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1 Introduction

The objective of this chapter is to describe a construction of Parseval bandlimited
and localized frames in L2-spaces on a class of sub-Riemannian compact homoge-
neous manifolds.

The chapter begins with a brief review in section 2 of some results obtained in [4]
where a construction of Parseval bandlimited and localized frames was performed
in L2.M/;M being a compact homogeneous manifold equipped with a natural
Riemannian metric.

In section 3 we are using a sub-Riemannian structure on the two-dimensional
standard unit sphere S2 to explain the main differences between Riemannian and
sub-Riemannian settings. Each of these structures is associated with a distinguished
second-order differential operator which arises from a metric. These operators are
self-adjoint with respect to the usual normalized invariant (with respect to rotations)
measure on S2. The major difference between these operators is that in the case
of Riemannian metric the operator is elliptic (the Laplace-Beltrami operator L)
and in the sub-Riemannian case it is not (the sub-Laplacian L ). As a result, the
corresponding Sobolev spaces which are introduced as domains of powers of these
operators are quite different. In the elliptic case one obtains the regular Sobolev
spaces and in sub-elliptic one obtains function spaces (sub-elliptic Sobolev spaces)
in which functions have variable smoothness (compared to regular (elliptic) Sobolev
smoothness).

In section 4 we describe a class of sub-Riemannian structures on compact
homogeneous manifolds and consider a construction of Parseval bandlimited and
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localized frames associated with such structures. Leaving a detailed description of
sub-Riemannian structures for later sections we will formulate our main result now.

We consider compact homogeneous manifolds M equipped with the so-called
sub-Riemannian metric �.x; y/; x; y 2 M (see Definition 5). To formulate our main
result we need a definition of a sub-Riemannian lattice on a manifold M. The precise
definitions of all the notions used below will be given in the text.

Lemma 1. Let M be a compact sub-Riemannian manifold and �.x; y/; x; y 2 M
be a sub-Riemannian metric. Let B�.x; r/ be a ball in this metric with center x 2 M
and radius r. There exists a natural number N�

M such that for any sufficiently small
r > 0 there exists a set of points M �

r D fxig with the following properties:

1. the balls B�.xi; r=4/ are disjoint,
2. the balls B�.xi; r=2/ form a cover of M,
3. every point of M is covered by not more than N�

M balls B�.xi; r/.

Definition 1. A set M �
r D fxig constructed in the previous lemma will be called a

metric r-lattice.

The meaning of this definition is that points fxig are distributed over M “almost
uniformly” in the sense of the metric �.

We will consider compact homogeneous manifolds M D G=H where G is a
compact Lie group and H � G is a closed subgroup. Let dx be an invariant (with
respect to natural action of G on M) measure on M and L2.M/ D L2.M; dx/
the corresponding Hilbert space of complex-valued functions on M with the inner
product

hf ; gi D
Z

M
f gdx:

The notation jB�.x; r/j will be used for the volume of the ball with respect
to the measure dx. An interesting feature of sub-Riemann structures is that balls
of the same radius may have essentially different volumes (in contrast to the case of
the Riemann metric and Riemann measure).

In the next theorem we will mention a sub-elliptic operator (sub-Laplacian) L
(see the precise definition in (26)) which is hypoelliptic [6], self-adjoint, and non-
negative in L2.M/. This operator is a natural analog of a Laplace-Beltrami operator
in the case of a Riemannian manifold.

Theorem 1. We assume that M is a compact homogeneous manifold equipped with
a sub-Riemann metric � (see section 4). Set rj D 2�j�1; j D 0; 1; 2; : : :; and let
M

�
rj D fxj

kgmj

kD1; xj
k 2 M; j D 0; 1; 2; :: be a sequence of metric lattices.

With every point xj
k one can associate a function �j

k such that:

1. every�j
k is bandlimited in the sense that�j

k belongs to the space EŒ22j�2;22jC2�.L /

which is the span of all eigenfunctions of L whose corresponding eigenvalues
belong to the interval Œ22j�2; 22jC2/,
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2. every �j
k is essentially supported around xj

k in the sense that for any N > 0 there
exists a constant C.N/ > 0 such that for all j; k one has

ˇ̌
ˇ�j

k.y/
ˇ̌
ˇ � C.N/

ˇ̌
ˇB�

�
xj

k; 2
�j
�ˇ̌
ˇ�1=2

�
1C 2j�.xj

k; y/
��N

; (1)

3. f�j
kg is a Parseval frame, i.e. for all f 2 L2.M/

X
j�0

X
1�k�mj

ˇ̌
ˇ
D
f ; �j

k

Eˇ̌
ˇ2 D kf k2L2.M/; (2)

and as a consequence of the Parseval property one has the following reconstruc-
tion formula:

4.

f D
X
j�0

X
1�k�mj

D
f ; �j

k

E
�

j
k:

In Theorem 9 this frame is used to obtain characterization of sub-elliptic Besov
spaces in terms of the frame coefficients.

2 Parseval Localized Frames on Riemannian Compact
Homogeneous Manifolds

2.1 Hilbert Frames

Frames in Hilbert spaces were introduced in [2].

Definition 2. A set of vectors f vg in a Hilbert space H is called a frame if there
exist constants A;B > 0 such that for all f 2 H

Akf k22 �
X
v

jhf ;  vij2 � Bkf k22: (3)

The largest A and smallest B are called lower and upper frame bounds.

The set of scalars fhf ;  vig represents a set of measurements of a signal f . To
synthesize the signal f from this set of measurements one has to find another (dual)
frame f�vg and then a reconstruction formula is

f D
X
v

hf ;  vi�v: (4)
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Dual frames are not unique in general. Moreover it is difficult to find a dual frame.
However, for frames with A D B D 1 the decomposition and synthesis of functions
can be done with the same frame. In other words

f D
X
v

hf ;  vi v: (5)

Such frames are known as Parseval frames. For example, three vectors in R2 with
angles 2�=3 between them whose lengths are all

p
2=3 form a Parseval frame.

2.2 Compact Homogeneous Manifolds

The basic information about compact homogeneous manifolds can be found in
[7, 8]. A homogeneous compact manifold M is a C1-compact manifold on which
a compact Lie group G acts transitively. In this case M is necessarily of the form
G=H, where H is a closed subgroup of G. The notation L2.M/ is used for the usual
Hilbert spaces, where dx is the normalized invariant measure on M.

The best known example of such manifold is a unit sphere Sn in RnC1: Sn D
SO.n C 1/=SO.n/ D G=H:

If g is the Lie algebra of a compact Lie group G, then there exists a such choice
of basis X1; : : :;Xd in g, for which the operator

� L D X21 C X22 C : : :C X2d ; d D dim G (6)

is a bi-invariant operator on G. Here X2j is Xj ı Xj where we identify each Xj with a
left-invariant vector field on G. We will use the same notation for its image under
differential of the quasi-regular representation of G in L2.M/. This operator L,
which is known as the Casimir operator is elliptic. There are situations in which
the operator L is, or is proportional to, the Laplace-Beltrami operator of an invariant
metric on M. This happens for example, if M is an n-dimensional torus, a compact
semi-simple Lie group, or a compact symmetric space of rank one.

Since M is compact and the operator L is elliptic it has a discrete spectrum 0 D
�0 < �1 � �2 � : : :: : : which goes to infinity without any accumulation points
and there exists a complete family fujg of orthonormal eigenfunctions which form a
basis in L2.M/.

The elliptic differential self-adjoint (in L2.M/) operator L and its powers
Ls=2; k 2 RC; can be extended from C1.M/ to distributions. The family of Sobolev
spaces Ws

p.M/; 1 � p < 1; s 2 R; can be introduced as subspaces of Lp.M/ with
the norm

kf kp C kLs=2f kp: (7)



Parseval Frames on Sub-Riemannian Manifolds 417

One can show that when s D k is a natural number this norm is equivalent to the
norm

jjjf jjjk;p D kf kp C
X

1�i1;:::;ik�d

kXi1 : : :Xik f kp; 1 � p < 1: (8)

We assume now that M is equipped with a G-invariant Riemann metric �. The
Sobolev spaces can also be introduced in terms of local charts [23]. We fix a finite
cover fB�.y	; r0/g of M

M D
[
	

B�.y	; r0/; (9)

where B�.y	; r0/ is a ball centered at y	 2 M of radius r0 contained in a coordinate
chart. Let consider � D f 	g be a partition of unity � D f 	g subordinate to
this cover. The Sobolev spaces Wk

p.M/; k 2 N; 1 � p < 1; are introduced as the
completion of C1.M/ with respect to the norm

kf kWk
p .M/ D

 X
	

k 	 f kp
Wk

p .B
�.y	 ;r0//

!1=p

: (10)

Remark 1. Spaces Wk
p.M/ are independent of the choice of elliptic self-ajoint

second order differential operator. For every choice of such operators correspond-
ing norms (7) will be equivalent. Also, any two norms of the form (10) are
equivalent [23].

The Besov spaces can be introduced via the formula

B˛
p;q.M/ WD �

Lp.M/;Wr
p.M/

�K

˛=r;q
; (11)

where 0 < ˛ < r 2 N; 1 � p < 1; 1 � q � 1: Here K is the Peetre’s
interpolation functor.

An explicit norm in these spaces was given in [11–14, 16]. For the same operators
as above fX1; : : :;Xdg; d D dim G, let T1; : : :;Td be the corresponding one-
parameter groups of translation along integral curves of the corresponding vector
fields, i.e.

Tj.
/f .x/ D f .exp 
Xj � x/; x 2 M; 
 2 R; f 2 L2.M/I (12)

here exp 
Xj � x is the integral curve of the vector field Xj which passes through the
point x 2 M. The modulus of continuity is introduced as

˝r
p.s; f / D

X
1�j1;:::;jr�d

sup
0�
j1�s

: : : sup
0�
jr �s

k �Tj1 .
j1 / � I
�
: : :
�
Tjr .
jr / � I

�
f kLp.M/; (13)
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where f 2 Lp.M/; r 2 N; and I is the identity operator in Lp.M/: We consider the
space of all functions in Lp.M/ for which the following norm is finite:

kf kLp.M/ C
�Z 1

0

.s�˛˝r
p.s; f //

q ds

s

�1=q

; 1 � p < 1; 1 � q � 1; (14)

with the usual modifications for q D 1.

Theorem 2. The norm of the Besov space B˛q
p .M/ D .Lp.M/;Wr

p.M//K˛=r;q; 0 <

˛ < r 2 N; 1 � p < 1; 1 � q � 1; is equivalent to the norm (14). Moreover, the
norm (14) is equivalent to the norm

kf k
W
Œ˛�
p .M/

C
X

1�j1;:::;jŒ˛��d

�Z 1

0

�
sŒ˛��˛˝1

p .s;Xj1 : : :XjŒ˛� f /
�q ds

s

�1=q

(15)

if ˛ is not integer (Œ˛� is its integer part). If ˛ D k 2 N is an integer, then the
norm (14) is equivalent to the norm (Zygmund condition)

kf kWk�1
p .M/ C

X
1�j1;:::;jk�1�d

�Z 1

0

�
s�1˝2

p .s;Xj1 : : :Xjk�1 f /
�q ds

s

�1=q

: (16)

Definition 3. The space of !-bandlimited functions E!.L/ is defined as the span
of all eigenfunctions of L whose eigenvalues are not greater than !:

To describe our construction of frames we need the notion of a lattice on a
manifold M equipped with a Riemann metric �. This notion is similar to the
corresponding notion introduced in Lemma 1.

Lemma 2. If M is a compact Riemannian manifold then there exists a natural N�

M
such that for any sufficiently small r there exists a set of points M �

r D fxig with the
following properties:

1. the balls B�.xi; r=4/ are disjoint,
2. the balls B�.xi; r=2/ form a cover of M,
3. the height of the cover by the balls B�.xi; r/ is not greater than N�

M:

The meaning of this definition is that points fxkg distributed over M almost
uniformly.

In [4] the following theorem was proved for compact homogeneous manifolds
considered with invariant Riemann metric.

Theorem 3. Set rj D 2�j�1; j D 0; 1; 2; : : :; and let M �
rj D fxj

kgmj

kD1; xj
k 2 M; j D

0; 1; 2; :: be a sequence of metric lattices.
With every point xj

k we associate a function � j
k such that:
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1. every � j
k is bandlimited in the sense that � j

k belongs to the space EŒ22j�2;22jC2�.L/
which is the span of all eigenfunction of L whose corresponding eigenvalues
belong to the interval Œ22j�2; 22jC2/,

2. every � j
k is essentially supported around xj

k in the sense that the following
estimate holds for every N > n:

ˇ̌
ˇ� j

k.y/
ˇ̌
ˇ � C.N/2jn

�
1C 2j� .xj

k; y/
��N

; dim M D n; (17)

3. f� j
kg is a Parseval frame, i.e. for all f 2 L2.M/

X
j�0

X
1�k�mj

ˇ̌
ˇ
D
f ; � j

k

Eˇ̌
ˇ2 D kf k2L2.M/; (18)

and

f D
X
j�0

X
1�k�mj

D
f ; � j

k

E
�

j
k: (19)

As an important application of Theorem 3 one can describe Besov spaces in
terms of the frame coefficients [4].

Theorem 4. The norm of the Besov space kf kB˛
p;q.M/; 1 � p < 1; 0 < q � 1 is

equivalent to the norm

k
.f /kb˛p;q D
0
@ 1X

jD0
2jq.˛�n=pCn=2/

 X
k

jhf ; � j
kijp

!q=p
1
A
1=q

:

2.3 Example of S2 with Riemannian Metric

We consider M D S2. In this case the Casimir operator coincides with the Laplace-
Beltrami operator L on S2 and it can be written as a sum of the vector fields on S2:

L D
3X

i;jD1Ii<j

X2i;j D
3X

i;jD1Ii<j

.xi@xj � xj@xi/
2 D L:

Let Pl denote the space of spherical harmonics of degree l, which are restrictions
to S2 of harmonic homogeneous polynomials of degree l in R3.
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Each Pl is the eigenspace of L that corresponds to the eigenvalue �l.l C 1/. Let
Yn;l; n D 1; : : :; 2l C 1 be an orthonormal basis in Pl. One has

LYm;l D �l.l C 1/Ym;l:

Sobolev spaces Wk
p.L/; 1 � p < 1, can be introduced as usual by using a system

of local coordinates or by using vector fields Xi;j:

kf kWk
p .M/ D kf kp C

XX
kXi;j: : ::Xi;jf kp (20)

Corresponding Besov spaces B˛
p;q.L/ can be described either using local coordi-

nates or in terms of the modules of continuity constructed in terms of one-parameter
groups of rotations e
Xi;j [11–15]. In particular, when p D 2 the Parseval identity for
orthonormal bases and the theory of interpolation spaces imply descriptions of the
norms of Wk

2.L/ and B˛
2;2.L/ in terms of Fourier coefficients:

 1X
lD0

2lC1X
nD1

.l C 1/2˛jcn;l.f /j2
!1=2

; (21)

where

cn;l.f / D
Z

Sd
fYn;l; f 2 L2.Sd/:

3 Sphere S2 with a Sub-Riemannian Structure. A
Sub-Laplacian and Sub-Elliptic Spaces on S2

To illustrate nature of sub-elliptic spaces we will consider the case of two-
dimensional sphere S2. We consider on S2 two vector fields Y1 D X2;3 and Y2 D X1;3
and the corresponding sub-Laplace operator

L D Y21 C Y22 :

Note that since the operators Y1; Y2 do not span the tangent space to S2 along a great
circle with x3 D 0 the operator L is not elliptic on S2. However, this operator is
hypoelliptic [6] since Y1; Y2; and their commutator Y3 D Y1Y2 � Y2Y1 D X1;2 span
the tangent space at every point of S2.

Let’s compute its corresponding eigenvalues. In the standard spherical coordi-
nates .'; #/ spherical harmonics Ym;l.'; #/; l D 0; 1; : : :; jmj � l are proportional to
eim'Pm

l .cos #/, where Pm
l are associated Legendre polynomials. This representation

shows that for Y3 D X1;2 one has

Y23Ym;l D �m2Ym;l:
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Since Ym;l is an eigenfunction of L with the eigenvalue �l.l C 1/ we obtain

LYm;l D �l.l C 1/Ym;l

and

LYm;l D LYm;l � Y23Ym;l D � �l.l C 1/ � m2
�
Ym;l:

It shows that spherical functions are eigenfunctions of both L and L.
The graph norm of a fractional power of L is equivalent to the norm

0
@ 1X

lD0

X
jmj�l

�
.l C 1/2 � m2

�˛ jcm;l.f /j2
1
A
1=2

;

cm;l.f / D
Z

Sd
fYm;l; f 2 L2.L/: (22)

Note that these spaces W˛
2 .L / are exactly the Besov spaces B˛

2;2.L /.
We introduce subelliptic (anisotropic) Sobolev space W˛

2 .L /; ˛ � 0; as the
domain of L ˛ with the graph norm and define Besov spaces B˛

2;q.L / as

B˛
2;q.L / D .L2.S2/;Wr

2.L //K�;q; 0 < � D ˛=r < 1; 1 � q � 1:

where K is the Peetre’s interpolation functor.
Note that vector fields Y1;Y2 span the tangent space to S2 at every point away

from a great circle x3 D 0. For this reason around such points a function belongs to
the domain of L if and only if it belongs to the regular Sobolev space W2.L/.

At the same time the fields Y1; Y2 do not span the tangent space to S2 along a
great circle with x3 D 0. However, the fields Y1;Y2 and their commutator Y3 D
Y1Y2 � Y2Y1 D X1;2 do span the tangent space along x3 D 0. This fact implies that
along the circle x3 D 0, functions in the spaces Wr

2.L / and B˛
2;q.L / are losing 1=2

in smoothness compared to their smoothness at other points on S2. In other words,
the following embeddings hold true:

W˛
2 .L/ � W˛

2 .L / � W˛=2
2 .L/;

B˛
2;q.L/ � B˛

2;q.L / � B
˛=2
2;q .L/;

which follow from a much more general results in [10, 15, 17, 22].
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We would like to stress that subelliptic function spaces are different from the
usual (elliptic) spaces. For example, if W˛

2 .L/ is the regular Sobolev space than
general theory implies the embeddings

W˛
2 .L / � W˛=2

2 .L/; B˛
2;q.L / � B

˛=2
2;q .L/:

As the following Lemma shows, these embeddings are generally sharp.

Lemma 3. For every ˛ > 0 and ı > ˛=2 there exists a function that belongs to
W˛
2 .L / but does not belong to Wı

2.L/:

Proof. For a ı > ˛=2 > 0 pick any � that satisfies the inequalities

�1
2

� ı < � < �1
2

� ˛

2

Let cn;l be a sequence such that cn;l D 0 if n ¤ l and cl;l D .2l C 1/� . For a
function with such Fourier coefficients the norm (22) is finite since

1X
lD0
.2l C 1/˛.2l C 1/2� D

1X
lD0
.2l C 1/˛C2� < 1; ˛ C 2� < �1;

but the norm (21) is infinite

1X
lD0
.2l C 1/2ı.2l C 1/2� D

1X
lD0
.2l C 1/2.ıC�/; 2.ı C �/ > �1:

4 A Sub-Riemannian Structure and Corresponding Metric
on Compact Homogeneous Manifolds

Let M D G=H be a compact homogeneous manifold and X D fX1; : : :;Xdg be a
basis of the Lie algebra g, the same as in (6). Let

Y D fY1; : : :;Ymg (23)

be a subset of X D fX1; : : :;Xdg such that Y1; : : :;Ym and all their commutators

Yj;k D ŒYj; Yk� D YjYk � YkYj;

Yj1;:::;jn D ŒYj1 ; Œ: : ::ŒYjn�1 ;Yjn �: : :��; (24)

of order n � Q span the entire algebra g. Let
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Z1 D Y1;Z2 D Y2; : : :;Zm D Ym; : : : ;ZN ; (25)

be an enumeration of all commutators (24) up to order n � Q. If a Zj corresponds to
a commutator of length n, we say that deg.Zj/ D n.

Images of vector fields (25) under the natural projection p W G ! M D G=H
span the tangent space to M at every point and will be denoted by the same letters.

Definition 4. A sub-Riemann structure on M D G=H is defined as a set of vectors
fields on M which are images of the vector fields (23) under the projection p. They
can also be identified with differential operators in Lp.M/; 1 � p < 1; under the
quasi-regular representation of G.

One can define a non-isotropic metric � on M associated with the fields
fY1; : : :;Ymg.

Definition 5 ([10]). Let C.
/ denote the class of absolutely continuous mappings
' W Œ0; 1� ! M which almost everywhere satisfy the differential equation

'
0

.t/ D
mX

jD1
bj.t/Zj.'.t//;

where jbj.t/j < 
deg.Zj/. Then we define �.x; y/ as the lower bound of all such 
 > 0
for which there exists ' 2 C.
/ with '.0/ D x; '.1/ D y.

The corresponding family of balls in M is given by

B�.x; 
/ D fy 2 M W �.x; y/ < 
g:

These balls reflect the non-isotropic nature of the vector fields Y1; : : :;Ym and their
commutators. For a small 
 > 0 ball B�.x; 
/ is of size 
 in the directions Y1; : : :;Ym,
but only of size 
n in the directions of commutators of length n.

It is known [10] that the following property holds for certain c D
c.Y1; : : :;Ym/; C D C.Y1; : : :;Ym/:

c�.x; y/ � �.x; y/ � C .�.x; y//1=Q

where � stands for an G-invariant Riemannian metric on M D G=H. We will be
interested in the following sub-elliptic operator (sub-Laplacian)

� L D Y21 C : : :C Y2m (26)

which is hypoelliptic [6] self-adjoint and non-negative in L2.M/.

Definition 6. The space of !-bandlimited functions E!.L / is defined as the span
of all eigenfunctions of L whose eigenvalues are not greater than !:
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Due to the uncertainty principle bandlimited functions in E!.L / are not
localized on M in the sense that their supports coincide with M.

Using the operator L we define non-isotropic Sobolev spaces Wk
p.L /; 1 � p <

1; and non-isotropic Besov spaces B˛
p;q.L /; 1 � p < 1; 1 � q � 1; by using

formulas (7) and (11), respectively.

5 Product Property for Subelliptic Laplace Operator

The results of this section play a crucial role in our construction of the Parseval
frames. In what follows we consider previously defined operators

�L D X21 C X22 C : : :C X2d ; d D dim G;

and

�L D Y21 C : : :C Y2m; m < d;

as differential operators in L2.M/.

Lemma 4 ([4, 20]). If M D G=H is a compact homogeneous manifold, then for
any f and g in E!.L/, their product fg belongs to E4d!.L/, where d is the dimension
of the group G.

Proof. For every Xj one has

X2j .fg/ D f .X2j g/C 2.Xjf /.Xjg/C g.X2j f /:

Thus, the function Lk .fg/ is a sum of .4d/k terms of the form

.Xi1 : : :Xim f /.Xj1 : : :Xj2k�m g/:

This implies that
��Lk .fg/

��1 � .4d/k sup
0�m�2k

sup
x;y2M

jXi1 : : :Xim f .x/j ˇ̌Xj1 : : :Xj2k�m g.y/
ˇ̌
: (27)

Let us show that for all f ; g 2 E!.L/ the following inequalities hold:

kXi1 : : :Xim f kL2.M/ � !m=2kf kL2.M/ (28)

and

kXj1 : : :Xj2k�m gkL2.M/ � !.2k�m/=2kgkL2.M/: (29)

By construction (see (6)) the operator �L D X21 C : : :CX2d commutes with every Xj

and the same is true for .�L/1=2. From here one can obtain the following equality:
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kLs=2f k2L2.M/ D
X

1�i1;:::;is�d

kXi1 : : :Xis f k2L2.M/; s 2 N; (30)

which implies the estimates (28) and (29). The formula (27) along with the formula

kLm=2f kL2.M/ � !m=2kf kL2.M/: (31)

implies the estimate

kLk.fg/kL2.M/ � .4d/k sup
0�m�2k

kXi1 : : :Xim f kL2.M/kXj1 : : :Xj2k�m gk1 �

.4d/k!m=2kf kL2.M/ sup
0�m�2k

kXj1 : : :Xj2k�m gk1: (32)

Using the Sobolev embedding Theorem and the elliptic regularity of L, we obtain
for every s > dimM

2

kXj1 : : :Xj2k�m gk1 � C.M/kXj1 : : :Xj2k�m gkWs
2.M/ �

C.M/
˚kXj1 : : :Xj2k�m gkL2.M/ C kLs=2Xj1 : : :Xj2k�m gkL2.M/

	
; (33)

where Ws
2.M/ is the Sobolev space of s-regular functions on M. The estimate (31)

gives the following inequality:

kXj1 : : :Xj2k�m gk1 � C.M/
˚
!k�m=2kgkL2.M/ C !k�m=2CskgkL2.M/

	 �

C.M/!k�m=2
˚kgkL2.M/ C !s=2kgkL2.M/

	 D C.M; g; !; s/!k�m=2; s >
dim M
2

:

(34)

Finally we have the following estimate:

kLk.fg/kL2.M/ � C.M; f ; g; !; s/.4d!/k; s >
dim M
2

; k 2 N; (35)

which leads to our result.

Lemma 5. There exist positive c; C such that for ! > 1 the following embeddings
hold:

E!.L / � Ec!Q.L/; (36)

E!.L/ � EC!.L /: (37)

Proof. There exists a constant a D a.L; L / such that for all f in the Sobolev space
WQ
2 .M/ [10]
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kLf k � ak.I C L /Qf k:

Since L belongs to the center of the enveloping algebra of the Lie algebra g it
commutes with L . Thus one has for sufficiently smooth f :

kLlf k � alk.I C L /Qlf k; l 2 R:

It implies that if f 2 E!.L /, then for ! � 1

kLlf k � alk.I C L /Qlf k � �
a.1C !/Q

�l kf k � �
2a!Q

�l kf k; l 2 R;

which shows that f 2 E2a!Q.L/. Conversely, since for some b D b.L; L /

kL f k � bk.I C L/f k; f 2 W2
2 .M/;

we have

kL lf k � blk.I C L/lf k; f 2 W2l
2 .M/;

and for f 2 E!.L/

kL lf k � blk.I C L/lf k � .b.1C !//l kf k � .2b!/lkf k; f 2 W2l
2 .M/:

The product property of bandlimited functions is described in the following
Theorem.

Theorem 5. There exists a constant C0 D C0.L / > 0 such that for any f ; g 2
E!.L / the product fg belongs to EC0!Q.L /.

Proof. If f ; g 2 E!.L /, then f ; g 2 Ec!Q.L/. According to Lemma 4 their product
fg belongs to E4dc!Q.L/ which implies that for some C0 D C0.L / the product fg
belongs to EC0!Q.L /.

6 Positive Cubature Formulas on Sub-Riemannian
Manifolds

Now we are going to prove existence of cubature formulas which are exact on
E!.L /, and have positive coefficients of the right size.

Let Mr D fxkg be a r-lattice and fB�.xk; r/g be an associated family of balls that
satisfy only properties (1) and (2) of Lemma 1. We define

U1 D B�.x1; r=2/ n [i; i¤1B�.xi; r=4/;

and

Uk D B�.xk; r=2/ n �[j<kUj [i; i¤k B�.xi; r=4/
�
: (38)
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One can verify the following properties.

Lemma 6. The sets fUkg form a disjoint measurable cover (up to a set of measure
zero) of M and

B�.xk; r=4/ � Uk � B�.xk; r=2/ (39)

We have the following Plancherel-Polya inequalities [18, 19].

Theorem 6. There exist positive constants a1 D a1.M;Y/; a2 D a2.M;Y/, and
a0 D a0.M;Y/ such that, if for a given ! > 0 one has

0 < r < a0!; (40)

then for any metric r-lattice Mr D fxkg the following inequalities hold:

a1
X

k

jUkjjf .xk/j2 � kf kL2.M/ � a2
X

k

jUkjjf .xk/j2; (41)

for every f 2 E!.L /:

Proof. One has

jf .x/j � jf .xk/j C jf .x/ � f .xk/j;
Z

Uk

jf .x/j2dx � 2

�
jUkjjf .xk/j2 C

Z
Uk

jf .x/ � f .xk/j2dx

�
;

and

kf k2 �
X

k

Z
Uk

jf .x/j2dx � 2

 X
k

jUkjjf .xk/j2 C
X

k

Z
Uk

jf .x/ � f .xk/j2dx

!
:

Take an X 2 g; jXj D 1; for which exp tX � xk D x for some t 2 R.
Since every such vector field (as a field on M) is a linear combination of the fields
ŒYi1 ; : : :ŒYil�1 ;Yil �: : :�; 1 � l � Q; 1 � ij � m, the Newton-Leibniz formula applied
to a smooth f along the corresponding integral curve joining x and xk gives

jf .x/ � f .xk/j2 � Cr2
QX

lD1

X
1�i1;i2;:::il�m

 
sup

y2B�.xk ;r=2/
jYi1Yi2 : : :Yil f .y/j

!2
:

Applying anisotropic version of the Sobolev inequality [10] we obtain

jf .x/ � f .xk/j2 � Cr2
QX

lD1

X
1�i1;i2;:::il�m

 
sup

y2B�.xk ;r=2/
jYi1Yi2 : : :Yil f .y/j

!2
�



428 I. Pesenson

Cr2
QX

lD0

X
1�i1;i2;:::;il�m

kYi1Yi2 : : :Yil f k2HQ=2C".B�.xk ;r=2//
;

where x 2 Uk; " > 0; C D C."/: Next,

X
k

Z
B�.xk ;r=2/

jf .x/ � f .xk/j2dx �

CrnC2
QX

lD0

X
1�i1;i2;::il�m

X
k

kYi1 : : :Yil f k2HQ=2C".B�.xk ;r=2//
�

CrnC2
QX

lD0

X
1�i1;:::;il�m

kYi1 : : :Yil f k2HQ=2C".M/
� CrnC2 �kf k2 C kL Qf k2� :

All together we obtain the inequality

kf k2 � 2
X

k

jUkjjf .xk/j2 C CrnC2 �kf k2 C kL Qf k2� :

Note that for f 2 E!.L /

kL Qf k � C!Qkf k:

Thus, if for a given ! > 0 we pick an r > 0 a way that

CrnC2.1C !/Q < 1

then for a certain C1 D C1.M/ > 0 one obtains the right-hand side of (41)

kf k2 � C1
X

k

jUkjjf .xk/j2:

The left-hand side of (41) follows from the Sobolev and Bernstein inequalities.

The Plancherel-Polya inequalities (41) can be used to prove the so-called sub-
elliptic positive cubature formula. The proof goes along the same lines as in [4, 21],
(see also [1, 3]).

The precise statement is the following.

Theorem 7. There exists a constant a D a.M;Y/ > 0 such that for a given ! > 0
if r D a!�1 then for any r-lattice Mr D fxkg there exist strictly positive coefficients
f˛kg, for which the following equality holds for all functions in E!.L /:
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Z
M

fdx D
X

k

f .xk/˛k: (42)

Moreover, there exists constants b1 > 0; b2 > 0; such that the following
inequalities hold:

b1jUkj � ˛k � b2jUkj; (43)

where the sets Uk are defined in (38).

7 Space Localization of Kernels

According to the spectral theorem if F is a Schwartz function on the line, then there
is a well defined operator F.L / in the space L2.M/ such that for any f 2 L2.M/

one has

.F.L /f / .x/ D
Z

M
K F.x; y/f .y/dy; (44)

where dy is the invariant normalized measure on M. If
˚
�j
	

and
˚
uj
	

are sets of
eigenvalues and eigenfunctions of L respectively then

K F.x; y/ D
1X

jD0
F.�j/uj.x/uj.y/: (45)

We will be especially interested in operators of the form F.t2L /, where F is a
Schwartz function and t > 0. The corresponding kernel will be denoted as K F

t .x; y/
and

K F
t .x; y/ D

1X
jD0

F.t2�j/uj.x/uj.y/: (46)

Note, that variable t here is a kind of scaling parameter.
The following important estimate was proved in [1] in the setting of the so-called

Dirichlet spaces. It is a consequence of the main result in [9] that sub-Riemannin
manifolds we consider in our article are the Dirichlet spaces.

Theorem 8. If F 2 C1
0 .R/ is even than for every N > 2Q, there exists a CN D

CN.F;M;Y/ > 0 such that

ˇ̌
K F

t .x; y/
ˇ̌ � CN .jB�.x; t/j jB�.y; t/j/�1=2 �1C t�1�.x; y/

��N
; 0 < t � 1:

(47)
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8 Parseval Space-Frequency Localized Frames
on Sub-Riemannian Manifolds and Proof of Theorem 1

Let g 2 C1.RC/ be a monotonic function with support in Œ0; 22�; and g.s/ D 1

for s 2 Œ0; 1�; 0 � g.s/ � 1; s > 0: Setting G.s/ D g.s/ � g.22s/ implies that
0 � G.s/ � 1; s 2 supp G � Œ2�2; 22�: Clearly, supp G.2�2js/ � Œ22j�2; 22jC2�; j �
1: For the functions F0.s/ D p

g.s/; Fj.s/ D p
G.2�2js/; j � 1; one hasP

j�0 F2j .s/ D 1; s � 0. Using the spectral theorem for L one can define bounded
self-adjoint operators Fj.L / as

Fj.L /f .x/ D
Z

M
K F
2�j.x; y/f .y/dy;

where

K F
2�j.x; y/ D

X
�m2Œ22j�2;22jC2�

F.2�2j�m/um.x/um.y/: (48)

The same spectral theorem implies
P

j�0 F2j .L /f D f ; f 2 L2.M/; and taking inner
product with f gives

kf k2 D
X
j�0

˝
F2j .L /f ; f

˛ D
X
j�0

kFj.L /f k2: (49)

Moreover, since the function Fj.s/ has its support in Œ22j�2; 22jC2� the functions
Fj.L /f are bandlimited to Œ22j�2; 22jC2�.

Next, consider the sequence !j D 22jC2; j D 0; 1; : : :: . By (49) the equality
kf k2 D P

j�0 kFj.L /f k2 holds, where every function Fj.L /f is bandlimited to

Œ22j�2; 22jC2�. Since for every Fj.L /f 2 E22jC2 .L / one can use Theorem 5 to
conclude that

jFj.L /f j2 2 EC02Q.2jC2/ .L /:

According to Theorem 7 there exists a constant a D a.M;Y/ > 0 such that for all
natural j if

rj D b2�Q.jC1/; b D aC0; (50)

then for any rj-lattice Mrj one can find positive coefficients ˛j;k with for which the
following exact cubature formula holds:

kFj.L /f k22 D
KjX

kD1
˛j;k

ˇ̌
Fj.L /f .xj;k/

ˇ̌2
; (51)
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where xj;k 2 Mrj , k D 1; : : : ;Kj D card.Mrj/. Using the kernel K F
2�j of the operator

Fj.L / we define the functions

�j;k.y/ D p
˛j;k K

F
2�j.xj;k; y/ D

p
˛j;k

X
�m2Œ22j�2;22jC2�

F.2�2j�m/um.xj;k/um.y/: (52)

One can easily see that for every f 2 L2.M/ the equality kf k22 D P
j;k jhf ; �j;kij2

holds. Moreover, the first two items of Theorem 1 are also satisfied. Thus,
Theorem 1 is proven.

As an application one can obtain description of sub-elliptic Besov spaces
B˛

p;q.L /; 1 � p < 1; 1 � q � 1; in terms of the Fourier coefficients with
respect to this frame

˚
�j;k

	
.

Consider the quasi-Banach space b˛p;q which consists of sequences s D fsj
kg (j �

0; 1 � k � Kj) satisfying

kskb˛p;q D
0
@ 1X

j�0
2j˛q

 X
k

ˇ̌
ˇB�.xj

k; 2
�j/
ˇ̌
ˇ1=p�1=2 jsj

kjp
!q=p

1
A
1=q

< 1; (53)

and introduce the following mappings


.f / D fhf ; �j
kig; (54)

and

�.fsj
kg/ D

1X
j�0

X
k

sj
k�

j
k: (55)

It is not difficult to prove the following result (see [4, 5] for the Riemann case).

Theorem 9. Let�j
k be the same as above. Then for 1 � p < 1; 0 < q � 1; ˛ > 0

the following statements are valid:

1. 
 in (54) is a well-defined bounded operator 
 W B˛
p;q.L / ! b˛p;q;

2. � in (55) is a well-defined bounded operator � W b˛p;q ! B˛
p;q.L /;

3. � ı 
 D id;

Moreover, the following norms are equivalent:

kf kB˛
p;q.L / � k
.f /kb˛p;q ;
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where

k
.f /kb˛p;q D
0
@ 1X

j�0
2j˛q

 X
k

ˇ̌
ˇB�.xj

k; 2
�j/
ˇ̌
ˇ1=p�1=2 jsj

kjp
!q=p

1
A
1=q

:

The constants in these norm equivalence relations can be estimated uniformly
over compact ranges of the parameters p; q; ˛.
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