being a powerful platelet activator [27]. The interac-
tion of β2GPI with PF4 induces β2GPI dimers in a completely natural way and facilitates 
antibody binding and platelet activation, which itself is important for enhanced activation 
of endothelium and fibrinogen in a mouse thrombosis model. Plasma levels of platelet-
derived chemokines such as PF4, PF4var (PF4 variant, also known as CXCL4L1), 
CXCL7, and CCL5 are elevated in patients with APS but not in patients with systemic 
lupus erythematosus (SLE), coronary artery disease (CAD), or healthy controls [28], 
indicating marked platelet activation in APS patients. These data support the notions that 
platelet activation in APS is induced by the complex (PF4)4/(β2GPI)2/aβ2GPI.

�Other Proteins

A recent study suggests that true anticardiolipin antibodies (those that recognize 
cardiolipin without the support of a plasma protein) may also induce a prothrom-
botic state in mice [28]. It is difficult to prove that these antibodies function in the 
absence of a natural protein because, in in vivo models, many candidate molecules 
are obligatorily present. Anticardiolipin antibodies, as measured with currently 
available assays, correlate weakly with thrombosis compared to lupus anticoagulant 
(LA); moreover, syphilis and leprosy patients have these autoantibodies without a 
clear increased risk of thrombosis. Cardiolipin is likely too small to elicit an immune 
response on its own without a carrier protein.

Autoantibodies to a number of other coagulation-relevant proteins, such as pro-
tein S, protein C, tissue factor pathway inhibitor, factor X, XI and XII, are found in 
a small subgroup of patients with APS [29]. Some correlate with clinical manifesta-
tions, and mechanisms regarding how these autoantibodies might induce a pro-
thrombotic state have been proposed, but none of the autoantibodies have been 
tested in in vivo models. There is no convincing evidence that they play a role in 
thrombosis or pregnancy complications in APS.

�Why Do Plasma Proteins Become Prothrombotic 
in the Presence of Autoantibodies?

Based on animal models of APS, three natural proteins, β2GPI, prothrombin, and 
annexin A2, are identified as important antigens in APS.  Although inhibition of 
annexin A2 can inhibit fibrinolysis, the absence of plasminogen does not cause high 
risk for thrombosis in humans, suggesting a minor role of annexin A2.
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Autoantibodies against prothrombin differ from autoantibodies against a pro-
thrombin- phosphatidylserine (PS) complex. There are autoantibodies that recog-
nize prothrombin only when it is bound to an anionic phospholipid, suggesting that 
prothrombin undergoes a conformational change when it is bound to PS, exposing 
a cryptic epitope. Based on human studies, antibodies directed against this cryptic 
epitope correlates better with thrombosis than do antibodies against the rest of the 
prothrombin molecule. Further analysis of the specific antigenic epitope will help 
us understand how these autoantibodies might be prothrombotic.

It is not immediately clear why antibodies against β2GPI or prothrombin could 
induce thrombosis. Inhibition of prothrombin would result in bleeding, and no 
physiological function has been described for β2GPI to explain its role in a pro-
thrombotic risk. To become prothrombotic, the autoantibodies should induce a 
new property in their target proteins. Here are a few possible mechanisms: (a) 
increased affinity due to dimerization by antibodies [27], (b) conformational 
changes and expression of a hidden epitopes [30], and (c) reshuffling of disul-
phide bridges within proteins [31].

�Conformational Changes of β2-Glycoprotein I

The first demonstration that a plasma cofactor was required for aPL to bind 
cardiolipin was made by McNeil et al. in 1989 [32]. In the following year, this 
cofactor was identified as β2GPI by peptide sequencing which itself was later 
identified as the major autoantigen for aPL [33, 34]. β2GPI consists of 326 
amino acid residues organized in five CCP (complement control protein) 
domains [35] (DI-DV), which function as protein-protein interaction modules 
in many proteins. DI-DIV have evolutionary conserved sequences; DV con-
tains a six-residue insertion, a 19-residue C-terminal extension and an addi-
tional disulphide bond that includes a C-terminal cysteine residue. DV also 
harbours a large, positively charged patch that determines affinity for anionic 
phospholipids. The crystal structure of β2GPI, solved in 1999, [36, 37] sug-
gests a stretched arrangement of the DI-IV, with DV lying at a right angle to 
the other domains, in the shape of a J. The phospholipid-binding site is located 
at the bottom of DV and consists of 14 charged amino acid residues and a flex-
ible and hydrophobic loop. This crystal structure predicts that, when β2GPI is 
bound to a lipid layer, DI to IV point away from the lipid layer and that the 
potential binding site for aβ2GPI autoantibodies in DI is fully exposed [38].

There are no circulating nor tissue deposition of β2GPI-antibody immune 
complexes in patients with APS. A logic interpretation of this observation is that 
the antibodies directed against β2GPI do not recognize β2GPI in the circulation. 
The antibodies recognize a cryptic epitope in the molecule. It has been shown 
that β2GPI expose the autoantibody binding site when it binds to anionic phos-
pholipids [39].
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Electron microscopy studies show that β2GPI exists in two different confor-
mations (Fig.  2.1). In plasma, it is present as a circular protein in which DI 
interacts with DV.  On binding to anionic surfaces, the protein opens up and 
expresses the #hockey-stick conformation of the crystal structure [40]. The cir-
cular conformation predicts shielded epitopes within DI and DV [40], and, 
indeed, autoantibodies against DI recognize β2GPI only when it is bound to 
anionic surfaces, not when it is present in the circulation. Since β2GPI binds to 
cell receptors via its DV, and since binding is enhanced by autoantibodies, it 
must be mediated by a cryptic epitope in DV that is expressed after the molecule 
has opened.

Small-angle X-ray scattering (SAXS) experiments suggested that in solution, 
β2GPI adopts an S-shaped conformation with an additional buckle between DII 
and DIII [41]. Additional SAXS experiments show that β2GPI adopts different 
conformations, depending on pH, ionic strength, and certain cations. β2GPI turns 
out to be a flexible molecule, not constrained to a single, specific conformation; 
its conformation depends on interactions with its surroundings. Apparently 
β2GPI can adapt a number of different structural conformations that in vitro can 
coexist in a dynamic equilibrium. Factor H, a complement factor built up of 20 
CCP domains, also adopts different domain orientations in solution with conse-
quences for its functional activity [42, 43]. Proteins consisting of CCP domains 
vary their conformations, depending not only on the length and flexibility of the 
linker sequences between domains but also, predominantly, on interactions with 
their surroundings.

Fig. 2.1  Conformational change within β2GPI. (A) β2GPI as it circulates in plasma. (B) Binding to 
negatively charged phospholipids opens up β2GPI. (C) Binding of autoantibodies stabilizes β2GPI 
in its stretched conformation
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�Redox Balance

Antiphospholipid syndrome is characterized by oxidative stress and systemic 
inflammation [44, 45]. The overproduction of reactive oxygen species (ROS) 
results in an oxidative microenvironment that exacerbates inflammation, induc-
ing cell death and tissue damage, compromising antioxidant defence mecha-
nisms [46]. Patients with APS have high levels of circulating pro-inflammatory 
cytokines interleukin-2 (IL-2), interleukin-6 (IL-6), and tumour necrosis factor 
(TNF), together with markers of oxidative stress and inflammation such as 
serum amyloid A (SAA), C-reactive protein (CRP), 8-isoprostane, and prosta-
glandin E2 (PGE2) [47, 48].

In vivo and under normal physiological conditions, β2GPI is produced in the liver 
and exists predominately in circulation in its free thiol form, which is less immuno-
genic than the oxidized form (Fig. 2.2). The precise role of β2GPI and its different 
forms are complex [49]; it is thought to act as a natural anticoagulant that mediates 
a range of functions including the clearance of liposomes, apoptotic bodies and 
microparticles [49–52].

Fig. 2.2  How does oxidized β2GPI participate in the formation of thrombotic APS? During oxida-
tive stress, free thiol β2GPI can undergo post-translational modification to form the immunogenic 
form, oxidized β2GPI after binding phospholipids. β2GPI autoreactive CD4+ T cells recognize 
newly exposed epitopes located on Domain V but not on free thiol β2GPI. A complex is formed 
between aβ2GPI, autoreactive CD4+ T cells and oxidized β2GPI triggering the production of aPL, 
specifically aβ2GPI, cell proliferation and the release of pro-inflammatory cytokines which are key 
events in the pathophysiology of thrombotic APS
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�Quantitation of Oxidized β2GPI as a Biomarker 
for Antiphospholipid Syndrome

Oxidized β2GPI level in APS has been proposed as a biomarker of thrombotic risk 
for APS. Levels of oxidized β2GPI in patients with APS are higher than in healthy 
subjects and patients with other autoimmune disease or non-aPL disease controls 
with thrombosis [53]. Free thiol β2GPI may play a protective role in APS, since free 
thiol β2GPI protects human umbilical vein endothelial cells (HUVEC) against 
hydrogen peroxide-induced cell injury [54]. Decreased plasma free thiol β2GPI may 
thus lower the physiological buffer against oxidative stress-induced injury. Free 
thiol β2GPI also protects human retinal pigment epithelium and the subretinal endo-
thelial cell against oxidative, hydrogen peroxide stress-induced, cell death [55].

A multicentre, cross-sectional, international study using prospectively acquired 
samples has demonstrated that the redox status of β2GPI differs between healthy indi-
viduals and patients with thrombotic APS [53]. In the former it exists predominately 
with free thiols; APS patients have higher levels of total and oxidized β2GPI compared 
to both healthy subjects and patients with other autoimmune disease [53, 56].

�Diagnostic and Prognostic Implications of the Oxidized β2GPI 
ELISA

Anticardiolipin antibodies, aβ2GPI, and LA test serve as diagnostic markers in 
APS. The predominant isotypes of aPL in APS patients are IgG aCL and IgG aβ2GPI 
[57, 58]. Although, non-criteria or non-classical aPL such as antiphosphatidylser-
ine, antiphosphatidylethanolamine, and antiphosphatidylglycerol have been 
reported, only the three classical aPL tests are used in diagnosis of APS [59]. The 
LA assay identifies autoantibodies against either prothrombin and/or β2GPI, whereas 
the aCL assay detects the aCL and/or aβ2GPI antibodies. The aβ2GPI assay detects 
only antibodies against β2GPI. Concomitant triple positivity for aCL, β2GPI and LA 
may indicate severe APS and high recurrence risk [60], a point that is still contro-
versial [61]. Lupus anticoagulant correlates much better with the clinical manifesta-
tions of APS than the detection of the autoantibodies with an ELISA [62, 63], and a 
positive LA assay due to aβ2GPI has a stronger correlation for thrombotic risk than 
due to antiprothrombin autoantibodies [64].

In a clinical setting, it is important to stratify risk for development of clinical 
events in APS and in asymptomatic, aPL-positive individuals. Delayed or inadequate 
treatment can result in damage and impaired quality of life [65, 66]. Although β2GPI 
levels are not routinely measured in patients with APS, considering the specificity of 
high levels of oxidized β2GPI, measuring their levels may assist in diagnosis and 
prognosis. The level of oxidized β2GPI is calculated by subtracting the concentration 
of free thiol from total β2GPI. Using an ELISA to measure post-translational redox 
modifications of β2GPI (including total and free thiol β2GPI) [53] (Fig. 2.3) and β2GPI 

P.G. de Groot et al.



23

plasma levels in 359 patients (identified through an international multicentre initia-
tive) who had either APS or other autoimmune diseases or non-APS vascular throm-
bosis, Ioannou et al. found that the redox state of β2GPI and its concentration in APS 
patients had a profile distinct from that in the various control groups.

�Group Conclusion

Evidence from both clinical and animal studies supports the concept that β2GPI is 
the main autoantigen in APS. Understanding of the pathophysiology of APS and the 
involvement of β2GPI and its post-translational modified forms remains incomplete; 
understanding the relevance of oxidized β2GPI in APS will be important. Although 
#aPL are a defining, hallmark feature of APS, their presence does not exclusively 
indicate APS nor do they stratify individuals for risk of thrombosis.

Current methods for diagnosing APS patients do not incorporate quantitation of 
total and free thiol β2GPI. Specific ELISAs for quantifying these parameters may 
enhance our diagnostic and prognostic capabilities. Prospective studies may validate 

Fig. 2.3  Schema of enzyme-linked immunosorbent assay (ELISA) to measure free thiol  
β2 glycoprotein I (β2GPI). Free thiol β2GPI bind streptavidin via biotin-conjugated maleimidyl-
propionyl biocytin (MPB) and become immobilized. Acetone precipitation removes unbound 
MPB, and bound free thiol β2GPI is quantified with aβ2GPI and detected using a secondary anti-
body, alkaline phosphatase (AP) and chromogenic substance para-nitrophenylphosphate (PnPP)

2  Natural Proteins Involved in Antiphospholipid Syndrome



24

measurement of oxidatively modified forms of β2GPI as biomarkers. The 
AntiPhospholipid Syndrome Alliance For Clinical Trials and InternatiOnal 
Networking (APS ACTION), an international research network that collects patient 
samples from 25 centres around the world [67], may allow a longitudinal study that 
measures oxidized β2GPI.
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