Chapter 2

Molecular Players of Mitochondrial Calcium
Signaling: Similarities and Different Aspects
in Various Organisms

Vanessa Checchetto, Diego De Stefani, Anna Raffaello, Rosario Rizzuto,
and Ildiko Szabo

2.1 Introduction

Ca? acts as a second messenger in every cell type, controlling processes as diverse
as secretion, cell death, and survival. The versatile and universal nature of calcium
as intracellular messenger is guaranteed by a cell-specific Ca?* signaling toolkit:
several components (e.g., Ca** channels, pumps, and Ca**-binding proteins) can
cooperate and generate a wide range of signals, where changes in intracellular Ca**
concentration ([Ca*]i) vary in both spatial and temporal patterns. These specific
patterns can then be decoded into specific cellular events (Berridge et al. 2003).
Compartmentalization of [Ca®*] dynamics in the different organelles represents a
further level of complexity. Mitochondria are thought to play an integral part that
goes beyond acting as passive supporters by providing the ATP required for cellular
readjustment of [Ca®*]i following stimulation. These organelles are able to quickly
and transiently accumulate Ca** upon cytosolic transients, and thus, they can a pri-
ori contribute to shaping cytosolic Ca?* transients.

Only during the last decade, significant advances have been achieved regarding
the identification of the molecular players of the mitochondrial Ca*-handling
machinery. Here, we summarize our current knowledge on the main player, i.e., the
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MCU complex (MCUC) in different organisms including protozoa (Trypanosoma),
fungi, plants, and animals. In addition, the physiology of mitochondrial calcium
homeostasis will be discussed also in light of what we learned from studies in
organisms where MCU complex components have been genetically targeted.

2.2 The Role of Mitochondrial Calcium Within the Organelle

During the last three decades, considerable experimental work has been carried out
using either pharmacological or indirect genetic tools to alter mitochondrial calcium
homeostasis and to dissect its pathophysiological role. Ca*" inside mitochondria
plays a pleiotropic role, with different cellular outcomes that depend on the investi-
gated cell type, the metabolic state, and the concomitant presence of other stress
signals. Not only calcium plays a regulatory role within the organelle itself ranging
from the regulation of ATP production to the release of apoptotic cofactors with
consequent cell death, but in most organisms, mitochondrial calcium can impor-
tantly impact cation homeostasis, both locally and globally (Rizzuto et al. 2012).
In respiring mitochondria, the major component of the electrochemical proton
gradient (ApH*), the membrane potential difference (AW), represents a very large
driving force for Ca?* accumulation. The inner mitochondrial membrane (IMM) is
impermeable for cations (including Ca**), and passage strictly requires channels/
transporters. Early Ca*" uptake studies with mammalian mitochondria revealed that
transport of calcium required respiration (Vasington and Murphy 1962; Deluca and
Engstrom 1961) and was accompanied by P; transport (Greenawalt et al. 1964). The
underlying transporter was proposed to be an electrophoretic Ca*" uniporter that
does not require ATP hydrolysis but is driven by the steep electrochemical gradient
across the IMM (Rottenberg and Scarpa 1974). Similarly, studies using isolated
mitochondria from different plant species evidenced that these organelles take up
Ca*" (Akerman and Moore 1983; Dieter and Marme 1980). Uptake strictly required
energization (Dieter and Marme 1980). Ca®* import in most cases was shown to
require inorganic phosphate (P;) (Hodges and Hanson 1965; Chen and Lehninger
1973), leading to a hypothesis that Ca®* is imported by a symport mechanism
together with P; (Silva et al. 1992; Day et al. 1978). However, for example, in some
studies, isolated plant mitochondria were not found to accumulate calcium (Moore
and Bonner 1977; Martins and Vercesi 1985), casting doubt on the existence of a
general mechanism of calcium handling by these organelles in plants. In mammals,
once mitochondrial Ca* uptake could be monitored directly in intact cells using
mitochondria-targeted aequorin as calcium-sensing probe (Rizzuto et al. 1992), it
became evident that Ca** concentrations in mitochondria can reach up to hundred
pM in some cell types. The speed and amplitude of Ca®* uptake was shown to
exceed the values that had been predicted from classical bioenergetic experiments
in isolated mitochondria. Subsequent work in mammalian cells suggested an inter-
action of mitochondria with microdomains of high Ca?* concentrations generated
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by localized release from the ER and the extracellular space, allowing highly effi-
cient uptake (see, e.g., Rizzuto et al. (2012) also for historical overview).

In mammals, Ca’* elevations in the mitochondrial matrix stimulate respiration
and ATP synthesis to cover temporarily high-energy needs of cells, e.g. (Denton
2009). Increased biosynthesis rates of ATP rely on the activation of mitochondrial
dehydrogenases by Ca** (McCormack et al. 1990). In addition, electron transfer
chain (ETC) complexes as well as the ATP synthase are positively regulated by
Ca?*. Among the dehydrogenases, pyruvate dehydrogenase (PDH) (Denton et al.
1972), NAD-isocitrate dehydrogenase (NAD-ICDH) (Denton et al. 1978), and
a-ketoglutarate (oxoglutarate) dehydrogenase (McCormack and Denton 1979) are
activated by physiologically relevant Ca** concentrations (between 100 nM and
1 pM) in mitochondria isolated from mammalian tissues (Denton and McCormack
1980; Denton et al. 1980). The latter two enzymes do not contain any typical Ca*-
binding motifs, such as EF-hands, but are directly, allosterically, regulated by Ca*
(McCormack et al. 1990). Instead, both in animal and plants, the former enzyme is
activated through Ca’-controlled PDH phosphatase: PDH activity is regulated
through reversible phosphorylation (Holness and Sugden 2003; Tovar-Mendez et al.
2003) with activity being enhanced through a dephosphorylation step. These events
in turn increase NADH availability and consequently the electron flow through the
respiratory chain. In addition to matrix dehydrogenases, aspartate/glutamate
exchangers of the inner membrane (aralarl, citrin, and the ATP-Mg/Pi carrier
SCaMC-3) also seem to be regulated by Ca’* via EF-hand Ca**-binding sites which
are exposed to the intermembrane space (Rueda et al. 2015). Direct evidences in
favor of regulation of metabolism by calcium are multiple: (i) an increased resting
state level of Ca’ in the mitochondrial matrix was shown to alter the PDH phos-
phorylation state in cultured cells (Mallilankaraman et al. 2012b) and (ii) an increase
in mitochondrial and then cytosolic ATP was reported to occur upon cell stimulation
and to depend on the [Ca®*],, rise (Jouaville et al. 1995), in order to match ATP
synthesis to the increased demand of a stimulated cell. However, several findings
argue against an universal conservation of Ca?* regulation of mitochondrial metabo-
lism in all organisms: (i) while the activity of TCA cycle enzymes NAD-ICDH and
a-ketoglutarate dehydrogenase from various vertebrates is increased in the presence
of Ca*, their homologs from Escherichia coli, yeast, insect flight muscle, and potato
are insensitive to calcium (Nichols et al. 1994; McCormack and Denton 1981) and
(ii) PDH phosphatase is not activated by Ca?* in vitro or in intact mitochondria in all
organisms (Miernyk and Randall 1987; Budde et al. 1988).

In addition to the regulation of mitochondrial metabolism, calcium plays an
important role also in the context of cell death. Indeed, an excessive increase in
mitochondrial Ca*" concentration under certain stimuli may be harmful: when a
certain threshold level is exceeded, it may result in long-lasting opening of the per-
meability transition pore (Bernardi and von Stockum 2012). The general consensus
is that mitochondrial Ca?* loading has a permissive role, allowing a variety of toxic
challenges to cause the release of caspase cofactors from the organelle and thereby
trigger apoptotic cell death. In turn, alteration of this cellular response has a role in
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the pathogenesis of human disorders such as neurodegenerative disorders and can-
cer (Bernardi et al. 2015; Szabo and Zoratti 2014). Ca?* transfer from intracellular
stores to mitochondria is also emerging as a site of pivotal importance in the
regulation of both cell death and cell survival pathways as well as for autophagy (for
details, see Filadi et al. in this book). Interestingly, a recent work highlights that a
novel, cardiac mitochondrial cAMP-dependent pathway controls mitochondrial
Ca* entry through the MCUC in order to prevent PTP opening (Wang et al. 2016).

2.3 The Role of Mitochondrial Calcium in Shaping
the Cytosolic Calcium Signaling

Mitochondria play a pivotal role in shaping cytosolic Ca** signals. This has been
demonstrated experimentally, since mitochondrial Ca?* buffering was shown to
influence cellular Ca?* signals and consequently cell function in many different cell
types (Rizzuto and Pozzan 2006). Indeed, the observation that mitochondria rapidly
accumulate Ca*" upon stimulation allowed to design experiments to prove that these
organelles contribute to the buffering of either the whole cytoplasm or of specific
cellular domains. Mitochondria were shown to be able to rapidly remove Ca*" from
the mouth of the ER-located Ca** release channel inositol trisphosphate receptor
(IP;R) and hence to modify the total amount of Ca*" released from intracellular
stores to the cytosol. Ca?* released across this channel exerts a feedback regulatory
action, either activating, inhibitory, or biphasic, depending on the local [Ca?*]. This
effect is a consequence of the bell-shaped relationship between cytosolic calcium
concentration ([Ca*"].) and IP;R opening, where low and high [Ca?*]. inhibit chan-
nel activity, whereas intermediate [Ca?*]. increases cation release (Bezprozvanny
et al. 1991). Accordingly, removal of Ca?* from the proximity of IP;Rs on one hand
reduces the stimulus to opening, and on the other, it relieves Ca**-dependent inhibi-
tion of open channels, thus promoting Ca* release. This was first demonstrated in
Xenopus oocytes, where mitochondrial energization and the resulting increase in
mitochondrial Ca** uptake was shown to coordinate IPs;-induced [Ca*], rises into
single propagating waves of low frequency and high amplitude (Jouaville et al.
1995). Regulation of the spatiotemporal patterning of cytosolic Ca?* waves by mito-
chondria has been observed then in numerous different cell types. Instead, in plants,
although our current knowledge points to mitochondrial calcium uptake occurring
in vivo, this event does not seem to correlate with shaping of the cytosolic calcium
signaling (Wagner et al. 2015).

Mitochondrial Ca* buffering could also participate to the local accumulation of
a large amount of cations in a defined cell region, thanks to the precise positioning
of the organelles. For example, redistribution of mitochondria to the immunological
synapse was shown to be necessary to maintain Ca** influx across the plasma mem-
brane and for Ca**-dependent helper T cell activation (Quintana et al. 2007). Further
work highlighted that calcium-dependent inactivation of the calcium influx-
mediating ORAI channels was prevented by localizing mitochondria close to ORAI
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channels. Thus, the redistribution of mitochondria following the formation of
immunological synapse maximized the efficiency of calcium influx through ORAI
channels, but it also decreased calcium clearance by the exit pathway (calcium
ATPase of the plasma membrane), resulting in a more sustained NFAT activity and
subsequent activation of T cells (Quintana et al. 2011).

Overall, mitochondria appear to be efficient, high capacity Ca®* buffers that
shape cytosolic Ca’* transients by either regulating the properties of Ca?*-releasing
channels or limiting the wide spreading of [Ca®"]. rises, at least in animals. The
precise positioning of the organelle is critical for shielding defined cell portions in
specific cells or for regulating calcium-mediated feedback mechanisms. While these
statements are in general valid for most mammalian cell types, the role of mitochon-
drial calcium buffering is much less clear in other cell types, for example, in plants
(Wagner et al. 2016).

2.4 Ca* Import into Mitochondria

2.4.1 Calcium Flux Across the Outer Mitochondrial
Membrane

Similarly, to other small molecules, Ca** is thought to freely pass the outer mito-
chondrial membrane (OMM) through VDACsS (voltage-dependent anion channels,
also called porins). VDACs allow flux of metabolites and ions including Ca**, for
which mammalian VDAC also possesses binding sites, as demonstrated both in vitro
and in vivo (Bathori et al. 2006; De Stefani et al. 2012; Gincel et al. 2001; Israclson
et al. 2007; Rapizzi et al. 2002; Shoshan-Barmatz et al. 2010; Rizzuto et al. 2009).
In mammals and plants, functionally distinct protein isoforms have been found in
the OMM (for recent reviews, see Shoshan-Barmatz et al. 2010; Rostovtseva 2012;
Takahashi and Tateda 2013). VDAC:s, although defined as anion channels, can con-
duct a substantial flow of Ca**, as demonstrated both in vitro and in vivo for the
mammalian protein. The importance of calcium flux across VDACs is highlighted
by recent studies addressing different aspects. For example, efsevin was shown to
bind to VDAC?2, to potentiate mitochondrial Ca?* uptake, and to accelerate the trans-
fer of Ca** from intracellular stores into mitochondria. In cardiomyocytes, efsevin
inhibited Ca** overload-induced erratic calcium waves, demonstrating that VDAC2-
dependent mitochondrial Ca** uptake plays a critical role in the regulation of car-
diac rhythmicity (Shimizu et al. 2015). Uptake of calcium via VDACI seems to be
required for inhibition of apoptosis by anti-apoptotic proteins. In particular, the
BH4 domain of Bcl-XL, but not that of Bcl-2, was shown to selectively target
VDACI and to inhibit apoptosis by decreasing VDAC1-mediated Ca*" uptake into
the mitochondria (Monaco et al. 2015). Not only uptake of calcium via VDACs have
profound effect on pathophysiological processes but also its release: recent data
indicate that mitochondrial calcium, released through VDACI, triggers Schwann
cell demyelination via a signaling pathway including ERK1/ERK2, p38, JNK, and
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c-JUN activation following sciatic nerve injury. Importantly, reduction of mitochon-
drial calcium release, either by VDACI silencing or pharmacological inhibition,
prevented demyelination (Gonzalez et al. 2016).

2.4.2 Calcium Flux Across the Inner Mitochondrial
Membrane

Mitochondrial calcium uptake mostly occurs via the mitochondrial calcium uni-
porter complex MCUC, but other uptake modes, differing from MCUC-mediated
Ca?* uptake in terms of Ca?* affinity, uptake kinetics, and pharmacological control,
seem to coexist at least in the mammalian system. Here below, we provide an
updated overview of the MCUC components and function in different systems and
briefly mention the main characteristics of the other uptake modes as well.

2.4.2.1 The Mitochondrial Calcium Uniporter Complex (MCUC)

The main bioenergetic properties of the uniporter have been characterized in fine
detail, and low concentrations of ruthenium red and Ru360 were shown to lead to a
direct inhibition of the uniporter (Reed and Bygrave 1974; Vasington et al. 1972;
Moore 1971). The finding that a highly Ca**-selective ion channel recorded in the
inner mitochondrial membrane (IMM) (in mitoplasts) by patch clamping (Kirichok
et al. 2004) recapitulated the key characteristics observed for the mammalian mito-
chondrial uniporter in classical bioenergetic experiments, together with the estab-
lishment of the MitoCarta database, containing more than 1,000 mitochondrial
proteins as identified by subtractive proteomics and GFP-fusion localization studies
(Pagliarini et al. 2008), finally led to the molecular identification of the pore-forming
component of MCUC. In parallel, regulatory subunits have been shown to affect
channel activity and/or mitochondrial calcium uptake in several cell types. While the
presence of the pore-forming subunit and of at least one regulatory subunit is a recur-
rent feature throughout different kingdoms, the actual composition of MCUC greatly
varies in different organisms. Interestingly, complexity of MCUC does not necessar-
ily reflect evolutionary order. At the current stage, the mammalian MCUC appears to
consist of at least of the pore-forming protein MCU, an MCU paralog (MCUb), the
essential MCU regulator (EMRE), the regulatory MICU proteins, and, possibly, the
mitochondrial calcium uniport regulator 1 (MCUR1), as discussed below.

The Pore-Forming MCU Component, CCDC109A
In 2011, the Mootha group and some of us independently identified the 40 kDa

coiled-coiled protein CCDC109A that gives rise to Ca’*-permeable channel activity.
This protein called mitochondrial calcium uniporter (MCU) was proposed to be the
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core component of the calcium uniporter of the inner mitochondrial membrane
(Baughman et al. 2011; De Stefani et al. 2011) as it is a phylogenetically ancient
molecule present in most eukaryotic taxa (Bick et al. 2012). The channel-forming
and regulatory components of MCUC are currently studied by classical electro-
physiological techniques, either using recombinant proteins or by direct patch
clamping of mitoplasts (Fig. 2.1).

In the first paper where CCDC109A was shown to give rise to MCU channel
activity, the protein was studied in planar lipid bilayers and displayed electrophysi-
ological properties and inhibitor sensitivity of the uniporter (De Stefani et al. 2011),
previously identified as a Ca**-permeable ion channel in patch-clamp experiments
on mammalian mitoplasts (Kirichok et al. 2004). The channel was recorded in both
works in 100 mM calcium gluconate solution displaying a conductance of 67 pS,
an increased open probability with increasing negative voltages (on matrix side),
and sensitivity to ruthenium red (RR) and gadolinium. The pore-forming nature of
MCU was further proven by the following observations: (i) siRNA against the MCU
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Fig. 2.1 Electrophysiological studies on the components of the MCU complex. The pore-forming
protein MCU has been investigated in various studies either using the bilayer system with recom-
binant proteins (left part) or by direct patch clamping of mitoplasts (right part). The effect of regu-
lators can be evaluated with both techniques, e.g., by co-incorporation of the regulator and the
channel into proteoliposomes or by patch clamping of mitoplasts from knockout cells/animals
lacking regulatory proteins. Shown structure of MCU is from PDB database (5ID3)
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™1 PORE ™2
At4g36820 LWAGLGYLIIQTAGFMRLTFWDLTWDVMEPICFYVSSVYFMAGYTFFLKT
At2g23790 LWAGLGYLILQTAGFMRLTFWELSWDVMEPICFYVTSVYFMAGYAFFLRT
At5g66650 LWAGLGLIMAQTVGFFRLTFWELSWDVMEPICFYVTSTYFMAGYAFFLRT
At5g42610 LYCGLGFLAVQTIGFMRLTFWELSWDVMEPICFFVTTIHFILGYIFFLRT
Atl1g09575 LWCGLATSMVQIGLFFRLTFWEFSWDVMEPITFFATATGIIVGYAYFLMT
Atlg57610 LWGGLGYSVVQIGIFVRLTFWEFSWDVMEPITFFTTATGIIVGYAYFLMT
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Fig. 2.2 Amino acid sequence alignment of the transmembrane segments (7M) and the pore
region of MCU from different species. Sequences for the six Arabidopsis isoforms and MCU from
human (hMCU), from C. elegans (cMCU), and from Dictyostelium (Dicty) are shown. Asterisks
show identical residues, while : indicates conservative substitutions. Arrow indicates the serine
residue responsible for ruthenium red sensitivity

protein abolished the mitochondrial calcium uptake (De Stefani et al. 2011) (ii)
siRNA against MCU abolished the calcium current recorded in mitoplasts
(Chaudhuri et al. 2013). (iii) single-point mutations of specific residues in the pore
region (see below) abolished channel activity (De Stefani et al. 2011). MCU does
not share amino acid sequence similarity with known calcium channels in plants or
animals, but its pore region contains several negatively charged amino acids that are
crucial for calcium transport, since mutation of these residues abolished mitochon-
drial calcium uptake as well as calcium-carrying channel formation (De Stefani
et al. 2011). In this region, a highly conserved serine residue is involved in binding
of the inhibitor RR. These amino acids are highly conserved in the pore region of all
species harboring homologs of the mammalian MCU, while much less similarity is
present in the predicted transmembrane regions. MCU homologs are found in pro-
tozoa from diverse clades including kinetoplasts (Trypanosoma cruzi), heterolobo-
sea (Naegleria gruberi), oomycetes (Phytophthora infestans), and ciliates
(Tetrahymena thermophila). MCU homologs are also present in many fungi, includ-
ing many basidiomycetes and Allomyces macrogynus, but are absent from yeast
(Bick et al. 2012). In the model plant Arabidopsis thaliana, six isoforms are present.
The amino acid sequences of the highly conserved pore region are shown for some
of the MCUs in Fig. 2.2.

Despite the discovery that MCU homologs are present in different organisms and
that the primary structure can be very different among species (except for the pore
region), direct biophysical characterization of MCUs has been obtained solely for
mammalian and plant proteins (Teardo et al. 2017). These studies reveal that the
single channel conductance in calcium and the kinetic behavior are similar for
mammalian and plant MCUs and that in both cases, sodium can permeate the chan-
nel when divalent cations are not present in the recording medium (Fig. 2.3). This
aspect is typical of classical calcium channels (Talavera and Nilius 2006).

The consensus view concerning the topology of MCU is that both N- and
C-terminal domains face the mitochondrial matrix, with the two membrane-
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spanning domains connected in the intermembrane space (IMS) by the short pore
region. The structure of the N-terminal domain has been resolved first, revealing
that the N-terminal domain preceding the first coiled domain is essential for the
modulation of MCU function: overexpression of MCU lacking this domain had a
dominant-negative effect on mitochondrial Ca?* uptake (Lee et al. 2015). A more
recent structural study suggests that similarly to some other classical ion channels,
pentamerization of the two transmembrane helix-containing subunits is required for
formation of a functional channel (Oxenoid et al. 2016).

SILAC-based quantitative proteomics showed varying expression level of MCU
in different mouse tissues, with cerebellum and gut showing highest level (Murgia
and Rizzuto 2015). Several ion channels (including mitochondrial ones) display an
altered expression in cancer cells, but this is apparently not the case of MCU
(Peruzzo et al. 2016). Interestingly, while only one isoform of MCU is present in
most organisms, six homologs of MCU were identified in the genomes of maize and
Arabidopsis (Stael et al. 2012; Meng et al. 2015) (see also Fig. 2.2). The first pro-
teomic evidence from Arabidopsis and potato suggests the presence of specific
MCU homologs in mitochondrial fractions at low relative abundance, in accordance
with MCU being and organellar ion channel (Wagner et al. 2015). The diversifica-
tion of MCU genes in plants may provide regulatory flexibility on the different
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levels of gene expression, transcription, translation, and posttranslational organiza-
tion/regulation. This idea is supported by differential tissue-dependent expression
of MCU genes (Stael et al. 2012; Meng et al. 2015; Teardo et al. 2017).

The Dominant-Negative Pore-Forming MCU Component, CCDCI109B

Mammalian MCU activity can be regulated through its paralog, CCDC109B/
MCUDb. MCUb is a 33 kDa protein with a very similar structure to MCU but devoid
of calcium-permeable channel activity in bilayer experiments due to the substitution
of key amino acids in the pore-forming region. The protein however is still able to
form sodium-permeable channel in the absence of divalent cations (Raffaello et al.
2013, Raffaello et al. 2016). MCUb and MCU have been shown to interact and to
form hetero-oligomers. When proteoliposomes contained both MCU and MCUBb,
the presence of MCUD decreased the likelihood of observing calcium-permeable
channel activity, strongly indicating that MCUD is a dominant-negative regulatory
subunit. In intact cells, overexpression of MCUDb reduced the amplitude of calcium
uptake into mitochondria, whereas MCUDb silencing had the opposite effect, further
proving that MCUD incorporates into the uniporter channel oligomer and reduces its
activity. The ratio between MCU and MCUb might define the stoichiometry of
channel assembly, thus setting a cell-specific baseline of MCU activity in various
tissues. Indeed, MCU activity, as recorded by patch clamping of mitoplast, greatly
varies among different tissues (Fieni et al. 2012). The molecular basis of this differ-
ence may lay in the ratio between MCU and MCUD that, at least at the mRNA level,
has been shown to vary in different tissues. Interestingly, tissues characterized by
low-amplitude mitochondrial calcium transients, such as the heart, show a relative
abundance of MCUDb, compared, for example, to skeletal muscle.

MICU Proteins: The EF-Hand Containing Regulatory Subunits

The mammalian MICU (mitochondrial calcium uptake) protein family consists of
three members that share more than 40% sequence identity: (i) MICU1, (ii) MICU?2,
and (iii) MICU3. MICU1 was the first of the components of the complex to be
described: it is a 50 kDa protein with two functional and two pseudo EF-hands that
resides in the mitochondrial intermembrane space (Csordas et al. 2013; Patron et al.
2014; Hung et al. 2014; Petrungaro et al. 2015; Wang et al. 2014). MICU?2 is a para-
log of MICU1 with 27% sequence identity. It was first described as a protein whose
silencing resulted in reduced mitochondrial calcium clearance in response to large
extramitochondrial calcium pulses. Finally, comparative genomics analyses revealed
also the presence of a third protein, MICU3. Whereas MICU1 and MICU2 had wide
tissue expression, MICU3 was found to be almost exclusively expressed in neural
tissues (Plovanich et al. 2013), and at present, the precise molecular function
MICU3 remains unclear. All three proteins as well as their homologs in other organ-
ism harbor calcium-binding EF-hand helix-loop-helix motifs. The presence of
EF-hands is a typical feature of Ca*" sensors in animals in plants, but not every
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Ca*-binding protein carries an EF-hand, and not every EF-hand binds Ca** (e.g.,
Gelhaye et al. 2004). Recent evidence indicates that increases in cytosolic Ca** are
sufficient to induce rearrangement of MICU1 multimers and to trigger activation of
mitochondrial Ca?* uptake (ECsy of 4.4 pM) (Waldeck-Weiermair et al. 2015), in
agreement with the emerging hypothesis that at low extramitochondrial
Ca?concentrations MICU1 exerts a gatekeeping function, while it activates the
channel when surrounding Ca®* concentrations are high (Csordas et al. 2013;
Mallilankaraman et al. 2012b). According to this hypothesis, MICU1 is sufficient to
control calcium flux into mitochondria (Garg and Kirichok 2016; Tsai et al. 2016).
Recombinant MICU1 was shown to directly increase MCU activity in planar lipid
bilayer experiments in the presence of calcium (Patron et al. 2014). Multiple experi-
mental evidence indicates that in resting conditions, MICU1-MICU2 heterodimers
act as the MCU gatekeeper, while increases in calcium concentration, by inducing a
conformational change in the dimer, would release MICU2-dependent inhibition
and trigger MICU1-mediated enhancement of MCU channel activity (Patron et al.
2014). MICU?2 indeed forms a heterodimer with MICU1 through an intermolecular
disulfide bond and closes the channel at low extramitochondrial Ca** concentrations
(Patron et al. 2014; Petrungaro et al. 2015). The stability of MICU2 depends on
MICUI1 (Plovanich et al. 2013; Patron et al. 2014), and loss of MICU2 in MICU1-
silenced cells renders the difficult assignment of individual MICU1 and MICU2
functions. In summary, currently two models propose either MICU1 (1) to act
exclusively as a uniporter activator at high cytosolic Ca** concentrations (Patron
et al. 2014) or (2) to gradually disinhibit the uniporter with increasing Ca** concen-
trations in the cytosol (Csordas et al. 2013). However, hetero-dimerization with the
ubiquitous MICU2 should be taken into account, at least in mammals when trying
to describe models that best reflect the in vivo situation.

In addition to MICUI, skeletal muscle-specific alternative splice isoform of
MICU1, MICU1.1, characterized by the addition of a micro-exon has recently been
described (Vecellio Reane et al. 2016). MICU1.1 was shown to bind Ca?* one order
of magnitude more efficiently than MICU1 and activated MCU-mediated calcium
uptake at lower Ca’* concentrations than MICU1-MICU?2 heterodimers.

MICU protein is conserved also in plants, where typically one or two homologs
can be found depending on species (Wagner et al. 2015). Arabidopsis possesses
only a single MICU gene, and knockout strongly affects mitochondrial Ca?* dynam-
ics (Wagner et al. 2015). Arabidopsis MICU contains an additional, third canonical
EF-hand motif, which is conserved among plants and protists but is absent in mam-
malian MICUs and may open additional complexity of the regulation of MCUC
activity by calcium.

Essential MCU Regulator EMRE

Another proposed core component of the mammalian MCUC is EMRE, a 10 kDa
metazoan-specific protein that spans the inner mitochondrial membrane with only
one transmembrane motif. Although the recombinant MCU protein when inserted
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At4g36820 | GFYQSRFEAKQRKLMQSEDFD
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Fig. 2.4 Amino acid sequence alignment of the inner juxta membrane helix and of the loop region.
Only few amino acids are conserved among different species in the regions proposed to be impor-
tant for calcium conduction within the channel. Sequences for the six Arabidopsis isoforms and
MCU from human (hMCU), from C. elegans (cMCU), and from Dictyostelium (Dicty) are shown.
Asterisks show identical residues, while : indicates conservative substitutions. See text for further
details

into a bilayer membrane in electrophysiological experiments alone is able to form a
functional channel (De Stefani et al. 2011), in vivo EMRE seems to be required for
channel formation, at least in mammals. A physical interaction between transmem-
brane helices between mammalian MCU and EMRE has been shown to take place
(Tsai et al. 2016). Homologs of EMRE are not present in plants, fungi, or protozoa,
and it has been recently shown that EMRE is required for Ca?* uptake in the case of
mammalian MCU, but not of MCU from the slime mold Dictyostelium discoideum:
while expression of MCU from Dictyostelium alone was sufficient to import Ca**
into yeast mitochondria (which lacks MCUC), human EMRE needed to be expressed
alongside MCU to form an active Ca** uniporter system (Kovacs-Bogdan et al.
2014). Similarly to Dictyostelium, plants possess a minimal genetic uniporter con-
figuration that lacks EMRE (Wagner et al. 2015, 2016).

Information about the structure of C. elegans MCU has recently become avail-
able: it was hypothesized that the outer and inner juxtamembrane helices as well as
the loop region L2 are unstable regions which may undergo conformational changes
upon activation by EMRE in order to create the lateral exit path for Ca** (Oxenoid
et al. 2016). In plant and Dictyostelium MCUs, relatively few amino acids are con-
served in the regions proposed to be important for the regulation of the C. elegans
channel (Fig. 2.4).

Further research is needed to understand whether differences in these regions
might account for the differential participation of EMRE in channel activity, and in
general, mutations of the very few highly conserved amino acids in these regions
might bring to the fine elucidation of ion permeation through this novel type of
calcium channel. EMRE has been proposed to have another role as well, i.e., to
bridge MCU and its regulators MICU1/MICU2 and thus to be indispensable for the
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activity of the mammalian uniporter in vivo (Sancak et al. 2013). However, when
the binding properties of MCU/EMRE with MICU1 and MICUI.1 were investi-
gated by surface plasmon resonance analysis, at least under the used experimental
conditions (in vitro), EMRE was not found to be not involved in MCU-MICU1
interaction, in accordance with the electrophysiological data obtained regarding the
effect of MICUI on MCU activity (Vecellio Reane et al. 2016). Recently, EMRE
was proposed to regulate MCU channel activity depending on the matrix Ca>* con-
centration (Vais et al. 2016). Altogether, the role of EMRE is far from being clari-
fied, even though MCU together with EMRE and MICUI has been proposed to
correspond to the minimal configuration of MCUC (Tsai et al. 2016). This state-
ment however cannot be true for organisms where EMRE or a homolog is not pres-
ent in the genome (like in plants and slime mold). It cannot be a priori excluded that
a still unidentified protein fulfills the same function in plants and other EMRE-
lacking organisms. Likewise, the possibility that EMRE helps the correct membrane
insertion/folding of MCU cannot be dismissed as to date yet.

MCU Regulator 1 (MCURI)

MCURI (mitochondrial calcium uniporter regulator 1)/CCDC90A is a 39 kDa
protein with two predicted transmembrane domains that is supposed to interact
with MCU (Mallilankaraman et al. 2012a) although later studies were unable to
support this interaction (Sancak et al. 2013; Paupe et al. 2015). Paupe et al. (2015)
provided evidence that MCURI is in fact an assembly factor of cytochrome ¢ oxi-
dase and argued that genetic manipulation modulates mitochondrial membrane
potential, imposing only a secondary effect on Ca** transport. In support of this
notion, MCURI has an orthologue in budding yeast which lacks core MCUC com-
ponents. Although Vais et al. (2015) recently showed that MCURI affects MCU
activity in patch-clamp experiments, direct regulation of Ca’" uniport through
MCURI is still debated. Arabidopsis possesses two MCUR1 homologs that lack
functional characterization. Interestingly one of them has been identified as a
plant-specific subunit of complex IV by proteome analysis (Millar et al. 2004;
Klodmann et al. 2011).

Altogether, functional MCUC has different components in different organisms,
with MCU and MICU family members being the only highly conserved constitu-
ents. Figure 2.5 shows the composition of MCUC in organisms where characteris-
tics of this complex have been studied in detail.

2.4.2.2 Alternative Calcium Uptake Pathways

Additional Ca?* uptake mechanisms in mammalian mitochondria were proposed by
several groups still before the discovery of MCU. Ca** transients in mammalian cell
culture where MCU expression is knocked down (De Stefani et al. 2011; Baughman
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Fig. 2.5 The presence of MCUC components in different organisms. See text for further details

etal. 2011; Bondarenko et al. 2014) and in the liver of mcu animals (Pan et al. 2013)
are very efficiently abolished indicating that the MCUC has a dominating role
among uptake mechanisms. This of course does not rule out the possibility that
other mechanisms make major contributions to Ca’* uptake, for example, during a
specific developmental stage or in a specific tissue. Indeed, specific mitochondrial
Ca?* uptake modes (e.g., Ca**-selective conductance (mCa) 1 and 2 and rapid mode
of uptake (RaM)) have been observed in animals, which however currently cannot
be ascribed to well-defined molecules. These uptake modes apparently differ from
MCUC-mediated Ca** uptake in terms of uptake kinetics, pharmacology, and Ca*
affinity (Sparagna et al. 1995; Michels et al. 2009). Potential candidates for these
distinct uptake modes include uncoupling proteins 2 and 3 (UCP2/UCP3), the tran-
sient receptor potential channel TRPC3, and ryanodine receptor RyR1. UCP2/
UCP3 were originally proposed to be an essential components of mitochondrial
Ca?* uniport (Trenker et al. 2007), but currently it seems more likely that it has indi-
rect effects on Ca?* uptake into mitochondria (Brookes et al. 2008; De Marchi et al.
2011; Bondarenko et al. 2015). The mitochondrial ryanodine receptor (mRyR1)
belongs to the RyR family that exists as three isoforms (RyR1-3) in animals but has
no homologs in plants (Krinke et al. 2007). A low level of RyR1 is detectable in the
IMM of heart mitochondria and provides rapid transport of Ca?* that is insensitive
to ruthenium red (Beutner et al. 2001, 2005). A small fraction of TRPC3 was found
to be localized to mitochondria. It was then proven by genetic means that a signifi-
cant fraction of mitochondrial Ca?* uptake relies on TRPC3 expression (Wang et al.
2015; Feng et al. 2013). In summary, the abovementioned alternative pathways
should be taken into account when interpreting the phenotypes observed in MCU
knockdown systems. Finally, the hypothesis that MCUC is responsible also for the
different uptake modes, at least in some cell types, cannot be formally excluded.
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2.5 Mitochondrial Ca** Export

Following the transient accumulation of calcium in the matrix, a part of this ion is
exported, and a part remains inside as non-free calcium. The exact chemical states
of bound Ca?* inside the matrix of the living cell and the relative contributions of
proteins, metabolites, and Pi are largely unclear in both animals and plants. Ca?* can
be extruded from mitochondria by an antiport mechanisms giving rise to the so-
called Ca** cycle (Carafoli 1979). This way matrix Ca** concentrations are regulated
in order to avoid overload, which can be deleterious for mitochondrial function (see
above). Two known Ca?" export systems are two exchangers, namely, the cation/
cation exchanger family member Na*/Ca** exchanger (Crompton et al. 1977, 1978)
and a H*/Ca?* exchanger (Akerman 1978; Fiskum and Lehninger 1979) of the cat-
ion/proton exchanger family.

2.5.1 The Sodium-Calcium Exchanger NCLX and the Proton-
Calcium Exchanger CAX

The mammalian protein NCLX (Na/Li/Ca exchanger) (Palty et al. 2010) has been
proposed to underlie molecular entity of electrogenic Ca** transport against Na*.
De Marchi et al. (2014) have provided further relevant evidence that NCLX repre-
sents the long-sought mediator of Ca* export from the mitochondrial matrix. As
to CAX, this protein was located to mitochondria in Plasmodium falciparum,
where it mediates Ca** efflux from the mitochondrial matrix (Rotmann et al.
2010). In other organisms the mechanisms of calcium release from mitochondria
is less clear.

2.5.2 Leucine Zipper-EF-Hand-Containing Transmembrane
Proteinl (LETM]I)

LETMI is a one-transmembrane segment-containing protein that is located in the
mitochondrial inner membrane and is defective in Wolf-Hirschhorn syndrome
(Zollino et al. 2003; Endele et al. 1999; Dimmer et al. 2008). Initially proposed to
act as an a K*/H*-exchanger (Nowikovsky et al. 2004; Dimmer et al. 2008), a
genome-wide RNAI screen for proteins mediating mitochondrial Ca?* dynamics
identified LETM1 as a Ca*/H* antiporter (Jiang et al. 2009; Waldeck-Weiermair
et al. 2011; Tsai et al. 2014; Doonan et al. 2014). In vitro, LETMI1 has been pro-
posed to function as electroneutral Ca**/H* antiporter (Tsai et al. 2014). Recent
electron microscopy studies reveal a hexameric structure with a central cavity and
with two different conformational states under alkaline and acidic conditions
(Shao et al. 2016). While a H*-driven Ca** export by LETM1 is plausible, whether
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LETMI1 in vivo functions as Ca*/H* antiporter or as a K*/H* exchanger, as pro-
posed by Nowikovsky and Bernardi (2014), is still a highly debated issue. Several
arguments point to LETM1 working as potassium/proton antiporter in intact mito-
chondria. For example, changes in mitochondrial morphology with altered LETM1
expression could be reverted through the ionophore nigericin that specifically
mediates K*/H"-exchange (Nowikovsky et al. 2004). Interestingly, high-level
expression of LETM1 was found to be an independent poor prognostic factor of
breast cancer (Li et al. 2015). In plants, the Arabidopsis genome contains two
genes with homology to LETM1 (Zhang et al. 2012). Partial depletion of LETM
did not affect mitochondrial morphology. Instead, mitochondrial protein transla-
tion was altered, possibly as a secondary effect of disrupted K* homeostasis
(Hashimi et al. 2013), based on the observation that nigericin rescued the transla-
tion phenotype in cultured yeast cells.

2.5.3 Permeability Transition Pore

Transient opening of the mitochondrial permeability transition pore (PTP) has been
proposed to cause release of Ca’* from mammalian mitochondria (Bernardi and von
Stockum 2012). At partial loss of membrane potential due to the opening of PTP, a
large Ca** gradient (expected only at Ca** overload) would allow Ca?* extrusion in
a passive way. However, a partially or fully dissipated electrochemical gradient
would not only allow Ca?* extrusion but also severely interfere with matrix physiol-
ogy, including ATP/ADP exchange, P; uptake, and metabolite shuttling, which
strictly depend on the proton motive force. Thus, it seems likely that such Ca*
release via PTP occurs under specific, pathological conditions. Experimental evi-
dence is still missing to either prove or disprove the above hypotheses.

2.6 Pathophysiological In Vivo Consequences of Alteration
of Mitochondrial Calcium Homeostasis by Genetic Tools

Following the identification of proteins playing fundamental roles in the calcium
uptake and exit pathways, the field of mitochondrial calcium signaling experienced
a period of “Renaissance.” Finally, fine dissection of the molecular pathways gov-
erning mitochondrial calcium homeostasis has become feasible using genetic tools.
However, when interpreting the final outcome of knockout or knockdown experi-
ments in terms of calcium levels, of metabolism, and of cell fate, one has to keep in
mind that genetic manipulation of one MCUC component might lead to altered
expression of (another) component(s) as well (e.g., when MICUL is silenced, a dra-
matic reduction also of MICU?2 protein occurs (Patron et al. 2014).

A few recent in vivo studies demonstrate that mitochondrial calcium homeosta-
sis is crucial for regulation of metabolism, and its alterations are linked to
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pathologies. Genetic manipulation of MCU in lower organisms such as zebra fish
(Prudent et al. 2013) and Trypanosoma brucei (Huang et al. 2013) resulted in major
developmental and energetic defects, although such effect was not accentuated in
the knockout mouse model, possibly due to compensatory mechanisms. Low levels
of basal matrix calcium in the MCU~~ mice led to markedly increased levels of
PDH phosphorylation (Pan et al. 2013). In another work, postnatal manipulation of
MCU levels in mice (by using adeno-associated virus-mediated gene transfer) dem-
onstrated the contribution of MCUC to the regulation of skeletal muscle tropism.
MCU overexpression or downregulation caused muscular hypertrophy or atrophy,
respectively, likely independent of metabolic alterations but dependent on a novel
Ca?*-dependent mitochondria-to-nucleus signaling pathway via transcriptional reg-
ulators (Mammucari et al. 2015). In mice with myocardial MCU inhibition, obtained
by transgenic expression of a dominant-negative (DN) MCU, a strong correlation
between MCU function, MCU-enhanced oxidative phosphorylation, and correct
pacemaker cell function was observed (Wu et al. 2015). In addition, in vivo evi-
dence exists in favor of a serine/threonine kinase LKB1-mediated regulation of
MCU expression that controls mitochondrial calcium uptake and neurotransmitter
release properties in a bouton-specific way through presynaptic Ca’* clearance
(Kwon et al. 2016). Changes of mitochondrial calcium level in neurons activated by
insulin-like growth factor-1 receptor signaling also constitute a critical regulator of
information processing in hippocampal neurons by maintaining evoked-to-
spontaneous transmission ratio as assessed in vivo (Gazit et al. 2016). Furthermore,
inhibition of MCU in Drosophila, during development in a brain region that is criti-
cal for olfactory memory formation, caused memory impairment in adults without
altering the capacity to learn (Drago and Davis 2016). Lack of one of the MCU
isoforms of Arabidopsis with prevalent expression in roots caused a profoundly
altered mitochondrial ultrastructure and shortened root length in intact plants
(Teardo et al. 2017).

As to the regulator, MICU1, mitochondria in a mouse model of MICU1 defi-
ciency showed altered calcium uptake. Deletion of MICU1 resulted in significant
perinatal mortality. MICU1 knockout animals displayed increased resting mito-
chondrial calcium levels, altered mitochondrial morphology, and reduced
ATP. Deletion of one allele of EMRE helped to normalize calcium uptake while
simultaneously rescuing the high perinatal mortality observed in young MICU1 ~/~
mice (Liu et al. 2016). In humans, homozygous patients carrying a loss-of-function
mutation of MICUI are characterized by myopathy, cognitive impairment, and
extrapyramidal movement disorder (Logan et al. 2014), along with an increased
agonist-induced mitochondrial Ca** uptake at low cytosolic Ca?* concentrations and
a decreased cytosolic Ca?* signal. However, at least under resting conditions, the
fibroblasts from affected individuals do not display defects in overall cellular meta-
bolic function, but chronic elevation of the mitochondrial matrix Ca** load seems to
lead to moderate mitochondrial stress, resulting in fragmentation of the mitochon-
drial network. In addition, homozygous deletion of exon 1 of MICU1 was shown to
be associated with fatigue and lethargy in children with normal mitochondrial oxi-
dative phosphorylation enzyme activities in muscle (Lewis-Smith et al. 2016).
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2.7 Conclusion

As witnessed by the above-reported data, a considerable advancement has been
achieved in the field of mitochondrial calcium handling in the last few years. Now,
an even more exciting and stimulating era is expected to come. Following the iden-
tification of the calcium uptake and exit machineries, research will most probably
focus on understanding the fine regulation of these components, e.g., by posttrans-
lational modifications, and on elucidation of their role in different physiological and
pathologic situations. Hopefully, the recently obtained information regarding the
structure of several components will also prompt smart drug design in order to fully
exploit the information arising in the field, in the context of pathologies linked to
altered mitochondrial calcium handling.
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