Chapter 5
Design Objectives

The first part of this book introduced cloud service benchmarking, including its
motivations and a variety of related concepts. We now focus on how to design ef-
fective cloud service benchmarks. In this chapter, we introduce the traditional key
objectives of benchmark design, e.g., reproducibility, fairness, or understandability,
and discuss why they are important. We then describe how these objectives need to
change in the context of cloud services and cloud-based systems. Finally, we also
discuss how concrete benchmarks may have to compromise one objective to reach
another one and describe how the use of cloud services, both as system under test
and as experimentation testbed, can influence these objectives.

5.1 Requirements for Benchmarks

Deciding whether a particular benchmark is good or bad is not easy: First, we need
to separate the benchmark from its actual implementation, i.e., a poorly designed
benchmark may be implemented perfectly and vice versa!. Second, there is a num-
ber of design objectives, which we will discuss in the following sections — deciding
whether a benchmark fulfills a particular design objective is not trivial. Third, these
design objectives are often in conflict. For instance, there is a tradeoff between the
affordability of running a benchmark and its complexity, expressiveness, or level of
detail. However, rating the importance of objectives highly depends on the motiva-
tion for using the benchmark in the first place. For researchers, affordability will
often not matter since they will be more interested in detailed results. In a business
scenario, however, where such a benchmark is run repeatedly and frequently (e.g.,
as part of a build process), the price tag of running a particular benchmark suddenly
becomes much more relevant.

What should also be noted is that design objectives and implementation objec-
tives are often confused and mixed-up, both in literature and practice. This seems

! We will discuss implementation objectives in detail in chapter 8

© Springer International Publishing AG 2017 37
D. Bermbach et al., Cloud Service Benchmarking,
DOI 10.1007/978-3-319-55483-9_5



38 5 Design Objectives

to be due to the fact that both, practitioners and researchers, often do not distin-
guish the abstract notion of a benchmark and one or more instances of implementa-
tions: SPEC benchmarks are typically distributed as ready-to-run programs, which
encourages this way of thinking. In contrast, however, TPC benchmarks typically
come without an implementation, which is left to the person or entity running the
actual benchmark.

In essence, benchmark design leads to a comprehensive specification whereas
benchmark implementation will — building on such a specification — lead to an ex-
ecutable program. Objectives of both phases are without a doubt strongly intercon-
nected; some objectives may even be objectives of both design and implementation
phase. However, there are also objectives that fall into only one of the two categories.
We, therefore, believe that it is important to differentiate both kinds of objectives —
this chapter focuses on design objectives, we will cover implementation objectives
in chapter 8.

In this chapter, we will start by discussing objectives of benchmark design — both
general ones and more recent cloud-specific ones — before describing ideas on how
to resolve conflicts between design objectives.

5.2 Objectives of Benchmark Design

A benchmark should fulfill a number of design objectives — of course, their in-
dividual importance varies depending on the motivation for running the bench-
mark. There are a number of publications on design objectives of benchmarks,
e.g., [24,29,33,39]. Most of them focus more on traditional systems benchmarking
as, e.g., done by TPC or SPEC, and do not consider the specifics of cloud service
benchmarking. Still, many of these design objectives are general enough to be ap-
plicable in the new context as well.

5.2.1 General Design Objectives

In this section, we describe well-established design objectives from traditional sys-
tems benchmark that are still applicable to cloud service benchmarking. The ideas
in this section are based on [24,29, 33, 39].

The first design objective is relevance. Relevance prescribes that a benchmark
should be designed based on a realistic scenario and that the benchmark should in-
teract with the SUT in a realistic and typical way. For instance, when benchmarking
a database service, relevance implies that the benchmark should try not to empha-
size query types that will only rarely occur in practice. Instead, the frequency of
running particular queries should reflect frequencies that would be observable in ac-
tual applications from the scenario domain. A relevant benchmark will then stress
features of the SUT in a way that is similar to real world applications. Other aspects



5.2 Objectives of Benchmark Design 39

to consider in the scope of relevance are longevity, i.e., whether the application sce-
nario is one that will continue to exist for some time to come, or target audiences,
i.e., whether there is a sufficiently large group of people that will be interested in the
results of such a benchmark.

The second design objective is reproducibility or repeatability. Reproducibility
simply means that there is a certain confidence that running the exact same bench-
mark multiple times will yield the same or very similar results. Repeatability, which
is a requirement for reproducibility, means that a benchmark can exactly reproduce
what the SUT is confronted with. Especially in cloud contexts, where reproducibil-
ity may not always be possible, repeatability becomes an important design objective.
In the past, both have been used interchangeably. Generally, this objective implies
that more determinism in the benchmark specification is good for repeatability and,
thus, for reproducibility — however, repeatability also bears a certain conflict po-
tential since full determinism incentivizes system vendors or service providers to
implement special “test situation only” configurations of their systems and services,
i.e., the SUT will behave differently when it is benchmarked. Obviously, reaching
both reproducibility and repeatability also highly depends on the benchmark imple-
mentation. However, there is also the aspect that two different implementations of
a benchmark specification can actually produce comparable results and are guar-
anteed to do so in the absence of bugs or violated implementation objectives. This
observation implies that benchmark specifications should not only focus on deter-
ministic outcomes, but should also clearly specify all relevant aspects, i.e., they
should be concise (so that they can still be understood) but also comprehensive, not
fostering implicit assumptions.

The third design objective is fairness. Fairness means that a benchmark should
treat all potential SUT fairly — it should not make implicit assumptions or overem-
phasize features that exist only in one solution. A benchmark must always be
domain-specific, and while relevance is strengthened if a benchmark can be used
with as many different cloud services as possible, this capability will always also
affect fairness. For instance, it is not fair to use a benchmark which was designed
for measuring performance of complex queries in RDBMS to demonstrate poor per-
formance of a distributed file system. A fair assessment also means that — in contrast
to traditional benchmarks — a benchmark should always have a multi-quality assess-
ment: as we have seen in chapter 3, there are always tradeoff relationships between
qualities. Comparing a service that is specifically optimized for a single quality to
a general purpose cloud service will never be fair, unless all sides of the tradeoff
are measured and assessed as part of the benchmark. An exception to this can be
made when services are compared that have been optimized for the same purpose.
However, even then this claim should be verified experimentally to assert fairness.
Existing benchmarks developed by system vendors or service providers should al-
ways be taken with a grain of salt since these actors have incentives to design the
benchmark in a way that favors their own product. In comparison, benchmarks de-
signed by a larger group, including for example multiple major industry players, or
benchmarks developed by researchers tend to be fairer — it all comes down to the



40 5 Design Objectives

question whether the benchmark designers have intensive prior knowledge of only
a subset of the available solutions or not.

The fourth design objective is portability. Portability means that the benchmark
should be designed in a way that it can be run against a large number of systems
and services. For instance, portability implies that the benchmark should, regarding
the use of features, be “leading edge but not bleeding edge” [33]. This means that
the benchmark designers must find a good tradeoff between using only a very small
subset of features, thus, rendering the benchmark obsolete by design, and using cut-
ting edge features, which may only be offered by a limited number of cloud services,
which in turn will endanger portability. Portability is also affected by the economics
of running a benchmark: benchmarks that require extensive implementation efforts
with complex logic or that need to be deployed on expensive infrastructure (i.e., an
infrastructure that may not be affordable for service consumers or even only some
competitors) are not very portable. Historically, portability was especially important
for database benchmarks that needed specific hardware infrastructure. Today, in the
context of cloud services, portability implies that the benchmark design itself (and
later its implementation) should not rely on the availability of advanced services
offered by the same cloud provider. All in all, it should not only be possible to run
implementations of the benchmark on multiple platforms against a variety of cloud
services, it should also be affordable to do so.

Finally, the fifth design objective is understandability. Foremost, understand-
ability means that the first impression of a benchmark should not be of the “what is
this?” kind — interested parties should be easily able to understand precisely what
the benchmark is measuring and should intuitively judge benchmark results to be
verifiable. A key aspect of meeting this objective is having meaningful and un-
derstandable metrics (we will discuss this in detail in chapter 6) that are intuitive
to understand and expressive enough to describe the analyzed behavior. However,
understandability also means that the benchmark workload should follow an un-
derstandable application scenario — while there are cases where micro-benchmarks
(see chapter 7) are necessary and helpful, their expressiveness and understandabil-
ity is often impaired. Obviously, there is also a tradeoff between simplicity of a
benchmark, which is good for understandability, and using complex features in a
highly realistic way, which is good for relevance — the more realistic a benchmark
represents an application scenario, the more difficult is it to understand but also to
implement and to run it on different platforms (portability). There has been a trend
towards more complex and comprehensive benchmark designs, which should be
monitored carefully: For instance, 1989’s TPC-A benchmark has a 51 page speci-
fication whereas 2010’s TPC-C benchmark has a 132 page specification, or 2003’s
TPC-W benchmark describes 8 entities with a total of 63 attributes whereas 2010’s
TPC-C benchmark, which essentially describes the same application scenario, has 9
entities with a total of 92 attributes. Since all attributes and entities will be queried
this is a good indicator of complexity.



5.2 Objectives of Benchmark Design 41

5.2.2 New Design Objectives in Cloud Service Benchmarking

There are a number of new design objectives or challenges that need to be addressed
in cloud service benchmarking. Some of these have already been discussed in liter-
ature [9, 14,24], others have not been covered yet. We will try to give a comprehen-
sive overview in this section. But first, we will discuss some of the characteristics of
cloud services that motivate these objectives.

When trying to differentiate cloud services from traditional systems, there is a
number of key differences, which may affect benchmarking: Typically, cloud ser-
vices are no longer “static”. While traditional systems often tried to assess perfor-
mance based on a fixed amount of resources, clouds are (theoretically) designed to
be scalable and to provide the illusion of infinite resources. Often, cloud services
are even designed to automatically adjust the amount of provisioned resources and
to adapt to changing load patterns. Furthermore, performance metrics are frequently
expressed in relation to the acquisition cost of the underlying hardware. However,
cloud services with their pay-as-you-go on-demand pricing model have disruptively
changed IT expenses from fixed cost to variable cost.

Another aspect is geo-distribution: cloud services are inherently geo-distributed,
and their users likewise. This means that issues that were traditionally only con-
sidered by people working on distributed systems have now become mainstream.
Even small cloud-based applications are confronted with challenges like reduced
consistency guarantees from underlying storage services, VMs that are not guaran-
teed to be in the same rack, or VMs that lack dedicated network interconnection. At
the same time, geo-distribution offers new opportunities regarding fault-tolerance
of applications or simply reduced latencies for end users by having application end-
points in various geographic regions. Still, quality in the cloud is subject to much
larger fluctuations of which the cloud provider may not even be aware of [11] —
especially so for more complex qualities beyond performance.

Multi-tenancy is another fundamental aspect of cloud services: users of cloud ser-
vices operate on shared resources that offer varying degrees of resource isolation.
This situation makes it much harder to reproduce cloud-based experiments. Further-
more, measured values are bound to change over time since not only is the total
amount of resources that a cloud service uses not constant, but also the mapping of
resources to cloud service consumers will change frequently.

There is also a plethora of cloud services that essentially offer the same basic
functionality, but highly deviate regarding their set of additionally offered features.
Since cloud services are available globally to all paying users, i.e., the potential cus-
tomer base is gigantic, it generally pays off for providers to also cater for the needs
of the long tail of business. While general purpose solutions are still available, spe-
cialized solutions are far more widely available. For instance, RDBMS used to be
the de-facto standard for database systems — today, however, NoSQL systems and
comparable cloud services are offered in a variety of flavors ranging from column
stores and key-value stores to graph databases or document stores. And even within
these categories, systems and services are much more diverse than they used to
be. For example, Cassandra [46] differs way more from Amazon DynamoDB than



42 5 Design Objectives

MySQL ever did from PostgreSQL. The same is true for compute services which
come in a variety of flavors. All this, however, strongly affects relevance and porta-
bility: it is much more difficult to identify the group of cloud services targeted by a
particular benchmark than it used to be.

Finally, the nature of modern applications needs to be considered: Today’s appli-
cations are evolving at an incredible speed, supported by agile development method-
ologies. Obviously, this development speed has a strong impact on how applications
interact with underlying cloud services — every change to the application may also
disruptively change the requirements on underlying infrastructure but also the kind
of stress that an application creates on a cloud service. In consequence, benchmarks
that have been an exact representation of an application yesterday need not necessar-
ily be relevant tomorrow. Therefore, benchmarks must be able to adapt to changing
environments just as quickly.

Building on these considerations, we recommend the following strategies when
designing cloud service benchmarks:

1. Benchmarks should make as little assumptions as possible and should also
try to avoid strict quality requirements. Instead, it is much better to identify
an ideal case and measure deviations from that case. This approach implies
that an ideal cloud service benchmark will always be a multi-quality bench-
mark.

2. Novel, complex qualities require new measurement approaches and metrics
to be benchmarked. To a certain degree, there needs to be a co-design of
benchmark, measurement approach, and metric to assert meaningfulness of
results.

3. Benchmarks should account for failure situations, i.e., they should test how
the cloud service fares when confronted with failures. However, this may
not always be possible as cloud service benchmarks are rarely white box
benchmarks — typically, they are black box or gray box benchmarks in a
very dark shade of gray.

4. Cost metrics need to be defined per request or user interaction for all bench-
marks that mimic transaction processing applications or per batch unit in
case of analytic batch processing applications. Different complexity of op-
erations may lead to different cost per request or per batch unit so that cost
will typically be expressed as a vector. Benchmarks can also try to iden-
tify granularity of scaling steps, i.e., the discrete amount of resources that
is added or removed while scaling: Larger scaling steps can be leveraged
economically.

5. Since modern application deployments are typically geo-distributed, bench-
mark design should consider the distribution of both measurement clients
and subunits of the SUT to be an integral part of the application scenario
definition.

6. Benchmarks should not only measure new qualities, but also try to specifi-
cally provoke stress situations for these qualities. For instance, variable load




5.3 Resolving Conflicts between Design Objectives

43

10.

patterns are a good way for measuring scalability and elasticity of cloud
services.

Benchmarks should be designed to capture data as detailed as possible. This
means carefully choosing all configuration choices made but also to consider
(mis)using standard monitoring tools to keep track of resource consumption
and cost across machines, services, and software components. For instance,
in the case of storage service benchmarking, it is highly critical to avoid
having the performance bottleneck within the measurement clients, which
would effectively measure performance of the client machine(s). Standard
monitoring tools can help to identify problematic situations. Benchmarks
should also never only record aggregate values.

Another, closely related aspect is to avoid designing benchmarks that mea-
sure something else than what is intended. For instance, in [70], the au-
thors claim to study the feasibility and performance impacts of implement-
ing client-side encryption for cloud database systems. However, the way
they designed their experiments they primarily measure the compute perfor-
mance of the client machine.

Today, applications are undergoing fundamental changes at an unprece-
dented speed. This means that existing benchmarks will quickly become ob-
solete. One way to address this challenge is to provide configuration param-
eters and tuning knobs that allow to alter benchmarks over time as well as
to perform goal-oriented experimentation through micro-benchmarks (e.g.,
in YCSB [19]).

Since cloud services often do not only adapt provisioned resource amounts
over time, but are even expected to do so, benchmarks should always be
long-running experiments and should be repeated at different times of day
and different days during the week to detect (a) stabilized behavior in long-
running applications, (b) short term effects and their durations, and (c) sea-
sonal patterns. We discuss the analysis of such patterns in section 12.4.1.

5.3 Resolving Conflicts between Design Objectives

Resolving conflicts between benchmark design objectives in a general way is hard
if not impossible; too much depends on the motivation for benchmarking, the ap-
plication scenario in mind, and the cloud service(s) in question. Furthermore, there

are also transitive relationships and cross-effects between different design goals —

in fact, comparable to quality tradeoffs, design objectives have interdependencies.
Figure 5.1 gives an overview of some of the conflicts described in this chapter — ad-
ditional ones exist and often also depend on the concrete use case. See the following
examples which describes how we have solved these conflicts in the past.



44 5 Design Objectives

Portability

Relevance

Fig. 5.1: Examples of Conflicts between Benchmark Design Objectives

Always consider all design objectives, never ignore any of them. Then, make
a conscious decision to trade less important aspects for more important design
goals.

Benchmarking Performance Impacts of Security Settings: When we
benchmarked the performance impacts of enabling data-in-transit encryption
for NoSQL stores [53, 55, 56], we aimed to better understand when and how
encryption, e.g., through TLS, affected the throughput that the SUT could
handle. Since we were not interested in a particular application workload but
rather only needed to fully load the system both with and without security set-
tings enabled, we opted for YCSB-based workloads [19] to stress the target
system. This way, we traded “relevance” aspects that were less important to
our initial question (realistic application workload) for “portability” (bench-
marking system support for a variety of storage services) and “understand-
ability” aspects (very simple workload).



5.3 Resolving Conflicts between Design Objectives

Consistency Benchmarking: In our work on consistency benchmarking [10,
11,13], we wanted to experimentally determine probabilistic upper bounds for
staleness in eventually consistent [7, 69] data stores. Normally, “relevance”
demands that the benchmark should be designed in a way to closely resem-
ble a realistic application. However, in this case, we were not interested in the
behavior that a specific application might observe. Instead, we wanted to mea-
sure the behavior that the (from the perspective of the data store) theoretically
worst possible application would experience. Therefore, we decided to ignore
the realism aspects of relevance (of course, upper bounds are still of interest
to a large potential target group) and designed the benchmark workload in a
way that it would stress the storage service in a way that all kinds of nega-
tive behavior would be observable. In this example, we thus solved a tradeoff
between different aspects of relevance.

Additionally, it could have been interesting to identify inconsistency phe-
nomena, e.g., across database tables. Still, we decided to use a workload that
would require only a key-value interface with a read and an update operation.
This may not be 100% fair towards storage services which were then used in
a way that they were not specifically designed for (but neither specifically not
designed for), however, it helped towards portability and understandability.

45



2 Springer
http://www.springer.com/978-3-319-55482-2

Cloud Service Benchmarking

Measuring Quality of Cloud Services from a Client
Ferspective

Bermbach, D.; Wittern, E.; Tai, 5.

2017, X, 167 p. 25 illus., 11 illus. in color., Hardcover
ISBN: 978-3-319-55482-2



	5 Design Objectives
	5.1 Requirements for Benchmarks
	5.2 Objectives of Benchmark Design
	5.2.1 General Design Objectives
	5.2.2 New Design Objectives in Cloud Service Benchmarking

	5.3 Resolving Conflicts between Design Objectives




