Parseval Space-Frequency Localized Frames
on Sub-Riemannian Compact Homogeneous
Manifolds

Isaac Pesenson

1 Introduction

The objective of this chapter is to describe a construction of Parseval bandlimited
and localized frames in L,-spaces on a class of sub-Riemannian compact homoge-
neous manifolds.

The chapter begins with a brief review in section 2 of some results obtained in [4]
where a construction of Parseval bandlimited and localized frames was performed
in L,(M),M being a compact homogeneous manifold equipped with a natural
Riemannian metric.

In section 3 we are using a sub-Riemannian structure on the two-dimensional
standard unit sphere S? to explain the main differences between Riemannian and
sub-Riemannian settings. Each of these structures is associated with a distinguished
second-order differential operator which arises from a metric. These operators are
self-adjoint with respect to the usual normalized invariant (with respect to rotations)
measure on S%. The major difference between these operators is that in the case
of Riemannian metric the operator is elliptic (the Laplace-Beltrami operator L)
and in the sub-Riemannian case it is not (the sub-Laplacian ). As a result, the
corresponding Sobolev spaces which are introduced as domains of powers of these
operators are quite different. In the elliptic case one obtains the regular Sobolev
spaces and in sub-elliptic one obtains function spaces (sub-elliptic Sobolev spaces)
in which functions have variable smoothness (compared to regular (elliptic) Sobolev
smoothness).

In section 4 we describe a class of sub-Riemannian structures on compact
homogeneous manifolds and consider a construction of Parseval bandlimited and
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414 1. Pesenson

localized frames associated with such structures. Leaving a detailed description of
sub-Riemannian structures for later sections we will formulate our main result now.

We consider compact homogeneous manifolds M equipped with the so-called
sub-Riemannian metric i (x,y), x,y € M (see Definition 5). To formulate our main
result we need a definition of a sub-Riemannian lattice on a manifold M. The precise
definitions of all the notions used below will be given in the text.

Lemma 1. Let M be a compact sub-Riemannian manifold and u(x,y), x,y € M
be a sub-Riemannian metric. Let B*(x, r) be a ball in this metric with center x € M
and radius r. There exists a natural number Nf\f[ such that for any sufficiently small
r > 0 there exists a set of points M/} = {x;} with the following properties:

1. the balls B*(x;, r/4) are disjoint,
2. the balls B*(x;, r/2) form a cover of M,
3. every point of M is covered by not more than Nf,[ balls B*(x;, r).

Definition 1. A set .#!" = {x;} constructed in the previous lemma will be called a
metric r-lattice.

The meaning of this definition is that points {x;} are distributed over M “almost
uniformly” in the sense of the metric p.

We will consider compact homogeneous manifolds M = G/H where G is a
compact Lie group and H C G is a closed subgroup. Let dx be an invariant (with
respect to natural action of G on M) measure on M and L,(M) = L,(M,dx)
the corresponding Hilbert space of complex-valued functions on M with the inner
product

mm=Aﬁm

The notation |B*(x,r)| will be used for the volume of the ball with respect
to the measure dx. An interesting feature of sub-Riemann structures is that balls
of the same radius may have essentially different volumes (in contrast to the case of
the Riemann metric and Riemann measure).

In the next theorem we will mention a sub-elliptic operator (sub-Laplacian) .#
(see the precise definition in (26)) which is hypoelliptic [6], self-adjoint, and non-
negative in L,(M). This operator is a natural analog of a Laplace-Beltrami operator
in the case of a Riemannian manifold.

Theorem 1. We assume that M is a compact homogeneous manifold equipped with
a sub-Riemann metric | (see section 4). Set r; = 271 j=0,1,2,..., and let
///r’j‘ = {x;}znél, x, €M, j=0,1,2,.. be a sequence of metric lattices.

With every point x, one can associate a function @, such that:
1. every @L is bandlimited in the sense that (~)£ belongs to the space Epyj— yj+2(L)

which is the span of all eigenfunctions of £ whose corresponding eigenvalues
belong to the interval [2972,2%72),
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2. every (H)i is essentially supported around xjk in the sense that for any N > 0 there
exists a constant C(N) > 0 such that for all j, k one has

—N

o] = con]s* (d.27) 7 (1 + 2un) (1)

3. {@,’;} is a Parseval frame, i.e. for all f € L,(M)

Z Z Kf’ @;{»2 = ”f”%z(M)’ 2)

j=0  1<k<m

and as a consequence of the Parseval property one has the following reconstruc-
tion formula:

= X reier
20 1<k=m;

In Theorem 9 this frame is used to obtain characterization of sub-elliptic Besov
spaces in terms of the frame coefficients.

2 Parseval Localized Frames on Riemannian Compact
Homogeneous Manifolds

2.1 Hilbert Frames

Frames in Hilbert spaces were introduced in [2].

Definition 2. A set of vectors {y,} in a Hilbert space ¢ is called a frame if there
exist constants A, B > 0 such that for all f € 57

AllFI3 < DI ) P < BIFI3- 3)

The largest A and smallest B are called lower and upper frame bounds.

The set of scalars {{f, ¥,)} represents a set of measurements of a signal f. To
synthesize the signal f from this set of measurements one has to find another (dual)
frame {¥,} and then a reconstruction formula is

£= ) Y “
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Dual frames are not unique in general. Moreover it is difficult to find a dual frame.
However, for frames with A = B = 1 the decomposition and synthesis of functions
can be done with the same frame. In other words

F=Y () v )

Such frames are known as Parseval frames. For example, three vectors in R? with
angles 27t /3 between them whose lengths are all /2 /3 form a Parseval frame.

2.2 Compact Homogeneous Manifolds

The basic information about compact homogeneous manifolds can be found in
[7, 8]. A homogeneous compact manifold M is a C°°-compact manifold on which
a compact Lie group G acts transitively. In this case M is necessarily of the form
G/H, where H is a closed subgroup of G. The notation L, (M) is used for the usual
Hilbert spaces, where dx is the normalized invariant measure on M.

The best known example of such manifold is a unit sphere S” in R"*!: §" =
SO(n + 1)/SO(n) = G/H.

If g is the Lie algebra of a compact Lie group G, then there exists a such choice
of basis X{, ..., Xy in g, for which the operator

~-L=X{+X;+ ...+ X3, d=dimG (6)

is a bi-invariant operator on G. Here ij is X; o X; where we identify each X; with a
left-invariant vector field on G. We will use the same notation for its image under
differential of the quasi-regular representation of G in L,(M). This operator L,
which is known as the Casimir operator is elliptic. There are situations in which
the operator L is, or is proportional to, the Laplace-Beltrami operator of an invariant
metric on M. This happens for example, if M is an n-dimensional torus, a compact
semi-simple Lie group, or a compact symmetric space of rank one.

Since M is compact and the operator L is elliptic it has a discrete spectrum 0 =
Ao < Ay < Ay <.l which goes to infinity without any accumulation points
and there exists a complete family {u;} of orthonormal eigenfunctions which form a
basis in L, (M).

The elliptic differential self-adjoint (in L,(M)) operator L and its powers
L*/?, k € Ry, can be extended from C> (M) to distributions. The family of Sobolev
spaces W)(M), 1 < p < oo, s € R, can be introduced as subspaces of L,(M) with
the norm

£l + 1L F. 7
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One can show that when s = k is a natural number this norm is equivalent to the
norm

WAy = I+ Y- X Xifllpe 1 <p < oo (8)

1<iy,....ix<d

We assume now that M is equipped with a G-invariant Riemann metric p. The
Sobolev spaces can also be introduced in terms of local charts [23]. We fix a finite
cover {B”(y,, ry)} of M

M =B o). ©)

where B”(y,, o) is a ball centered at y, € M of radius ry contained in a coordinate
chart. Let consider ¥ = {,} be a partition of unity ¥ = {y,} subordinate to
this cover. The Sobolev spaces WIf(M), k € N,1 < p < o0, are introduced as the
completion of C*°(M) with respect to the norm

1/p
Hf”W;‘(M) = (Z ||wv‘f||l;‘/[,‘(3”(ylnr()))) . (10)

Remark 1. Spaces W;‘(M) are independent of the choice of elliptic self-ajoint
second order differential operator. For every choice of such operators correspond-
ing norms (7) will be equivalent. Also, any two norms of the form (10) are
equivalent [23].

The Besov spaces can be introduced via the formula

K
a/rq’

%I‘iq(M) = (LP(M), W;(M)) (11
where 0 < ¢ < r e N, 1 <p <o00, 1 < g < oo. Here K is the Peetre’s
interpolation functor.

An explicit norm in these spaces was given in [11-14, 16]. For the same operators
as above {Xi,...,Xy}, d = dim G, let Ty,...,T; be the corresponding one-
parameter groups of translation along integral curves of the corresponding vector
fields, i.e.

Ti(t)f (x) =f(exptX;-x),x e M, T € R, f € L,(M); (12)

here exp 7.X; - x is the integral curve of the vector field X; which passes through the
point x € M. The modulus of continuity is introduced as

$2,(s.f) =

sup ... sup | (T (g,) = 1) ... (T (z,) = 1) fll,om (13)
1)1y sd 05T S 05T, =S
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where f € L,(M), r € N, and [ is the identity operator in L,(M). We consider the
space of all functions in L,(M) for which the following norm is finite:

00 ds 1/q
Wl on + ( / (s‘“fz,xs,f))q;) d<p<oal<qg<oo. (14
0

with the usual modifications for ¢ = oo.

Theorem 2. The norm of the Besov space B, (M) = (L,(M), W) (M) g 0 <
a<reN, 1=<p<oo,l <q =< o0, is equivalent to the norm (14). Moreover, the
norm (14) is equivalent to the norm

) . 4 ds 1/q
1 e gy + > (/0 (s*172) (5. X, . X)) ) (15)

N
1<)l =d

if « is not integer ([o] is its integer part). If « = k € N is an integer, then the
norm (14) is equivalent to the norm (Zygmund condition)

) d 1/q
oot X ([ 6x0.0"T) . ao)

. 3 S
1<)t jk—1=d

Definition 3. The space of w-bandlimited functions E,, (L) is defined as the span
of all eigenfunctions of L. whose eigenvalues are not greater than w.

To describe our construction of frames we need the notion of a lattice on a
manifold M equipped with a Riemann metric p. This notion is similar to the
corresponding notion introduced in Lemma 1.

Lemma 2. [fM is a compact Riemannian manifold then there exists a natural N{\),[
such that for any sufficiently small r there exists a set of points .} = {x;} with the
following properties:

1. the balls B*(x;, r/4) are disjoint,
2. the balls B (x;, r/2) form a cover of M,
3. the height of the cover by the balls B (x;, r) is not greater than N{\’,[.

The meaning of this definition is that points {x;} distributed over M almost
uniformly.

In [4] the following theorem was proved for compact homogeneous manifolds
considered with invariant Riemann metric.

mj

Theorem 3. Setr; =277, j=0,1,2,...,and let M} = (X}, X, €M, j=
0,1,2,.. be a sequence of metric lattices. A
With every point x;, we associate a function W, such that:
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1. every lI/,{ is bandlimited in the sense that llfi belongs to the space Eyj—2 yj+21(L)
which is the span of all eigenfunction of L whose corresponding eigenvalues
belong to the interval [22/'72, 2412, .

2. every lI/,J{ is essentially supported around xﬂc in the sense that the following
estimate holds for every N > n:

‘W]{(y)‘ < C(N)2" (1 +2p (xj,y)>_N, dimM = n, (17)

3. {11/,{} is a Parseval frame, i.e. for all f € L,(M)

Z Z Kf lp/i>‘2 = ”.f”%Z(M)’ (18)

j=0  1<k<m

and

=3 Y (e (19)

j20 1<k<m

As an important application of Theorem 3 one can describe Besov spaces in
terms of the frame coefficients [4].

Theorem 4. The norm of the Besov space ”f”gaﬁq(M), I<p<o0,0<g<ois
equivalent to the norm

1/q

00 q/p
le()llng, = | Y 2ierirtn/2 (Z I Wi)l”)
j=0 k

2.3 Example of S* with Riemannian Metric

We consider M = S2. In this case the Casimir operator coincides with the Laplace-
Beltrami operator L on S? and it can be written as a sum of the vector fields on S

3

3
L= Z X,ZJ = Z (xiaxj' _xjaxi)z =L.

ij=1lji<j ij=1i<j

Let & denote the space of spherical harmonics of degree /, which are restrictions
to 8% of harmonic homogeneous polynomials of degree / in R>.
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Each &7 is the eigenspace of L that corresponds to the eigenvalue —/(/ + 1). Let
%,,;, n=1,...,2] 4+ 1 be an orthonormal basis in Z,. One has

L = =l + D)%,

Sobolev spaces WI’,‘ (L), 1 < p < oo, can be introduced as usual by using a system
of local coordinates or by using vector fields X; ;:

W lwsony = Il + Y D Xy Xigf Il (20)

Corresponding Besov spaces 4, (L) can be described either using local coordi-
nates or in terms of the modules of continuity constructed in terms of one-parameter
groups of rotations e™Xi/ [11-15]. In particular, when p = 2 the Parseval identity for
orthonormal bases and the theory of interpolation spaces imply descriptions of the
norms of W§ (L) and %5, (L) in terms of Fourier coefficients:

0o 20+1 1/2
(Z Do+ 1)2°'|cn.z(f)|2) : 1)

=0 n=1

where

enilf) = /S S, f € LS,

3 Sphere S? with a Sub-Riemannian Structure. A
Sub-Laplacian and Sub-Elliptic Spaces on S?

To illustrate nature of sub-elliptic spaces we will consider the case of two-
dimensional sphere S2. We consider on S? two vector fields Y| = Xs3and Y, = X3
and the corresponding sub-Laplace operator

L =Yl +7Y]

Note that since the operators Y;, ¥, do not span the tangent space to S? along a great
circle with x3 = 0 the operator . is not elliptic on S?>. However, this operator is
hypoelliptic [6] since Y}, Y», and their commutator Y3 = YY, — Y»Y; = X;, span
the tangent space at every point of S?.

Let’s compute its corresponding eigenvalues. In the standard spherical coordi-
nates (¢, ¥) spherical harmonics %, (¢, ),/ = 0, 1, ..., |m| < [ are proportional to
e™? P (cos ), where P} are associated Legendre polynomials. This representation
shows that for Y3 = X » one has

V3% = —m* D).
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Since %}, is an eigenfunction of L with the eigenvalue —I(/ 4+ 1) we obtain
L ==l + 1)
and
L1 =Ly — V3% = — (10 + 1) —m?) Dy

It shows that spherical functions are eigenfunctions of both .# and L.
The graph norm of a fractional power of .Z is equivalent to the norm

1/2
Y () =) eI |
1=0 |m|<I
eni(f) = [ F s f € La(L). 22)
Sd

Note that these spaces W3 (Z’) are exactly the Besov spaces %5 ,(Z).
We introduce subelliptic (anisotropic) Sobolev space W5 (£), « > 0, as the
domain of .2 with the graph norm and define Besov spaces %5  (2) as

By (L) = (Ly(S%), W{(f))g,q, 0<fO=a/r<l, 1<g=<o0.

where K is the Peetre’s interpolation functor.

Note that vector fields Y}, Y, span the tangent space to S? at every point away
from a great circle x3 = 0. For this reason around such points a function belongs to
the domain of .Z if and only if it belongs to the regular Sobolev space W, (L).

At the same time the fields Y;, ¥, do not span the tangent space to S* along a
great circle with x3 = 0. However, the fields Y;, Y, and their commutator Y3 =
Y1Y, — Y,Y, = X, do span the tangent space along x3 = 0. This fact implies that
along the circle x3 = 0, functions in the spaces W;(.£’) and %5 q(f) are losing 1/2
in smoothness compared to their smoothness at other points on S2. In other words,
the following embeddings hold true:

WE(L) € We(2) c WA (L),
2 (L) C #3,(L) C B2 (L),

which follow from a much more general results in [10, 15, 17, 22].
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We would like to stress that subelliptic function spaces are different from the
usual (elliptic) spaces. For example, if W5 (L) is the regular Sobolev space than
general theory implies the embeddings

Wi (L) c WyA(L). #5,(2) C B L),

As the following Lemma shows, these embeddings are generally sharp.

Lemma 3. For every o > 0 and § > «/2 there exists a function that belongs to
W5 (L) but does not belong to Wg (L).

Proof. Foraé > a/2 > 0 pick any y that satisfies the inequalities

1 1 o
—— —f<y<—-——=-=
2 2 2

Let ¢, be a sequence such that ¢,; = 0if n # land ¢;; = (21 + 1)”. For a
function with such Fourier coefficients the norm (22) is finite since

o0 o0
D@ D@+ DT =)@+ DT <o, a+2y < -1,
=0 =0

but the norm (21) is infinite

o o

D@+ )P+ DT =)@+ 1)’ 26+ y) > —L
=0 1=0

4 A Sub-Riemannian Structure and Corresponding Metric
on Compact Homogeneous Manifolds

Let M = G/H be a compact homogeneous manifold and X = {X;, ..., X} be a
basis of the Lie algebra g, the same as in (6). Let

Y ={Y,...,Yn} (23)
be a subset of X = {Xj, ..., X} such that Y1, ..., Y,, and all their commutators

Yie =Y, il =YY = 1Y),
}/jlv---‘in = [Y]l ’ [‘ M "[)]jn—l ’ Y};z]' . ']]’ (24)

of order n < Q span the entire algebra g. Let
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L =Y, =Y2,.... 0 =Ypn, ... ,Zn, 25)

be an enumeration of all commutators (24) up to order n < Q. If a Z; corresponds to
a commutator of length n, we say that deg(Z;) = n.

Images of vector fields (25) under the natural projectionp : G - M = G/H
span the tangent space to M at every point and will be denoted by the same letters.

Definition 4. A sub-Riemann structure on M = G/H is defined as a set of vectors
fields on M which are images of the vector fields (23) under the projection p. They
can also be identified with differential operators in L,(M), 1 < p < oo, under the
quasi-regular representation of G.

One can define a non-isotropic metric u on M associated with the fields
{Yi,.., Y}

Definition 5 ([10]). Let C(¢) denote the class of absolutely continuous mappings
¢ : [0, 1] = M which almost everywhere satisfy the differential equation

m

¢ ()= bi(0Z(e®).

j=1
where |b;(1)| < €% 7). Then we define j4(x, y) as the lower bound of all such € > 0
for which there exists ¢ € C(e) with ¢(0) = x, ¢(1) = y.

The corresponding family of balls in M is given by

Bt(x,e) ={yeM: u(x,y) <e}.

These balls reflect the non-isotropic nature of the vector fields Yi, ..., Y,, and their
commutators. For a small € > 0 ball B*(x, €) is of size € in the directions Y1, .. ., Yy,
but only of size €” in the directions of commutators of length n.

It is known [10] that the following property holds for certain ¢ =
c(Yy,...,.Yyn), C=C(Yy,...,.Y,):

ep(x,y) < pu(x,y) < C(p(x,y))'"/@

where p stands for an G-invariant Riemannian metric on M = G/H. We will be
interested in the following sub-elliptic operator (sub-Laplacian)

—L=Y4.. . +7 (26)

which is hypoelliptic [6] self-adjoint and non-negative in L, (M).

Definition 6. The space of w-bandlimited functions E,, (.¥) is defined as the span
of all eigenfunctions of . whose eigenvalues are not greater than w.
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Due to the uncertainty principle bandlimited functions in E,(.%) are not
localized on M in the sense that their supports coincide with M.

Using the operator . we define non-isotropic Sobolev spaces W;f (), 1<p<
00, and non-isotropic Besov spaces %g,q(.,%), 1 <p<oo, 1 <gqg<o0,byusing
formulas (7) and (11), respectively.

5 Product Property for Subelliptic Laplace Operator

The results of this section play a crucial role in our construction of the Parseval
frames. In what follows we consider previously defined operators

~-L=X{+X5+ ...+ X3, d=dimG,
and

~L =Y+ .+ Y, m<d,

as differential operators in L, (M).

Lemma 4 ([4, 20]). IfM = G/H is a compact homogeneous manifold, then for
any f and g in E, (L), their product fg belongs to E4y, (L), where d is the dimension
of the group G.

Proof. For every X; one has
X7 (fe) = f(X} ) + 2(X) (X;8) + g(X7f).
Thus, the function L¥ (fg) is a sum of (4d)* terms of the form

(Xil e 'Ximf)(le i 'ijk—mg)-

This implies that

I (o) o, < (4d)k0 sup sup |X;,...Xi S| [X,. . X80 27)

<m=<2k x,yeM

Let us show that for all f, g € E,, (L) the following inequalities hold:
1%, Xifllaon < @™ I1f o (28)
and
1, X &l < @ gl (29)

By construction (see (6)) the operator —L = X? + ...+ X3 commutes with every X;
and the same is true for (—L)!/2. From here one can obtain the following equality:
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L2 1 = Y IXa - Xif 7,000 s €N, (30)

1<iy,....is<d

which implies the estimates (28) and (29). The formula (27) along with the formula

L f lon < @™ 1f Loo- (€29)

implies the estimate

IL f) oo = (4 sup (X . Xi flloon 1, - - X 8llos <

0<m=<2k

D) 0" ?|flaowy sup 11X, - X 8lloo- (32)
0<m=<2k

Using the Sobolev embedding Theorem and the elliptic regularity of L, we obtain
for every s > 4imM

2
X+ - Xige—n8lloo <= CM)[IX;, . . Xy, 8llws vy <
cM) {”X/l . 'ijk—mg”Lz(M) + ”LS/ZXJ]' . 'ijk—mg”Lz(M)} ’ (33)

where W5 (M) is the Sobolev space of s-regular functions on M. The estimate (31)
gives the following inequality:

11+ X 8lloo < COV) {02 gll iy + @ > gllon | <

—m s —m dlm M
COD* ™ {llglaom + @ lglizon} = CM. g 0,90 ™2, s > ——.
(34)
Finally we have the following estimate:
dim M
ILX () Loy < CMLf, g, 0, 5)(4dw)*, s> o keN, (35)

which leads to our result.

Lemma 5. There exist positive ¢, C such that for o > 1 the following embeddings
hold:

E,(£) CEo(L), (36)
E,(L) C Ecy(2). (37)

Proof. There exists a constant a = a(L, .£) such that for all f in the Sobolev space
W5 (M) [10]



426 1. Pesenson

LAl < alld + -2)f |-

Since L belongs to the center of the enveloping algebra of the Lie algebra g it
commutes with .Z. Thus one has for sufficiently smooth f:

ILAIN < d'lld + )21, LR,

It implies that if f € E, (%), then for w > 1

ILfI < @+ D1 < (@t + @)°) ]| < (2a0°)' £, 1€ R,
which shows that f € E,,,0(L). Conversely, since for some b = b(L, .£)

IZfIl < b +L)f|, f € W3(M),
we have
11 < B+ L)FIL f € W),

and for f € E, (L)

1271 = D1+ LYFI < (00 + o) If] < @bo)IF]. £ € W'M).

The product property of bandlimited functions is described in the following

Theorem.

Theorem 5. There exists a constant Cy = Co(:£L) > 0 such that for any f, g €
E,, (Z) the product fg belongs to Ec,,0(Z).

Proof. Iff, g € E, (%), thenf, g € E.,o(L). According to Lemma 4 their product
fg belongs to Ey .0 (L) which implies that for some Cy = Cy(£) the product fg
belongs to E¢,,0(Z).

6 Positive Cubature Formulas on Sub-Riemannian
Manifolds

Now we are going to prove existence of cubature formulas which are exact on
E, (.Z), and have positive coefficients of the right size.

Let A, = {x;} be a r-lattice and {B" (x, r)} be an associated family of balls that
satisfy only properties (1) and (2) of Lemma 1. We define

Ui = B"(x1,r/2) \ U; i1 B" (xi, 1/ 4),
and

Ur = B* (x4, 7/2) \ (UjerU; Uj, i1 B* (xi,7/4)) . (38)
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One can verify the following properties.

Lemma 6. The sets {Uy} form a disjoint measurable cover (up to a set of measure
zero) of M and

B (xy,r/4) C Uy C B*(xt, 1/2) (39)

We have the following Plancherel-Polya inequalities [18, 19].

Theorem 6. There exist positive constants a; = aj(M,Y),a, = a,(M,Y), and
ap = ag(M,Y) such that, if for a given v > 0 one has

0<r<ayw, (40)

then for any metric r-lattice M, = {x;} the following inequalities hold:

ar Y UG < I laon < a2 Y [UF ()P (41)
k k

forevery f € E,(Z).
Proof. One has

FEI = Gl + () =f @l

|f (o) Pdx < 2 (|Uk|lf(xk)|2 + / If (x) —f(xk)|2dx) :
Uk Uy

and

IfII* < lf(x)|2dx52< |Ullf (o) > + lf(x)—f(x)lzdx).
), S+ ¥ [ e s

Take an X € g, |X| = 1, for which exp X - x; = x for some t € R.
Since every such vector field (as a field on M) is a linear combination of the fields
Yi,...[Yi,.Y3]...].1 <1< Q0,1 <i; <m, the Newton-Leibniz formula applied
to a smooth f along the corresponding integral curve joining x and x; gives

YEBH (xk,r/2)

0 2
f@) —feP <c?d. > ( sup mm-..nﬂyﬂ).

=1 1<iy,ip,...1<m
Applying anisotropic version of the Sobolev inequality [10] we obtain

0 2
f@—feP<crd. > ( sup |Y,-1Y,-2---W(y)|> <
Y

=1 1<iyia,...ipy<m \YEB* (k.r/2)
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Q
2 2
Cr Z Z ”Yll YiZ' . 'Yi}fHHQ/ZJFE(B/‘(xk,r/Z))’

1=0 1<iy,iz,....;j<m

where x € Uy, ¢ >0, C = C(s). Next,

_ 2 <
; / o Vs =

2
+2 2
cr Z Z Z 1Y, 'Yilf||HQ/2+€(Bu(xk,r/2)) =

1=0 1<iy,i,..i1<m k
0
2 2 2 2 2
Crty " > Wi Yl oty < 72 (1P + 129717) -
=0 1<iy,....iiI<m

All together we obtain the inequality

FI7 < 2 JUF Gl + € (AP + 1-29711P) -
k

Note that for f € E,, (%)
I-22f 1l < Co?llf]l.
Thus, if for a given w > 0 we pick an » > 0 a way that
(1 +wf <1

then for a certain C; = C(M) > 0 one obtains the right-hand side of (41)

IFI> < Y UIF G P
k

The left-hand side of (41) follows from the Sobolev and Bernstein inequalities.

The Plancherel-Polya inequalities (41) can be used to prove the so-called sub-
elliptic positive cubature formula. The proof goes along the same lines as in [4, 21],
(see also [1, 3]).

The precise statement is the following.

Theorem 7. There exists a constant a = a(M, Y) > 0 such that for a given w > 0
ifr = aw™" then for any r-lattice ./, = {x;} there exist strictly positive coefficients
{ar}, for which the following equality holds for all functions in E,,(£):
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[ 2= 3 rxoan @)
M k

Moreover, there exists constants by > 0, by > 0, such that the following
inequalities hold:

bi|Uk| = o < ba| Ui, (43)

where the sets Uy are defined in (38).

7 Space Localization of Kernels

According to the spectral theorem if F is a Schwartz function on the line, then there
is a well defined operator F(.%) in the space L,(M) such that for any f € L,(M)
one has

(F(2)) (x) = /M A ) 0)dy, 44)

where dy is the invariant normalized measure on M. If {)L j} and {uj} are sets of
eigenvalues and eigenfunctions of .Z respectively then

() =Y FODuwx)50). (45)

J=0

We will be especially interested in operators of the form F(>.#), where F is a
Schwartz function and ¢ > 0. The corresponding kernel will be denoted as %, (x, )
and

A (y) =) F(EA)uw(0m(). (46)

=0

Note, that variable ¢ here is a kind of scaling parameter.

The following important estimate was proved in [1] in the setting of the so-called
Dirichlet spaces. It is a consequence of the main result in [9] that sub-Riemannin
manifolds we consider in our article are the Dirichlet spaces.

Theorem 8. If F € C{°(R) is even than for every N > 2Q, there exists a Cy =
Cy(F,M,Y) > 0 such that

| (ey)| < O (BB o) ™2 (14 7 i) ™, 0<i< 1.
@7)
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8 Parseval Space-Frequency Localized Frames
on Sub-Riemannian Manifolds and Proof of Theorem 1

Let g € C°°(R4) be a monotonic function with support in [0, 2?], and g(s) = 1
fors € [0, 1], 0 < g(s) < 1, s > 0. Setting G(s) = g(s) — g(2%s) implies that
0<G(s) <1, se€suppG C [272, 2. Clearly, supp G(2~%¥s) C [2¥72,2%%2], j >
1. For the functions Fo(s) = /g(s). Fj(s) = /G(27%s), j > 1, one has

ijo sz (s) =1, s> 0. Using the spectral theorem for .Z one can define bounded

self-adjoint operators F;(.Z’) as

Fi(L)f(x) = /M L (e )f )y,
where

ALy = Y FQTIA)un(un(). (48)

)Lme[zzj—zyzzj-ﬁ-Z]

The same spectral theorem implies ) >0 sz (D) =f, f € L,(M), and taking inner
product with f gives

FIP =D _(FF D .f) = Y _IF(LHF . (49)

J=0 J=0

Moreover, since the function Fj(s) has its support in [2¥72, 2%%2] the functions
Fj(&£)f are bandlimited to [2%72, 2%+2],

Next, consider the sequence w; = 2%%2 j = 0,1,..... By (49) the equality
If1? = Zj>0 [ F;(<2)f|I> holds, where every function F;(-£)f is bandlimited to

[2%72, 2%%2]. Since for every Fi(ZL)f € Eypi+2(Z) one can use Theorem 5 to
conclude that

IF()f)P € Egppoein (£).

According to Theorem 7 there exists a constant a = a(M,Y) > 0 such that for all
natural j if

=027t b = aCy, (50)

then for any r;-lattice .2, one can find positive coefficients o;; with for which the
following exact cubature formula holds:

K
IEC 13 = | )|

k=1

(G
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where x; € A,k = 1,...,K; = card(#,;). Using the kernel Jé/zi of the operator
F;(£) we define the functions

Ok () = &z A5 (x5, y) =
VGE Y FQTIA)0(). (52)

Am €222 2%+2]

One can easily see that for every f € Ly(M) the equality ||f]|3 = Zj’k I(f, ©;x)|?
holds. Moreover, the first two items of Theorem 1 are also satisfied. Thus,
Theorem 1 is proven.

As an application one can obtain description of sub-elliptic Besov spaces
%’[‘f.q(.i”), 1 <p<oo, 1< g < o0, in terms of the Fourier coefficients with
respect to this frame {©);,}.

Consider the quasi-Banach space by , which consists of sequences s = {sJk} G =
0, 1 <k < %) satisfying

o0 . Upt/2 . a/p\ /e
Islhng, = | D2 (Z (B“(xfk, 27) |s’k|”> < 00, (53)
Jj=0 k
and introduce the following mappings
() = {{f. ). (54)
and
o) =D Y 50 (55)

j=0 k

It is not difficult to prove the following result (see [4, 5] for the Riemann case).

Theorem 9. Let @;{ be the same as above. Thenfor1 <p < 00,0 < g <o0,a >0
the following statements are valid:

1. tin (54) is a well-defined bounded operator t %’;‘ p () — by
2. 0 in(55) is a well-defined bounded operator o : b, . — B, (£);
3. 0ot =id;

Moreover, the following norms are equivalent:

I llzg,c2) =< IT()llne, -
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where

1/q
o0

, 2\
I g, = [ D270 (D2 [Brcd. 27) |s’k|1’)
k

J=0

The constants in these norm equivalence relations can be estimated uniformly

over compact ranges of the parameters p, q, .

Acknowledgements I am thankful to Hartmut Fiihr and Gerard Kerkyacharian for stimulating
discussions.
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