Wave Equations

A very wide range of physical processes lead to wave motion, where signals are
propagated through a medium in space and time, normally with little or no per-
manent movement of the medium itself. The shape of the signals may undergo
changes as they travel through matter, but usually not so much that the signals can-
not be recognized at some later point in space and time. Many types of wave motion
can be described by the equation u,, = V- (c>*Vu) + f, which we will solve in the
forthcoming text by finite difference methods.

2.1 Simulation of Waves on a String

We begin our study of wave equations by simulating one-dimensional waves on a
string, say on a guitar or violin. Let the string in the undeformed state coincide with
the interval [0, L] on the x axis, and let u(x, t) be the displacement at time ¢ in the
y direction of a point initially at x. The displacement function u is governed by the
mathematical model

Pu 0%
w =c ﬁ x € (0,L), te(0,T] 2.1)
u(x,0) = I(x), x €0, L] 2.2)
%u(x,O) =0, x €0, L] 2.3)
u(0,1) = 0, te€(0,T] (2.4)
u(L,t) =0, t€(0,T]. 2.5)

The constant ¢ and the function /(x) must be prescribed.

Equation (2.1) is known as the one-dimensional wave equation. Since this PDE
contains a second-order derivative in time, we need two initial conditions. The
condition (2.2) specifies the initial shape of the string, /(x), and (2.3) expresses
that the initial velocity of the string is zero. In addition, PDEs need boundary
conditions, given here as (2.4) and (2.5). These two conditions specify that the
string is fixed at the ends, i.e., that the displacement u is zero.

The solution u(x, t) varies in space and time and describes waves that move with
velocity c to the left and right.

© The Author(s) 2017 93
H.P. Langtangen, S. Linge, Finite Difference Computing with PDEs,
Texts in Computational Science and Engineering 16, DOI 10.1007/978-3-319-55456-3_2

94 2 Wave Equations

Sometimes we will use a more compact notation for the partial derivatives to
save space:
ou 0%u
o T g
and similar expressions for derivatives with respect to other variables. Then the
wave equation can be written compactly as u,, = gy

The PDE problem (2.1)—(2.5) will now be discretized in space and time by a
finite difference method.

U, = (2.6)

2.1.1 Discretizing the Domain
The temporal domain [0, T'] is represented by a finite number of mesh points
O=th<thi<thy<--<ty_1 <ty =T. 2.7
Similarly, the spatial domain [0, L] is replaced by a set of mesh points
O=Xxo<x;<Xx2<--<xXy-1<xy, =0L. (2.8)

One may view the mesh as two-dimensional in the x, ¢ plane, consisting of points
(x;,t,),withi =0,...,Nyandn =0,...,N,.

Uniform meshes For uniformly distributed mesh points we can introduce the con-
stant mesh spacings A¢ and Ax. We have that

x;=iAx,i=0,...,N,, t,=nAt,n=0,...,N;. 2.9)

We also have that Ax = x; —x;_1,i = 1,...,Ny,and At = t, —t,_1, n =
1,..., N,. Figure 2.1 displays a mesh in the x, ¢ plane with N, = 5, N, = 5, and
constant mesh spacings.

2.1.2 The Discrete Solution

The solution u(x,) is sought at the mesh points. We introduce the mesh func-
tion u}, which approximates the exact solution at the mesh point (x;,t,) for i =
0,...,Nyandn = 0,..., N;. Using the finite difference method, we shall develop
algebraic equations for computing the mesh function.

2.1.3 Fulfilling the Equation at the Mesh Points

In the finite difference method, we relax the condition that (2.1) holds at all points
in the space-time domain (0, L) x (0, T'] to the requirement that the PDE is fulfilled
at the interior mesh points only:

2 2

9 ?
U (xistn) = czﬁu(x,-,tn), (2.10)

2.1 Simulation of Waves on a String 95

fori =1,...,.N,—landn = 1,...,N, — 1. For n = 0 we have the initial
conditions ¥ = I(x) and u; = 0, and at the boundaries i = 0, N, we have the
boundary condition u = 0.

2.1.4 Replacing Derivatives by Finite Differences

The second-order derivatives can be replaced by central differences. The most
widely used difference approximation of the second-order derivative is

82 n+1 21/l -|—Mn 1
5 2u(x,,t,,) ~ At2 .

It is convenient to introduce the finite difference operator notation

n+1 n—1
—2u! +u]
D;Dul! = i .
[DeDul; At2

A similar approximation of the second-order derivative in the x direction reads

2
9 P ty) ~ S
a 2 s tn Ax2

= [D.Dul!.

Algebraic version of the PDE We can now replace the derivatives in (2.10) and
get
u T o Tt Sl = 2ul ol
=c

= 2.11
Ar? Ax? @11
or written more compactly using the operator notation:
[D;Du = c*D,D,]". (2.12)
Interpretation of the equation as a stencil A characteristic feature of (2. 11) is
that it involves u values from neighboring points only: u"“, u?,, u?, and u?

The circles in Fig. 2.1 illustrate such neighboring mesh points that contnbute to an
algebraic equation. In this particular case, we have sampled the PDE at the point
(2,2) and constructed (2.11), which then involves a coupling of u%, u%, u%, u%, and
u?. The term stencil is often used about the algebraic equation at a mesh point, and
the geometry of a typical stencil is illustrated in Fig. 2.1. One also often refers to
the algebraic equations as discrete equations, (finite) difference equations or a finite
difference scheme.

Algebraic version of the initial conditions We also need to replace the deriva-
tive in the initial condition (2.3) by a finite difference approximation. A centered
difference of the type

ul —u;!

7T —1Dyul’
2At [2tu]za

d
atu(‘xl’to) ~

96 2 Wave Equations

Stencil at interior point

5
4
0O
c 3 o
x
(0]
©
= 5 Q) 0 Q)
W W (&
1 0O
()
0
0 1 2 3 4 5

index i

Fig.2.1 Mesh in space and time. The circles show points connected in a finite difference equation

seems appropriate. Writing out this equation and ordering the terms give
ui'=ul, i=0,....Ny. (2.13)
The other initial condition can be computed by

u? =1I(x;)), i=0,....N,.

2.1.5 Formulating a Recursive Algorithm

We assume that u” and u~! are available for i = 0,..., N,. The only unknown

quantity in (2.11) is therefore u;’ +1, which we now can solve for:

w!th = 7 2ul + C? (ufy —2ul +) (2.14)

1

We have here introduced the parameter

C=c—, 2.15
‘Ax (2.15)

known as the Courant number.

C is the key parameter in the discrete wave equation

We see that the discrete version of the PDE features only one parameter, C,
which is therefore the key parameter, together with N,, that governs the quality
of the numerical solution (see Sect. 2.10 for details). Both the primary physical
parameter ¢ and the numerical parameters Ax and At are lumped together in C.
Note that C is a dimensionless parameter.

2.1 Simulation of Waves on a String 97

Stencil at interior point

5
4
c 3
x
(0]
ge)
£
2
1 0
7
0 N N N
0 \2(4 5
index i
Fig.2.2 Modified stencil for the first time step
Given that u;"l and u} are known fori = 0,..., N,, we find new values at the

next time level by applying the formula (2.14) fori = 1,..., N, — 1. Figure 2.1
illustrates the points that are used to compute u%. For the boundary points, i = 0
and i = N,, we apply the boundary conditions u;’“ =0.

Even though sound reasoning leads up to (2.14), there is still a minor challenge
with it that needs to be resolved. Think of the very first computational step to
be made. The scheme (2.14) is supposed to start at n = 1, which means that
we compute u? from u' and u°. Unfortunately, we do not know the value of u',
so how to proceed? A standard procedure in such cases is to apply (2.14) also
for n = 0. This immediately seems strange, since it involves ui‘l, which is an
undefined quantity outside the time mesh (and the time domain). However, we can
use the initial condition (2.13) in combination with (2.14) when n = 0 to eliminate
u;!" and arrive at a special formula for u}:

1
ul =0 — 5c2 (ud, —2ud +uf) . (2.16)

Figure 2.2 illustrates how (2.16) connects four instead of five points: u%, u?, ug, and
0
u;.

We can now summarize the computational algorithm:

1. Compute u! = I(x;) fori =0,..., N,

2. Compute u; by (2.16) fori = 1,2,..., N, — 1 and set u} = 0 for the boundary
points givenby i = 0andi = N,,

3. Foreachtimeleveln =1,2,...,N,—1
(a) apply (2.14) to find u ' fori = 1,..., N, — 1
(b) set u?’“ = 0 for the boundary points havingi = 0,i = N,.

98 2 Wave Equations

The algorithm essentially consists of moving a finite difference stencil through all
the mesh points, which can be seen as an animation in a web page' or a movie file?.

2.1.6 Sketch of an Implementation

The algorithm only involves the three most recent time levels, so we need only
three arrays for u;’“, u?, and ul’f‘l, i =0,...,N,. Storing all the solutions in
a two-dimensional array of size (N, + 1) x (N; + 1) would be possible in this
simple one-dimensional PDE problem, but is normally out of the question in three-
dimensional (3D) and large two-dimensional (2D) problems. We shall therefore, in
all our PDE solving programs, have the unknown in memory at as few time levels
as possible.

In a Python implementation of this algorithm, we use the array elements u[i] to
store u ™! u_n[i] to store u”, and u_nm1 [i] to store u/'~!

The following Python snippet realizes the steps in the computational algorithm.

Given mesh points as arrays x and t (x[il, t[n])
dx = x[1] - x[0]
dt = t[1] - t[0]

C = cxdt/dx # Courant number
Nt = len(t)-1
C2 = Cxx*2 # Help variable in the scheme

Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):
u_n[i] = I(x[il)

Apply special formula for first step, incorporating du/dt=0
for i in range(1l, Nx):
ulil = u.nlil -\
0.5%C*x*2(u_n[i+1] - 2*u_n[i] + u_n[i-1])
ul0] = 0; ulNx] =0 # Enforce boundary conditions

Switch variables before next step
u_nmi[:], unl[:] =un, u

for n in range(1l, Nt):
Update all inner mesh points at time t[n+1]
for i in range(1l, Nx):
uli]l = 2u_n[i] - uw_nmi[i] - \
Cx*2(u_n[i+1] - 2*%u_n[i] + u_n[i-1])

Insert boundary conditions
ul0] = 0; ulNx] =0

Switch variables before next step
unmi[:], unl:] =u_n, u

Uhttp://tinyurl.com/hbcasmj/book/html/mov-wave/D_stencil_gpl/index.html
2 http://tinyurl.com/gokgkov/mov-wave/D_stencil_gpl/movie.ogg

http://tinyurl.com/hbcasmj/book/html/mov-wave/D_stencil_gpl/index.html
http://tinyurl.com/gokgkov/mov-wave/D_stencil_gpl/movie.ogg
http://tinyurl.com/hbcasmj/book/html/mov-wave/D_stencil_gpl/index.html
http://tinyurl.com/gokgkov/mov-wave/D_stencil_gpl/movie.ogg

2.2 Verification 929

2.2 \Verification
Before implementing the algorithm, it is convenient to add a source term to the PDE

(2.1), since that gives us more freedom in finding test problems for verification.
Physically, a source term acts as a generator for waves in the interior of the domain.

2.2.1 ASlightly Generalized Model Problem

We now address the following extended initial-boundary value problem for one-
dimensional wave phenomena:

uy = cuce + fx,1), xe€(0,L), t€(0,T] (2.17)
u(x,0) = I(x), x €0, L] (2.18)
u;(x,0) = V(x), x €0, L] (2.19)
u(0,1) =0, >0 (2.20)
u(L,1) =0, 1>0. (2.21)

Sampling the PDE at (x;, ,,) and using the same finite difference approximations
as above, yields
[D;Du = c*D,Du+ f]". (2.22)

+

Writing this out and solving for the unknown u ! results in

wlth = T 2ul + CPul L — 2ul) 4+ A (2.23)

1

The equation for the first time step must be rederived. The discretization of the
initial condition u, = V(x) at ¢t = 0 becomes
[Dyu=V]) = u'=ul—2A1V;,

1

which, when inserted in (2.23) for n = 0, gives the special formula

1 1
ul =u? — AtV + Ecz (), —2uf +uf) + EAt2fi°. (2.24)

2.2.2 Using an Analytical Solution of Physical Significance

Many wave problems feature sinusoidal oscillations in time and space. For example,
the original PDE problem (2.1)—(2.5) allows an exact solution

Ue(x,t) = Asin (%x) cos (%ct) . (2.25)

This ue fulfills the PDE with f = 0, boundary conditions u¢ (0,) = ue(L,t) =0,
as well as initial conditions /(x) = Asin (%x) and V = 0.

100 2 Wave Equations

How to use exact solutions for verification

It is common to use such exact solutions of physical interest to verify imple-
mentations. However, the numerical solution u} will only be an approximation
to ue(x;,t,). We have no knowledge of the precise size of the error in this ap-
proximation, and therefore we can never know if discrepancies between u} and
ue(x;,t,) are caused by mathematical approximations or programming errors.
In particular, if plots of the computed solution u! and the exact one (2.25) look
similar, many are tempted to claim that the implementation works. However,
even if color plots look nice and the accuracy is “deemed good”, there can still
be serious programming errors present!

The only way to use exact physical solutions like (2.25) for serious and thor-
ough verification is to run a series of simulations on finer and finer meshes,
measure the integrated error in each mesh, and from this information estimate
the empirical convergence rate of the method.

An introduction to the computing of convergence rates is given in Section
3.1.6 in [9]. There is also a detailed example on computing convergence rates in
Sect. 1.2.2.

In the present problem, one expects the method to have a convergence rate of 2
(see Sect. 2.10), so if the computed rates are close to 2 on a sufficiently fine mesh,
we have good evidence that the implementation is free of programming mistakes.

2.23 Manufactured Solution and Estimation of Convergence Rates

Specifying the solution and computing corresponding data One problem with
the exact solution (2.25) is that it requires a simplification (V' = 0, f = 0) of
the implemented problem (2.17)—(2.21). An advantage of using a manufactured
solution is that we can test all terms in the PDE problem. The idea of this approach
is to set up some chosen solution and fit the source term, boundary conditions,
and initial conditions to be compatible with the chosen solution. Given that our
boundary conditions in the implementation are u(0,¢) = u(L,?) = 0, we must
choose a solution that fulfills these conditions. One example is

Ue(x,t) = x(L — x)sint .
Inserted in the PDE u,, = c?u,, + f we get
—x(L —x)sint = —c®2sint + f = f = (Q2c*—x(L —x))sint.
The initial conditions become

u(x,0) =I(x) =0,
u;(x,0) =V(x) =x(L—x).
Defining a single discretization parameter To verify the code, we compute the

convergence rates in a series of simulations, letting each simulation use a finer mesh
than the previous one. Such empirical estimation of convergence rates relies on an

2.2 Verification 101

assumption that some measure E of the numerical error is related to the discretiza-
tion parameters through
E = C/At" + C,Ax?,

where C;, C,, r, and p are constants. The constants r and p are known as the
convergence rates in time and space, respectively. From the accuracy in the finite
difference approximations, we expect r = p = 2, since the error terms are of order
At* and Ax?. This is confirmed by truncation error analysis and other types of
analysis.

By using an exact solution of the PDE problem, we will next compute the error
measure E on a sequence of refined meshes and see if the rates r = p = 2 are
obtained. We will not be concerned with estimating the constants C; and C,, simply
because we are not interested in their values.

It is advantageous to introduce a single discretization parameter 1 = At = ¢Ax
for some constant ¢. Since At and Ax are related through the Courant number,
At = CAx/c,weseth = At, and then Ax = hc¢/C. Now the expression for the
error measure is greatly simplified:

E=CAC+CAY =Gl +C(g) W=Dl D=C+C(g)
Computing errors We choose an initial discretization parameter /sy and run ex-
periments with decreasing h: h; = 277hy, i = 1,2,...,m. Halving h in each
experiment is not necessary, but it is a common choice. For each experiment we
must record £ and /. Standard choices of error measure are the £> and £> norms
of the error mesh function e':

[T

Nt Nx

E=|leflle=(AtAxY Y ()] . ¢ =uelxit) —ul. (2.26)
n=01i=0

E = ||e}||¢~ = max|e]']. (2.27)

In Python, one can compute Y ,;(e”)* at each time step and accumulate the
value in some sum variable, say e2_sum. At the final time step one can do
sqrt (dt*dx*e2_sum). For the {* norm one must compare the maximum er-
ror at a time level (e.max()) with the global maximum over the time domain:
e_max = max(e_max, e.max()).

An alternative error measure is to use a spatial norm at one time step only, e.g.,
the end time T (n = N,):

[T

Nx
E=|leflle=(AxY (] . € =uelxi.tn)—ul. (2.28)
i=0
— n i n
E =||e]||ge = 02}2{\& lef] . (2.29)

The important point is that the error measure (E) for the simulation is represented
by a single number.

102 2 Wave Equations

Computing rates Let E; be the error measure in experiment (mesh) number i
(not to be confused with the spatial index i) and let /; be the corresponding dis-
cretization parameter (/). With the error model E; = Dh/, we can estimate r by
comparing two consecutive experiments:

Ei+1 - Dh;+l’
E: = DI’ .

Dividing the two equations eliminates the (uninteresting) constant D. Thereafter,
solving for r yields

;= In Ei+1/Ei

Inhiy1/h
Since r depends on i, i.e., which simulations we compare, we add an index to r:
ri,wherei = 0,...,m—2,if we have m experiments: (hg, Eg), ..., (hm—1, En_1)-

In our present discretization of the wave equation we expect r = 2, and hence
the r; values should converge to 2 as i increases.

2.2.4 Constructing an Exact Solution of the Discrete Equations

With a manufactured or known analytical solution, as outlined above, we can esti-
mate convergence rates and see if they have the correct asymptotic behavior. Expe-
rience shows that this is a quite good verification technique in that many common
bugs will destroy the convergence rates. A significantly better test though, would
be to check that the numerical solution is exactly what it should be. This will in
general require exact knowledge of the numerical error, which we do not normally
have (although we in Sect. 2.10 establish such knowledge in simple cases). How-
ever, it is possible to look for solutions where we can show that the numerical error
vanishes, i.e., the solution of the original continuous PDE problem is also a solution
of the discrete equations. This property often arises if the exact solution of the PDE
is a lower-order polynomial. (Truncation error analysis leads to error measures that
involve derivatives of the exact solution. In the present problem, the truncation error
involves 4th-order derivatives of u in space and time. Choosing u as a polynomial
of degree three or less will therefore lead to vanishing error.)

We shall now illustrate the construction of an exact solution to both the PDE
itself and the discrete equations. Our chosen manufactured solution is quadratic in
space and linear in time. More specifically, we set

Ue(x,1) = x(L — x) (1 + %l‘) , (2.30)

which by insertion in the PDE leads to f(x,t) = 2(1 + t)c?. This u, fulfills the
boundary conditions # = 0 and demands /(x) = x(L —x) and V(x) = %x(L —X).

2 Springer
http://www.springer.com/978-3-319-55455-6

Finite Difference Computing with PDEs
& Modern Software Approach
Langtangen, H.P.; Linge, 5.

2017, XX, 507 p. 150 illus., Hardcover
ISEMN: 978-3-319-55455-6

