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Introduction

Recent advancements in medical research
brought to a better understanding of the molecu-
lar bases of diseases and the interindividual vari-
ability in drug response, opening a new era in the
management of patient care, known as the preci-
sion medicine. In this view, new approaches to
patient diagnosis, monitoring or treatment can
benefit from the integration of information deriv-
ing from different technologic approaches such
as high-throughput omics (next-generation
sequencing, metabolomics, proteomics, epig-
enomics, bioinformatics, system biology, and
medicine biobanks) in order to allow the imple-
mentation of a truly tailored therapy [1]. In fact,
for a specific disease, a multidisciplinary
approach will allow a more accurate prediction of
treatment and strategy, differently from the tradi-
tional “one-size-fits-all” approaches [2]. Systems
pharmacology and pharmacogenomics (PGx)
helped the understanding of the clinical impact of
genetic-determined interindividual differences in
pharmacokinetics (PK) of many drugs especially
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for antineoplastic agents, in which the patient
risk is due to the narrow therapeutic index. On
the other hand, in the era of precision medicine,
the understanding of the tumor molecular profile
has the potential to drive clinical decisions for
tailored treatment options with improved effi-
cacy. Consequently, the interindividual variabil-
ity in drug response, in terms of efficacy and
toxicity, due to the interaction of genetic, patho-
physiological and environmental factors, has a
relevant effect on cancer treatment. Cancer is not
a single disease but is a series of genome-based
diseases and its treatment activity is conditioned
by disease diffusion and individual patient-
related factors. In fact, genomic deregulation at
different levels is involved in tumorigenesis and
includes different events such as gene inactiva-
tion (promoter silencing, deletion, mutations),
alterations in gene expression (copy number vari-
ation, methylation), and mutations or rearrange-
ments responsible of protein activation [3]. The
transition from conventional cytotoxic drugs to
molecular biomarkers-driven decision for the
selection of cancer therapeutic options improved
the management of many advanced-stage tumors.
In fact, the identification of somatic and germline
genetic biomarkers provides information about
the likelihood of response to treatment and offers
therefore predictive and prognostic information
for the selection of patients. The frequent expo-
sure to endogenous and exogenous reactive
chemicals can alter the DNA sequence as well as
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chromatin structure and bring to somatic genomic
and epigenomic abnormalities. In most cases, no
cellular abnormalities occurs, while in some
cases in a prone tissue, the clonal transformation
of a cell takes place and consequently begins the
development process, which will finally drive to
a malignant lesion. In many cancers, including
chronic myeloid leukemia, colon, breast, lung
and melanoma, predictive biomarkers are cur-
rently in use to select patients, which might ben-
efit of targeted therapy and avoid toxic side
effects of chemotherapy. Biomarkers, providing
information on cancer molecular signatures, may
allow treatment tailoring and are distinguished
into: diagnostic, prognostic, treatment and pre-
vention subgroups. Key mutations and molecular
pathways involved in tumor development and
proliferation can be identified by predictive bio-
markers, which are measurable and linked to rel-
evant clinical outcomes. They have undergone a
validation process for use as predictive tool
within clinical trials. Instead, prognostic bio-
markers identify somatic and germline muta-
tions, alterations in DNA methylation, microRNA
(miRNA) and circulating tumor cells (CTC) in
blood and provide information on tumor outcome
independent from treatment. Today, diagnostic
companion assays undergo validation for bio-
marker value for treatment decision-making.
High-throughput technologies provided the
opportunity to identify genomic changes condi-
tioning development and progression of a tumor
(“driver” lesions) with a selective growth advan-
tage and addiction of the cancer cell to a particu-
lar molecular pathway, despite other quantitatively
preponderant and concomitant armless passen-
ger alterations [4]. Consequently, genes identi-
fied to have a driver role in at least one cancer
type are considered oncogenes [5]. A subset of
the driver aberrations could have significantly
diagnostic, prognostic or therapeutic potential
and are often indicated as actionable; a subset of
mutations may also be druggable as target for
drug development [6]. Today, tumors molecular
characterization and predictive/prognostic bio-
marker discoveries have allowed better under-
standing of the complex mechanisms of
carcinogenesis and have fueled the development

of novel drug targets and new treatment strategies
to enhance patient care. The hallmarks of preci-
sion medicine rely on genomics and clinical data
integration based on cancer molecular character-
istics in order to personalize oncology and to
design new clinical trials. In order to study tar-
geted therapies in different tumor types express-
ing low-frequency mutations (<5%) it is possible
to design basket trials where are enrolled a small
number of patients with different kind of cancer
expressing the same genetic alteration, while in
an alternative approach, umbrella trials recruit
patients with a single cancer type but different
actionable mutations. Drug structure analysis
allows the design of new studies to test new drugs
and biomarkers. In basket trials, a hypothesis-
driven strategy is implemented and can be the
proof-of-principle validation of a putative target
and offer the opportunity to integrate a classical
clinical trial design with the knowledge of molec-
ular expression at tumor level. The limit of this
trial design is that a mutation can act differently
as driver druggable target in a given tumor, while
it can be a passenger lesion in other tumor con-
texts. Another aspect emerging and in contrast
with the performance of basket and umbrella tri-
als is the role of tumor stroma in conditioning
therapeutic choices and future drug development
[7,8].

In our chapter, as a prototypical condition, we
will discuss the current scenario of personalized
treatment of colon-rectal cancer, including
molecular cancer-related and patient-related bio-
markers, the emerging molecular landscapes and
finally we will discuss the new approach of inte-
grative genomics, as emerging vision based on
large biological annotated datasets and bioinfor-
matics tools.

Current Status: The Case
of Colorectal Cancer (CRC)

Metastatic colorectal cancer (mCRC) is charac-
terized by several molecular lesions involving
activation or loss-of-function mutations, which
occur in receptor tyrosine kinases (RTKs) and
more frequently in downstream components of
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RTK-activated intracellular pathways. Therefore,
treatment effects of the target therapy can be con-
sidered as strictly related to specific molecular
alterations.

The epidermal growth factor receptor (EGFR),
expressed on the cell surface, belongs to the
ERbB-family, a subfamily of RTKs. The anti-
EGFR cetuximab and panitumumab mAbs pre-
vent activation of EGFR [9, 10]. They block
ligand-stimulated EGFR signaling and they prob-
ably stop activation of phosphatidylinositol
3-kinase (PI3K)/AKT and RAS/MAP2K (also
called MEK)/MAPK1/3 (also called ERK?2/1) sig-
naling pathways, leading to inhibition of cellular
proliferation and induction of apoptosis [11].

One of the most important molecular mecha-
nisms of primary resistance to EGFR mAbs
(cetuximab and panitumumab) is KRAS muta-
tion. In fact, the mutation in KRAS appears to
hold a negative predictive value for the response
of anti-EGFR therapy [12, 13]. At the beginning,
only the mutation in exon 2 of KRAS was consid-
ered [14, 15] and then the research for mutations
was expanded to the exons 3, 4 of KRAS and
2,3,4 of NRAS, also involved in the resistance to
anti-EGFR drugs [16].

In patients with mCRC the efficacy of chemo-
therapy can be, in fact, implemented by biologi-
cal drugs based on the molecular status of RAS,
in particular cetuximab and panitumumab for
wild-type RAS status and bevacizumab for both
RAS wild type and mutated [17-22].

The correlation between the molecular status of
KRAS and the survival endpoints in first-line
mCRC treated with cetuximab and standard che-
motherapy regimens was initially demonstrated by
a retrospective analysis of the Crystal study [23].

In patients with PAN-RAS mutations the best
standard first-line treatment is represented by the
association of chemotherapy with bevacizumab
[17-20], whereas in mutated patients has not
been established the best sequence for the use of
anti-EGFR drugs in first line rather than in the
second one [24-26].

During the carcinogenesis trajectory, genetic
aberrations accumulate and this process leads to
the so-called genetic heterogeneity resulting in
the selection of clones with different functions

including the ability to respond to a specific treat-
ment and to generate metastases [27]. For this
reason, patients with RAS wild-type mCRC
could present mutated subclones that induce
resistance to treatment with anti-EGFR under the
selective therapy pressure [28, 29].

It is known that in patients RAS wild-type
molecular alterations of BRAF [30, 31] and
PIK3CA [32, 33] genes might be present, which
may cause primary resistance to anti-EGFR.

BRAF is a human gene that encodes a protein
called BRAF and it is a member of the RAF gene
family. BRAF protein is a serine—threonine pro-
tein kinase involved in RAS-activated pathway.
BRAF mutation is found in 15% of colorectal
cancers, and it is known that this alteration is
linked to a poor prognosis [31, 34].

The most frequent BRAF mutation is V60OE,
located in the kinase activation domain and it
leads to an increased activity of MAPK1/3 path-
way. BRAF-mutant tumors have dissimilar clini-
cal and histological characteristics from
RAS-mutant tumors [35]. It was found that the
CpG island methylator phenotype (CIMP) and
microsatellite instability are observed in BRAF-
mutated tumors [31, 35].

In a retrospective consortium analysis it was
revealed that only two patients out of a total of 24
patients with BRAF-mutated cancer responded to
the treatment with cetuximab [32].

Only a small sample of patients with BRAF-
mutated cancer benefit from treatment with pani-
tumumab or cetuximab [35].

PIK3CA is part of lipid kinase family involved
in various cellular processes regarding growth,
proliferation, differentiation, motility, survival
and intracellular trafficking [36].

PIK3CA mutations can occur more frequently
(80%) in exon 9 (60-65%) and 20 (20-25%)
[32]. In a study it was shown that only mutation
in exon 20 of PIK3CA is associated to a resis-
tance to cetuximab activity in population KRAS
wild-type [32]. Moreover, PIK3CA has a nega-
tive prognostic value because it is associated with
a shorter survival in tumors RAS wild-type stage
I-1I1 [37].

Another important molecular lesion involves
PTEN gene that encodes the phosphatase and
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tensin homolog protein. PTEN mutations are
present in nearly 5% with high microsatellite
instability. PTEN role in colorectal cancer is not
clear, but it was shown that PTEN loss is associ-
ated with a reduced response to cetuximab [30,
38-40].

Other important factors are prognostic for sur-
vival in colorectal cancer in addition to defined
molecular defects [41, 42].

The importance of the clinical and biological
difference between proximal and distal cancer is
becoming now clear. Right- and left-sided CRCs
are characterized by different carcinogenesis tra-
jectories, mucosal immunologic microenviron-
ment and gut microbiota [43]. Right-sided cancer
is most frequently diploid and has a mucinous
histology, high microsatellite instability, CpG
island methylation and BRAF mutations [44, 45],
while the left-sided one is characterized by chro-
mosomal instability. These peculiarities reflect a
different embryonic origin [46, 47].

The analysis of the correlation among tumor
sidedness and survival after chemotherapy+/—
bevacizumab was performed in three indepen-
dent cohorts in a study. According to this, patients
with right colon cancer have a lower recurrence,
but they show a more aggressive behavior in
relapsed disease [48]. In this group of patients,
the role of BRAF is clear as a negative prognostic
factor [49] in a more advanced phase of the carci-
nogenesis process and, with other factors, might
play a role in chemoresistance, while the left
colon cancers have an increased benefit from
treatment on activity and efficacy endpoints [48].

About the benefit of the biological treatment
according to the tumor site, it was found an
increased activity of anti-EGFR drugs in the left-
sided primary tumor location, demonstrated in
terms of PFS [50].

It is important to consider that the tumor
microenvironment is different between the left
and right colon. Indeed the right colon cancers
have a higher share of eosinophils and intraepi-
thelial T cells [51, 52].

It has been speculated that this could be the
result of a homeostatic balance in T cells between
tolerance for the commensal microbiota and the
immune response against pathogens [53].

Currently major attention is focused on the
mismatch repair (MMR) gene deficiency, which
can be sporadic or occurs within the Lynch syn-
drome. It is found in 1 out of 35 patients with
colon—rectal cancer [54] and it leads to microsat-
ellite instability (MSI) represented by alterations
in the length of tandem nucleotide repeats
[55, 56].

MSI overall predicts for a better prognosis.
The correlation between the microenvironment
rich in lymphocyte cells, the immune-score and
the favorable outcome in tumors with MSI needs
additional investigation [57].

The immune-score is characterized by the
determination of the number of cytotoxic and
memory T cells represented in intra-tumor and
peri-tumor infiltration and it is considered a bio-
marker with prognostic relevance [58, 59].

The presence of high levels of CD8 + lympho-
cytes in the microenvironment that express the
chemokine-receptor-7 (CCR?7) is found to influ-
ence the prognosis increasing the overall survival
and progression-free survival after a first-line
chemotherapy [60].

Moreover, high levels of FOXP3+ T lympho-
cyte correlate with the outcome of patients who
undergo chemotherapy or chemo-immunotherapy
[61].

All together, these findings open a new bio-
logical scenario where the immune system plays
a substantial role. In fact, there is now a renewed
interest for the immunotherapy which has opened
the way for immune checkpoint inhibitors devel-
opment that modulate immune response against
tumor cells. While in some tumors, such as
malignant melanoma, immunotherapy has pro-
duced highly successful results, in others unfor-
tunately did not reach the same activity, such as
in mCRC. In fact, only a small subgroup of
mCRC patients with deficiency of the MMR
mechanism benefit from treatment with pro-
grammed death-1 (PD-1) checkpoint inhibitors
(5-10% of all mCRC patients) [62].

A phase 2 trial showed the efficacy of treat-
ment with pembrolizumab in tumors with MMR
deficiency [63]. Tumors with defective MMR are
more responsive to the PD1 block confirming the
successful advantage of high density of immune
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system cells in the microenvironment and the
mismatch repair deficiency [64—66].

Another potential predictive biomarker is rep-
resented by mutation in exonuclease domain of
DNA polymerase epsilon (Pol-¢). This mutation
correlates with a higher immune infiltrate (like
MMR deficiency) and a better disease-free sur-
vival in MSI-proficient tumors. Both MMR defi-
ciency and Pol-e mutation lead to increased
tumor mutation burden and to the onset of tumor
specific neo-antigens, which could activate the
immune system in a tumor specific response [67].

Recently, it has been focused on HER2 gene
alterations (HER2 over-expression or amplifica-
tion) that make the cancer sensitive to a specific
combination of direct molecular targeted drugs
against this target [68].

To conclude, the selection of the most appro-
priate treatment should be based on the patient,
on the biological characteristics of the tumor, on
the objectives to be achieved, on the toxicity of
the treatment, and finally on the continuum of
care, which indeed needs to be also considered.

At present only negative predictors of response
to various treatments are available and validated
for the clinical scenario. The biomarker that has
demonstrated a deep impact in the history of
colorectal cancer is the RAS mutational status,
which is indeed a negative predictor.

To guide the oncologist in the decision-
making process of treatment of colorectal cancer,
positive predictive biomarkers are eagerly
awaited for treatment individualization and need
validation in prospective trials (Fig. 2.1).

Future Perspective: Molecular
Landscape of Colorectal Cancer

Genomic Classificationof Colorectal
Cancer

Surgery is the mainstay treatment for CRC
patients although, at the time of diagnosis, CRC
is often a systemic disease and therefore adjuvant
chemotherapy is the best choice for preventing
disease relapse. The standard classification of
CRC considers pathological staging a clinical

prognostic factors to select patients for adjuvant
chemotherapy.

For this lethal disease, with an estimated heri-
tability of approximately 5%, exists a classifica-
tion based on molecular profiling and linkage
studies. In fact, germline mutations on APC gene
and DNA MMR genes characterized the heredi-
tary colorectal cancer syndromes, while other
low penetrance genetic variants have been corre-
lated to approximately 20% of the familial asso-
ciation in CRC [69]. Inherited CRC syndromes
are classified based on the presence of large num-
bers of adenomatous polyps like familial adeno-
matous polyposis (FAP), attenuated FAP and
MUT-Y-homolog-associated polyposis (MAP)
and the presence of hamartoma polyps like pri-
mary lesions in Peutz—Jeghers syndrome (PJS)
and juvenile polyposis syndrome (JPS) as well as
non-adenoma syndromes Lynch 1 and 2.
Hyperplastic polyposis (HPP) is a condition that
produces substantially increased cancer risk.
Somatic mutations and polymorphic features in
TP53 gene impact susceptibility to sporadic
CRC, prognosis and response to therapy [70].

According to gene expression profile, super-
vised approaches contributed to identify signa-
tures related to relevant outcomes such as
recurrence, metastasis and overall survival, while
semi-supervised approaches refined outcome
prediction according to patients selection based
on stage disease [71, 72].

Recently, an unsupervised analysis considers
inherent molecular subtypes for CRC classifica-
tion and correlates them to prognosis [73, 74],
while recent studies proposed a consensus clas-
sification system identifying three groups: the
Goblet/Inflammatory group, the TA/Enterocyte
group, and the stem/serrated/mesenchymal
(SSM) group [75, 76]. However, it has been pro-
posed also a sub-classification of CRC that dis-
tinguishes those with MSI (which arises on a
hereditary and sporadic basis, located primarily
in the right colon and associated with the CpG
island methylator phenotype (CIMP) and hyper-
mutation) and those that are microsatellite stable
(MSS) but chromosomally unstable (CIN) [77].
Barat et al. utilized microarray-based gene
expression and methylation dataset to identify
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Fig.2.1 This chart
describes the possible
molecular alterations
that lead to the therapy’s
customization based on
the molecular profile of
each patient. The center
of our attention is
precision medicine that
has to guide the
oncologist’s decision in
order to provide the best
choice based on the
characteristics of patient,
tumor, and treatment
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methylation-based subgroups and distinguished
three main clusters: highly methylated (HM),
intermediately methylated (IM) and large clus-
ters with both lower and rarer locus-specific
methylation (LM) [78]. The study provides evi-
dence that integration and combination of gene
expression and methylation datasets analyses
could better described the CRC subtypes. Gene
expression profiles and genomic characterization
influence CRC outcome (Fig. 2.2).

Critical genes and pathways, including the
WNT, RAS-MAPK, PI3K, TGF-b, P53 and
DNA MMR pathways, are involved in the initia-
tion and progression of CRC [77, 79]. They are
associated with different mutation frequencies of
the main oncogenes RAS, BRAF, APC and other
genetic events, whose expression redefines treat-
ment selection. With the exception of hyper-
mutated cancers, CRC have similar patterns of
genomic alteration, and there is evidence of sig-



2 Precision Oncology: Present Status and Perspectives

13

Microsatellite
Instability

Chromosomal

Instability

e ——
Copy number g
| alterations Muﬁ?tlﬁ)ns
high g
WNT Inflammatory/
Pty Immune high
r—
bl CIMP high
Beta pathway g
CIMP
~| negative/low

Better
prognosis

Fig. 2.2 Diagram of gene alteration pathways based on
genomic characterization: the related outcome according
to CRC subtypes

nificant intra-tumor genetic heterogeneity due to
variations in localized somatic mutations and
copy number abnormalities [80].

Through bioinformatics tools in 750 patients
with stage I to IV CRC, undergone to surgical
treatment, it has been possible to stratify CRC by
transcriptomic-based classification on the bases of
clinical-pathological features and common DNA
markers [76]. In fact, six prognostic molecular
subgroups of CRC sample have been identified
and validated on the bases of gene expression
data, associated with clinical and pathological
characteristics, molecular alterations, specific
gene expression signatures and deregulated sig-
naling pathways. Today, although official guide-
lines indicate a risk stratification, no clear
recommendations for adjuvant chemotherapy in
stage II disease are available, and molecular tech-
nologies are strictly required to improve the selec-
tion of individualized therapeutics [81]. Promise
derives now from validation clinical trials evaluat-

ing two prognostic tests, based on the expression
of different gene panels like ColoPrint (Agendia,
Amsterdam, the Netherlands), which are based on
18 genes, and Oncotype DX (Genomic Health,
Redwood City, CA) which includes 12 genes
(seven recurrence risk genes and five reference
genes) and represents the individual prognostic
score most widely retrospectively evaluated with a
little overlapping [82, 83]. Until now ColoPrint
and Oncotype DX were available to improve risk
prediction in early-stage CRC [83, 84] and have
been investigated in three independent datasets of
stage II-IITA CC and as a prognostic score in the
QUASAR and CALGB9581 trials, respectively
[76]. Presently current pathological staging is not
able to predict recurrence in a phase of curable
disease, so it is necessary to take benefit from
additional tools. Nomograms such as “Adjuvant
Online” or Memorial Sloan Kettering Cancer
Center (MSKCC) and Bayesian Belief Network
(BBN) can be used in clinical practice to show
outcome of patients in the same disease condition
and predict the probability of CRC patient’s to 5
years OS after surgical removal of all cancerous
tissue [85]. Another prognostic nomograms was
developed by Peng et al. for predicting outcome in
patients with locally advanced rectal cancers with-
out preoperative treatment, while no nomogram
can predict long-term outcome after CRC surgery
for all disease stages [86, 87].

It is clear that all the above-described tools
represent sound decision supporting instruments
but cannot be defined bona fide precision medi-
cine approaches, taking into account the intrinsic
heuristic nature. Despite this complex scenario,
presently there isn’t an integrated view of the
CRC genetic and genomic changes in initiation
and subsequent different stages of disease pro-
gression. Further insight may help the
understanding of CRC pathophysiology and the
identification of potential therapeutic targets.

Recently, Dalerba et al. identified a subgroup
of stage II CRC patients who might benefit from
adjuvant chemotherapy for the lack of caudal-type
homeobox transcription factor 2 (CDX2) expres-
sion in their cancer stem cells [88]. By a bioinfor-
matics approach, the authors, in order to identify a
single prognostic biomarkers for stratification of
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CRC undifferentiated tumors, have analyzed a
large database of gene expression arrays obtained
from populations of stem and progenitor cells and
searched for genes associated with differentiation
processes. Among the 16 selected candidate genes
for identification of predictive biomarkers, nega-
tively linked to the activated leukocyte—cell adhe-
sion molecule (ALCAM/CD166) in CRC patients
with stage II or stage 111, they selected the homeo-
box transcription factor CDX2 strictly correlated
to ALCAM expression and tested for the associa-
tion with disease-free survival and a benefit from
adjuvant chemotherapy. In particular, it was iden-
tified that subgroup of high-risk stage II CRC
patients benefit from adjuvant chemotherapy and
was characterized by lack of CDX2 expression
and high levels of ALCAM.

The translation of this knowledge in CRC has
had an important impact into drug development
and biomarker discovery for the different sub-
types and examples of molecular targeted thera-
pies are tyrosine kinase inhibitors, regorafenib
and bevacizumab.

Pharmacogenomicsand
Irinogenomics

In CRC, despite the standard chemotherapy and
novel targeted drugs provided an improvement in
terms of response rate and patient’s survival, tox-
icity remains an unsolved problem and PGx has
helped the routinely administration of drugs in
CRC patients [89]. In CRC as well as in other
cancers, the treatment paradigm is to give the
dose which achieves the best drug exposure and
effectiveness, with an acceptable risk of toxicity
[90]. Unluckily, the inter-patient PK variability is
a limiting factor due not only to differences in
body size but also to variability in absorption,
metabolism, distribution and/or excretion
(ADME) of the drug and metabolites. In fact,
several enzymes and transporters that are part of
the ADME processes can condition drug efficacy
and toxicity because their expression and activity
are highly variable between patients, partially
due to germline genetic variability. Germline
variants in the coding region can change protein

activity, while variations outside of the coding
region could influence protein expression [91].
Another important aspect to consider is patient’s
germline variation underlying sensitizing condi-
tion that mimics the toxicity and can be worsened
by the drug. Thus, a patient who carries a sensi-
tizing germline variant would not be able to toler-
ate the dose required for treatment efficacy and
might require to receive a dose adjustment or the
selection of an alternative treatment agent. The
most frequent type of genetic variants among
people (10 million in the human genome) associ-
ated with the interindividual variability in drug
response are the single nucleotide polymorphisms
(SNPs) which represent a difference in a single
nucleotide in certain stretch of DNA sequence
between two genes. Frequently they are devoid
of a functional role but, if a SNP occurs within a
gene or in a regulatory region near a gene, they
could play a more direct role in disease or in drug
metabolism by affecting gene’s function. Most of
identified SNPs are in linkage disequilibrium
with gene variants with higher or lower activity
and serve therefore as markers predictive of
activity or toxicity due to different enzyme func-
tion. SNPs linked to genes coding for enzymes
involved in drug metabolism and transport affect
therefore the body response and PK profile influ-
encing the efficacy and toxicity of treatment. The
possibility to identify SNPs as predictive bio-
markers of response to antineoplastic agents by
classical approaches like candidate-gene-based
research and the genome-wide association study
(GWAS) or by technologic advances like the
Affymetrix (Santa Clara, California, USA) Drug
Metabolizing Enzymes and Transporters
(DMET™) microarray platform will allow an
improvement of patient care in the optic of
personalized therapy. In particular by DMET™
platform is possible to investigate 1931 SNPs
and five copy number variations (CNV) in 231
genes related to drugs metabolism contributing to
discover polymorphic variants associated to the
individual risk of adverse drug reactions (ADRs)
and to drug efficacy. By this technology, in case-
control studies we identified several polymorphic
variants associated with toxicity in different dis-
eases and added novel information on irinoge-
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nomics (see below) [92-97]. DMET™ platform
offers wide opportunity to identify and validate
biomarkers of drug sensitivity for tailored treat-
ment of CRC patients.

Pharmacological treatment of CRC is based
on cytotoxic agents like fluoropyrimidines
(FAUMP (fluorodeoxyuridine monophosphate,
fluorouracil (5-FU), and its oral precursor,
capecitabine), irinotecan (IRI, CPT-11), and
oxaliplatin (OX), used either alone or in combi-
nations in FOLFIRI (folinic acid, fluorouracil
(5-FU), and irinotecan) and FOLFOX (folinic
Acid, 5-FU, and oxaliplatin) regimens, and novel
targeted agents. Recently, CRC treatment has
benefited of novel biological agents as monoclo-
nal antibodies (mAbs) targeting VEGF (i.e. beva-
cizumab, aflibercept) and EGFR (i.e. cetuximab,
panitumumab) pathways or agents leading to a
multiple-kinase inhibition (regorafenib) [98].
Cytotoxic drugs have a narrow therapeutic index
and strictly dose-related effect also conditioned
by interindividual variability in their metabolism.
Therefore PGx knowledges, validated biomark-
ers, integrative genomic approaches and the
availability of genetic testing could allowed the
identification of subgroups of CRC patients with
benefits in terms of prognosis and drug efficacy
in the aim of precision medicine. In cytotoxic
CRC therapy, important PGx studies have been
done on highly polymorphic specific targets,
whose genetic or molecular deregulation might
correlate to treatment efficacy. Unfortunately, the
translation of PGx researches into clinical prac-
tice is presently limited with small exceptions
regarding the metabolism of 5-FU/capecitabine
and irinotecan. For 5-FU SNPs in two important
metabolic enzymes have a relevance in clinical
practice: the thymidylate synthase (TYMS) and
dihydropyrimidine dehydrogenase (DPD), while
for irinotecan polymorphic variants in uridine
diphosphate glucuronosyltransferases (UGTs)
influence variability in biliary excretion and the
degradation of irinotecan is conditioned by inher-
ited variations in  metabolic  pathway.
5-Fluorouracil (5-FU) or its prodrug capecitabine
is a cytotoxic drug, classified as “antimetabolite,”
and represents the main chemotherapeutic regi-
men adopted in CRC treatment, having an

improving impact on survival and other solid
cancer [99].

The activity of this pyrimidine analog is due to
the incorporation of fluoronucleotides into RNA
and DNA and to the irreversible inhibition of its
target enzyme the thymidylate synthase (TS).
Three major active metabolites derive from 5-FU
intracellular ~ metabolism:  fluorodeoxyuridine
monophosphate (FAUMP), fluorodeoxyuridine tri-
phosphate (FAUTP), and fluorouridine triphosphate
(FUTP). Genetic variants in the three drug-
metabolizing enzymes thymidine phosphorylate
(TP), TYMS and DPD are responsible for variabil-
ity in response, toxicity and overall survival (OS) in
5-FU-based treatment schedules [100].

5-FU cytotoxic activity is mediated by its
methylation to dUMP with
5,10-methylenetetrahydrofolate (CH2THF) as
cofactor, which forms in the cell a stable ternary
complex with TYMS enzyme and supplies the
only de novo source of thymidylate. Consequently,
its cytotoxicity is due to the blocking access of
dUMP to the nucleotide-binding site and to the
inhibition and depletion of deoxythymidine
monophosphate (dTMP) production, important
for DNA replication and repair [101, 102]. In
5-FU metabolism in normal and cancer cells its
conversion in dihydrofluorouracil (DHFU) is
mediated by dihydropyrimidine dehydrogenase
(DPD) and represents the rate-limiting step. DPD
is abundant in the liver where is normally catabo-
lized more than 80% of administered 5-FU [100].
The administration of the oral prodrug of 5-FU,
capecitabine, has revealed a 5-FU comparable
efficacy but a lower toxicity [103, 104]. In the
liver, capecitabine is converted to 5'-deoxy-5-
fluoruridine (DFUR) by carboxylesterase and
cytidine deaminase and then converted to 5-FU
by thymidine phosphorylase (TP) and/or uridine
phosphorylase (UP) [105, 106]. The tumor-
selective activation of capecitabine might be
explained by the higher expression of both TP
and UP in tumor tissue compared to normal tis-
sue [107]. Patients with a decrease activity of
catabolic enzymes in 5-FU pathway revealed an
interindividual variability to cytotoxic chemo-
therapy with an increase in drug concentration
and consequent high toxicity risk. DPD catalyzes
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5-FU and eliminates >80% of administered drug.
Its activity is influenced by dihydropyrimidine
dehydrogenase (DPYD) gene which is variable at
tumoral tissue level and can influence drug effi-
cacy in consideration that intra-tumor drug con-
centration is fundamental for dug efficacy and
antitumor activity. Mucositis, granulocytopenia
and neuropathy are the most frequent toxic
effects for which might be necessary a dose
reduction [108].

In 5-10% of the general population, a partial
DPD activity deficiency is demonstrated and only
in 0.2% a total loss of enzyme activity [109].
However, DPD polymorphisms influenced the
23-38% of 5-FU toxicity [110]. The most com-
mon polymorphic variant recognized to be asso-
ciated with partial DPD deficiency and
consequent 5-FU toxicity is IVS14+1G>A muta-
tion in intron 14 coupled with exon 14 deletion
(DPYD*2A), together with the SNPs at 496A>G
in exon 6, at 2846A>T in exon 22, and at T1679G
(DPYD*13) in exon 13, also recognized to be
associated with 5-FU toxicity [111-113].

The US Food and Drug Administration (FDA)
has underlined, in the drug labels for 5-FU and
capecitabine, that their use should not be allowed
in carriers of high-risk alleles. The Dutch
Pharmacogenetics Working Group has recom-
mended an alternative treatment in patients
homozygous for the high-risk allele and almost a
dose reduction of 50% or an alternative drug in
patients heterozygous for a decreased-activity
allele [114, 115] (in agreement with the more
recent Clinical Pharmacogenetics Implementation
Consortium Guidelines for Dihydropyrimidine
Dehydrogenase Genotype and Fluoropyrimidine
Dosing).

Polymorphic variants in TYMS gene are
responsible for an increased expression of the
enzyme with a consequent high risk of 5-FU tox-
icity and reduced drug efficacy. TS overexpres-
sion is frequently associated with a reduced
response to 5-FU treatment based both in adju-
vant and in advanced CRC patients with more
severe side effects [116, 117].

In CRC patients carrying low levels of TYMS
gene product, a significantly higher rate of treat-

ment response and a prolonged overall survival
compared to CRC patients with higher TS expres-
sion in tumor tissue have been described [109].

Two meta-analyses supported the role of TS
expression on overall response rate and overall
survival [118, 119]. However, further analyses
are necessary to allow a better identification of
TYMS transcription regulatory mechanisms and
the understanding of the role played by genetic
different SNPs combinations in several metabolic
enzymes and their frequency in general popula-
tions to better clarify the interindividual variabil-
ity to drugs response. Until now, no
recommendations are suggested according to TS
phenotype in CRC patient underwent to fluoro-
pyrimidines treatment and although an assay for
DPD and TYMS polymorphisms testing is com-
mercially available, pre-emptive testing is not
recommended. No recommendations have been
issued on dosing of fluoropyrimidines by TS
phenotype.

Other gene polymorphisms possibly impor-
tant for fluoropyrimidine efficacy and toxicity for
various enzymes have currently been explored
(e.g., dihydropyrimidinase, beta-
ureidopropionase, methylenetetrahydrofolate
reductase), but available research data are insuf-
ficient for conclusions on their potential clinical
usefulness. Several other polymorphic variants in
enzymes involved at different levels in 5-FU met-
abolic pathways probably influenced intrinsic
and acquired 5-FU pharmacoresistance in CRC
patients, but no translation in clinical practice is
validated, until now [120].

In CRC treatment another widely used anti-
cancer drug is irinotecan, a camptothecin analog
and inactive prodrug, activated at liver level via
human carboxylesterases CES1 and CES2 into
the active form SN-38, subsequently inactivated
through glucuronidation via members of the
UDP-glucuronosyltransferase (UGT) enzyme
family catalyzing also bilirubin glucuronidation.
Somatic tumor-specific mutations seem to influ-
ence irinotecan toxicity and efficacy as well as
interindividual variability limited its PK and PD
[121-123]. Severe diarrhea and neutropenia rep-
resent dose-limiting toxicities. Despite the
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unequivocal confirmation of the role of somatic
mutations on patient’s outcome who under-
went to irinotecan treatment, scientific evidences
confirmed a role of polymorphic variants in
UGTs family members, especially for UGT1AI
isoenzyme and other isoforms [103]. Polymorphic
variants in UGT1A1 enzyme are responsible for
impaired glucuronidating activity and conse-
quent toxicity due to elevated serum levels of
SN-38 and bilirubin [124, 125]. Ando et al. pub-
lished the first evidence on the role of UGTIA1%#28
(UGTIAI 7/7 genotype) in the development of
irinotecan toxicity [126]. The homozygous
UGT1A1%#28 allele phenotype, responsible for
increased risk for severe neutropenia and diar-
rhea, is represented in the 8—10% of the popula-
tion and according to the FDA treatments in
combination with other agents or as a single
agent requires a reduction in the starting dose
[127]. Dias et al. put in evidence an association
between UGTIAI genotype and overall response
rate in patients treated with irinotecan, but no
direct evidences confirm that a dose reduction in
UGTIAI*28 homozygous phenotypes will not
lead to an important reduction in overall response
rate [128]. Despite FDA recommendations, in
clinical practice the preemptive UGTI1A1%*28
allele testing is not yet applied although commer-
cial assays for UGTIAI testing are available.
There are other important polymorphic genes
involved in irinotecan metabolic pathways under
investigation for their role as putative biomarkers
of hematological and gastric toxicities, but fur-
ther validations are necessary for their potential
clinical utility in irinogenomics [93, 129, 130].

Future Perspectives: Precision
Medicine Based on Integrative
Genomics

In the recent years, the development of a variety
of high technology platforms has led researchers
to produce large amount of data at different
molecular levels and network, in different disci-
plines of the omic world. Traditionally,
approaches of bioinformatics analysis were

focused on the use of single classes of data (i.e.
genomic data or proteomic data). The rising
number of data has made clear that the integra-
tion of data at different levels could produce
more relevant results. Consequently, many differ-
ent approaches have pointed to such kind of inte-
gration, leading to the rise of a novel discipline,
often defined as integromics, or integrated analy-
sis of omic data, in which computer science, bio-
informatics, and mathematical modeling have the
main role. This discipline focuses on the elucida-
tion of basic principles of the interplay among
different biological molecules (such as proteins
or genes), where the network theory plays a syn-
ergistic role [131-133]. The focus of computa-
tional integrative genomics is to identify basic
principles of interplay of different molecules in
order to better elucidate the molecular mecha-
nism. This is under the assumption that the infor-
mation gathered from integrated analysis is
higher than in the single and separate study of
any data source [131]. It usually utilized a com-
mon approach for findings that share a common
flow of information. The flow starts from gather-
ing data of different data sources. Then all data
are integrated into a single network model, and
the model is analyzed with different algorithms
tailored to the specific application. Data sources
of integrative omics mainly reside on messenger
RNA (mRNA), miRNA and protein expression,
DNA copy number, SNPs and may be produced
in dedicated experiments or extracted from dif-
ferent available databases. Specifically, miRNA
therapeutics is emerging as a valuable tool in
translational precision oncology [134—139]. The
scientific community has recently produced a
large number of different databases useful for
integrated analysis. In addition to academic data,
pharmaceutical and biotech companies retain
large amounts of “proprietary data” — inherited
from their own and other sources. Most of the
data is stored in older types of databases designed
to manage a single type of data; therefore, the
integration of these data source into a single com-
prehensive one is a relevant challenge [140].
From a biological point of view, it is clear that
the main actors of this process are mRNAs, miR-
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NAs, and transcription factors (TFs), those play
an interacting role in the regulation of gene
expression that results in variable levels of gene
transcripts and proteins. Usually, the integration
of such datasets relies on the formalism provided
from graph theory. As a result, bioinformatics
approaches for the integrated analysis usually
build comprehensive graphs in which nodes are
mRNAs, miRNAs, and TFs (or other molecules)
and edges represent the interactions among them.
Edges include two main categories: (i) activation
edges modeling the interplay between molecules,
among whose one may increase the level of
another one, and (ii) inhibition edges that model
the action of inhibition. The analysis of such
graphs uses different algorithms tailored to the
specific application. For instance, the individua-
tion of small and connected subgraphs with three
different classes of nodes is often used for the
identification of loops (feedback and feed-
forward) in which the regulation of the expres-
sion of a gene could be related to a synergistic
action of both miRNA and TF.

All the methods of analysis available share
some specific characteristics. First, the use of an
internal knowledge base containing information
collected from literature and from different data-
bases. The knowledge base usually stores asso-
ciation among mRNAs, miRNAs, and TFs
modeled as graphs. This internal knowledge base
guides the analysis of experimental data. Second,
the approaches enable the user to take external
experimental datasets from a pool of samples
extracted from patients in case-control or time-
series experiments. Then, data of knowledge
bases allow to build the association graph includ-
ing experimental data. Finally, this association
graph is mined to extract knowledge.

We here list some main approaches of integra-
tive analysis focusing only on freely available
tools.

MAGIA?2 is the evolution of the precedent
MAGIA web tool for the integrated analysis of
both mRNA and miRNA. MAGIA receives as
input, expression level data obtained by case-
control or time-series experiments. In this way, it

is able to integrate literature evidence, prediction
algorithms, and mRNA and miRNA experimen-
tal data based on anticorrelation of miRNA-tar-
get expression, using four different relatedness
measures. It is able to highlight different regula-
tory circuits involving either miRNA or TF as
regulators: (i) a TF that regulates both a given
miRNA and its target gene and (ii) a miRNA that
regulates both a given TF and its regulated gene.
Furthermore, this tool provides functional
enrichment of the gene network using DAVID
platform [141].

The dchip GEMINI is a freely available web
server that receives as input expression levels of
miRNA and mRNA obtained from time-series
experiments analyzing two conditions, e.g., nor-
mal and cancer conditions. It is able to individu-
ate Feed-Forward Loops (FFLs) consisting of
TFs, miRNAs and their common target genes.
The association among miRNA and their target
(TF and mRNA) information is extracted from
the literature and stored into the web server. TFs
derived from literature used as null model to sta-
tistical ranks predicted FFLs from the experi-
mental data [142].

mirConnX is a software tool based on a web
interface to build gene regulatory networks start-
ing from mRNA and miRNA expression data on
a whole-genome scale. It based on a network
built using as a priori model consisting of
TF-gene associations and miRNA target predic-
tions for human and mouse derived by computa-
tional methods and literature. Experimental data
allow inference of experimental associations
among TF, miRNA and genes. These associa-
tions allow to weight the predefined network and
the resulting weighted network can be visualized
by the user [143].

miRIN is a web application designed for the
identification of the modules of protein—protein
interaction networks regulated by miRNAs. The
approach of analysis consists of the integration of
miRNA target data from literature, protein—pro-
tein interactions between target genes from liter-
ature, as well as mRNA and miRNA expression
profiles provided as data input. The output of
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Table 2.1 Available software tools that integrate in a single model miRNA and mRNA data

Tool Input Output Model Website
MAGIA2 miRNA/mRNA | Feed-forward loops Statistical model http://gencomp.bio.unipd.it/
Expression Data | (FFL) Ontological and literature magia2/start/
Time Series Analysis evidence
dCHIPGemini | miRNA/mRNA | Feed-Forward Loops Statistical model http://www.canevolve.org/
Expression Data | (FFL) and literature dChip-GemiNi
Time Series evidence
mirConnX miRNA, mRNA | Regulatory Networks | Pre-built network http://www.benoslab.pitt.edu/
time series mirconnx
miRIN miRNA, mRNA | Regulatory networks Associations derived | http://mirin.ym.edu.tw/
of miRNA, mRNA, from literature
TFs, and proteins

miRIN is a set of regulatory networks involving
miRNAs, mRNAs, TFs, and proteins (Table 2.1).

We should note that the literature also reports
an approach of integration available for Ingenuity
Pathway Analysis (IPA®, Qiagen, Hilden,
Germany). The IPA® platform enables the recon-
struction of causal networks constructed from
individual relationships providing a set of tools
for inferring and scoring upstream regulators of
gene expression data [144]. This approach has
been presented in a previous work by Di Martino
et al. and has been applied to the analysis of mul-
tiple myeloma data [145]. With respect to the
prior work, the authors first applied the integrated
analysis into a clinical relevant scenario by apply-
ing results to the profiling of MM patients. The
workflow of analysis was based on the use of pub-
licly available published by Wu et al. [146]. Data
were, initially, preprocessed by Affymetrix pro-
prietary software and filtered using the freely
available DChip tool. Through the use of DChip,
the authors identified significant differentially
expressed (SDE) miRNA and mRNA in two sub-
groups of multiple myeloma patients: hyperdip-
loids (HD) MM versus non-hyperdiploids (nHD)
MM. These data (SDE genes and SDE miRNAs)
were integrated into a single model by using the
approach of Kramer et al. implemented into the
IPA® software [144]. This approach also enabled
to consider the role of TFs and to extract causal
relationships among them. The authors also ana-

lyzed data into a functional space looking at
canonical pathways and bio-functions, carried out
by SDE genes and miRNAs. The main result of
this analysis was the identification of different
biological events related to the two MM subtypes,
while the upstream regulator analysis enabled to
identify URs related to the identified transcription
events, drawing a new molecular scenario of the
two main disease subgroups (Fig. 2.3).

Conclusions

Precision medicine is a reality, but the shift from
single gene analysis to multilayered approaches
as integrative genomics is likely to produce a
novel way to identify targets and individualize
treatment. The growing interest for immunother-
apy makes this point even more compelling tak-
ing into account that each therapeutic approach
needs to be personalized based on the immunobi-
ology of the individual patients, which will drive
to another shift to tumor analysis to tumor/micro-
environment axis evaluation. These perspectives
need not only robust technologies but also a novel
way to validate findings and novel research
approaches which are mostly based on Bayesian
design.

Precision medicine does not substitute for
good clinics but even allow better and wiser
clinics.
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Fig. 2.3 This picture depicts the flow of data in integra-
tive genomics. Different experimental data are collected
from the investigator. The data span from classical micro-
array technologies (e.g. mRNA or miRNA expression) to
next-generation sequencing techniques as well as genomic
technologies such as CNV or SNP data. The whole set of
data is then pre-processed in order to select only signifi-
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