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�Introduction

Recent advancements in medical research 
brought to a better understanding of the molecu-
lar bases of diseases and the interindividual vari-
ability in drug response, opening a new era in the 
management of patient care, known as the preci-
sion medicine. In this view, new approaches to 
patient diagnosis, monitoring or treatment can 
benefit from the integration of information deriv-
ing from different technologic approaches such 
as high-throughput omics (next-generation 
sequencing, metabolomics, proteomics, epig-
enomics, bioinformatics, system biology, and 
medicine biobanks) in order to allow the imple-
mentation of a truly tailored therapy [1]. In fact, 
for a specific disease, a multidisciplinary 
approach will allow a more accurate prediction of 
treatment and strategy, differently from the tradi-
tional “one-size-fits-all” approaches [2]. Systems 
pharmacology and pharmacogenomics (PGx) 
helped the understanding of the clinical impact of 
genetic-determined interindividual differences in 
pharmacokinetics (PK) of many drugs especially 

for antineoplastic agents, in which the patient 
risk is due to the narrow therapeutic index. On 
the other hand, in the era of precision medicine, 
the understanding of the tumor molecular profile 
has the potential to drive clinical decisions for 
tailored treatment options with improved effi-
cacy. Consequently, the interindividual variabil-
ity in drug response, in terms of efficacy and 
toxicity, due to the interaction of genetic, patho-
physiological and environmental factors, has a 
relevant effect on cancer treatment. Cancer is not 
a single disease but is a series of genome-based 
diseases and its treatment activity is conditioned 
by disease diffusion and individual patient-
related factors. In fact, genomic deregulation at 
different levels is involved in tumorigenesis and 
includes different events such as gene inactiva-
tion (promoter silencing, deletion, mutations), 
alterations in gene expression (copy number vari-
ation, methylation), and mutations or rearrange-
ments responsible of protein activation [3]. The 
transition from conventional cytotoxic drugs to 
molecular biomarkers-driven decision for the 
selection of cancer therapeutic options improved 
the management of many advanced-stage tumors. 
In fact, the identification of somatic and germline 
genetic biomarkers provides information about 
the likelihood of response to treatment and offers 
therefore predictive and prognostic information 
for the selection of patients. The frequent expo-
sure to endogenous and exogenous reactive 
chemicals can alter the DNA sequence as well as 
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chromatin structure and bring to somatic genomic 
and epigenomic abnormalities. In most cases, no 
cellular abnormalities occurs, while in some 
cases in a prone tissue, the clonal transformation 
of a cell takes place and consequently begins the 
development process, which will finally drive to 
a malignant lesion. In many cancers, including 
chronic myeloid leukemia, colon, breast, lung 
and melanoma, predictive biomarkers are cur-
rently in use to select patients, which might ben-
efit of targeted therapy and avoid toxic side 
effects of chemotherapy. Biomarkers, providing 
information on cancer molecular signatures, may 
allow treatment tailoring and are distinguished 
into: diagnostic, prognostic, treatment and pre-
vention subgroups. Key mutations and molecular 
pathways involved in tumor development and 
proliferation can be identified by predictive bio-
markers, which are measurable and linked to rel-
evant clinical outcomes. They have undergone a 
validation process for use as predictive tool 
within clinical trials. Instead, prognostic bio-
markers identify somatic and germline muta-
tions, alterations in DNA methylation, microRNA 
(miRNA) and circulating tumor cells (CTC) in 
blood and provide information on tumor outcome 
independent from treatment. Today, diagnostic 
companion assays undergo validation for bio-
marker value for treatment decision-making. 
High-throughput technologies provided the 
opportunity to identify genomic changes condi-
tioning development and progression of a tumor 
(“driver” lesions) with a selective growth advan-
tage and addiction of the cancer cell to a particu-
lar molecular pathway, despite other quantitatively 
preponderant and concomitant armless passen-
ger alterations [4]. Consequently, genes identi-
fied to have a driver role in at least one cancer 
type are considered oncogenes [5]. A subset of 
the driver aberrations could have significantly 
diagnostic, prognostic or therapeutic potential 
and are often indicated as actionable; a subset of 
mutations may also be druggable as target for 
drug development [6]. Today, tumors molecular 
characterization and predictive/prognostic bio-
marker discoveries have allowed better under-
standing of the complex mechanisms of 
carcinogenesis and have fueled the development 

of novel drug targets and new treatment strategies 
to enhance patient care. The hallmarks of preci-
sion medicine rely on genomics and clinical data 
integration based on cancer molecular character-
istics in order to personalize oncology and to 
design new clinical trials. In order to study tar-
geted therapies in different tumor types express-
ing low-frequency mutations (<5%) it is possible 
to design basket trials where are enrolled a small 
number of patients with different kind of cancer 
expressing the same genetic alteration, while in 
an alternative approach, umbrella trials recruit 
patients with a single cancer type but different 
actionable mutations. Drug structure analysis 
allows the design of new studies to test new drugs 
and biomarkers. In basket trials, a hypothesis-
driven strategy is implemented and can be the 
proof-of-principle validation of a putative target 
and offer the opportunity to integrate a classical 
clinical trial design with the knowledge of molec-
ular expression at tumor level. The limit of this 
trial design is that a mutation can act differently 
as driver druggable target in a given tumor, while 
it can be a passenger lesion in other tumor con-
texts. Another aspect emerging and in contrast 
with the performance of basket and umbrella tri-
als is the role of tumor stroma in conditioning 
therapeutic choices and future drug development 
[7, 8].

In our chapter, as a prototypical condition, we 
will discuss the current scenario of personalized 
treatment of colon–rectal cancer, including 
molecular cancer-related and patient-related bio-
markers, the emerging molecular landscapes and 
finally we will discuss the new approach of inte-
grative genomics, as emerging vision based on 
large biological annotated datasets and bioinfor-
matics tools.

�Current Status: The Case 
of Colorectal Cancer (CRC)

Metastatic colorectal cancer (mCRC) is charac-
terized by several molecular lesions involving 
activation or loss-of-function mutations, which 
occur in receptor tyrosine kinases (RTKs) and 
more frequently in downstream components of 
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RTK-activated intracellular pathways. Therefore, 
treatment effects of the target therapy can be con-
sidered as strictly related to specific molecular 
alterations.

The epidermal growth factor receptor (EGFR), 
expressed on the cell surface, belongs to the 
ERbB-family, a subfamily of RTKs. The anti-
EGFR cetuximab and panitumumab mAbs pre-
vent activation of EGFR [9, 10]. They block 
ligand-stimulated EGFR signaling and they prob-
ably stop activation of phosphatidylinositol 
3-kinase (PI3K)/AKT and RAS/MAP2K (also 
called MEK)/MAPK1/3 (also called ERK2/1) sig-
naling pathways, leading to inhibition of cellular 
proliferation and induction of apoptosis [11].

One of the most important molecular mecha-
nisms of primary resistance to EGFR mAbs 
(cetuximab and panitumumab) is KRAS muta-
tion. In fact, the mutation in KRAS appears to 
hold a negative predictive value for the response 
of anti-EGFR therapy [12, 13]. At the beginning, 
only the mutation in exon 2 of KRAS was consid-
ered [14, 15] and then the research for mutations 
was expanded to the exons 3, 4 of KRAS and 
2,3,4 of NRAS, also involved in the resistance to 
anti-EGFR drugs [16].

In patients with mCRC the efficacy of chemo-
therapy can be, in fact, implemented by biologi-
cal drugs based on the molecular status of RAS, 
in particular cetuximab and panitumumab for 
wild-type RAS status and bevacizumab for both 
RAS wild type and mutated [17–22].

The correlation between the molecular status of 
KRAS and the survival endpoints in first-line 
mCRC treated with cetuximab and standard che-
motherapy regimens was initially demonstrated by 
a retrospective analysis of the Crystal study [23].

In patients with PAN–RAS mutations the best 
standard first-line treatment is represented by the 
association of chemotherapy with bevacizumab 
[17–20], whereas in mutated patients has not 
been established the best sequence for the use of 
anti-EGFR drugs in first line rather than in the 
second one [24–26].

During the carcinogenesis trajectory, genetic 
aberrations accumulate and this process leads to 
the so-called genetic heterogeneity resulting in 
the selection of clones with different functions 

including the ability to respond to a specific treat-
ment and to generate metastases [27]. For this 
reason, patients with RAS wild-type mCRC 
could present mutated subclones that induce 
resistance to treatment with anti-EGFR under the 
selective therapy pressure [28, 29].

It is known that in patients RAS wild-type 
molecular alterations of BRAF [30, 31] and 
PIK3CA [32, 33] genes might be present, which 
may cause primary resistance to anti-EGFR.

BRAF is a human gene that encodes a protein 
called BRAF and it is a member of the RAF gene 
family. BRAF protein is a serine–threonine pro-
tein kinase involved in RAS-activated pathway. 
BRAF mutation is found in 15% of colorectal 
cancers, and it is known that this alteration is 
linked to a poor prognosis [31, 34].

The most frequent BRAF mutation is V600E, 
located in the kinase activation domain and it 
leads to an increased activity of MAPK1/3 path-
way. BRAF-mutant tumors have dissimilar clini-
cal and histological characteristics from 
RAS-mutant tumors [35]. It was found that the 
CpG island methylator phenotype (CIMP) and 
microsatellite instability are observed in BRAF-
mutated tumors [31, 35].

In a retrospective consortium analysis it was 
revealed that only two patients out of a total of 24 
patients with BRAF-mutated cancer responded to 
the treatment with cetuximab [32].

Only a small sample of patients with BRAF-
mutated cancer benefit from treatment with pani-
tumumab or cetuximab [35].

PIK3CA is part of lipid kinase family involved 
in various cellular processes regarding growth, 
proliferation, differentiation, motility, survival 
and intracellular trafficking [36].

PIK3CA mutations can occur more frequently 
(80%) in exon 9 (60–65%) and 20 (20–25%) 
[32]. In a study it was shown that only mutation 
in exon 20 of PIK3CA is associated to a resis-
tance to cetuximab activity in population KRAS 
wild-type [32]. Moreover, PIK3CA has a nega-
tive prognostic value because it is associated with 
a shorter survival in tumors RAS wild-type stage 
I–III [37].

Another important molecular lesion involves 
PTEN gene that encodes the phosphatase and 
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tensin homolog protein. PTEN mutations are 
present in nearly 5% with high microsatellite 
instability. PTEN role in colorectal cancer is not 
clear, but it was shown that PTEN loss is associ-
ated with a reduced response to cetuximab [30, 
38–40].

Other important factors are prognostic for sur-
vival in colorectal cancer in addition to defined 
molecular defects [41, 42].

The importance of the clinical and biological 
difference between proximal and distal cancer is 
becoming now clear. Right- and left-sided CRCs 
are characterized by different carcinogenesis tra-
jectories, mucosal immunologic microenviron-
ment and gut microbiota [43]. Right-sided cancer 
is most frequently diploid and has a mucinous 
histology, high microsatellite instability, CpG 
island methylation and BRAF mutations [44, 45], 
while the left-sided one is characterized by chro-
mosomal instability. These peculiarities reflect a 
different embryonic origin [46, 47].

The analysis of the correlation among tumor 
sidedness and survival after chemotherapy+/− 
bevacizumab was performed in three indepen-
dent cohorts in a study. According to this, patients 
with right colon cancer have a lower recurrence, 
but they show a more aggressive behavior in 
relapsed disease [48]. In this group of patients, 
the role of BRAF is clear as a negative prognostic 
factor [49] in a more advanced phase of the carci-
nogenesis process and, with other factors, might 
play a role in chemoresistance, while the left 
colon cancers have an increased benefit from 
treatment on activity and efficacy endpoints [48].

About the benefit of the biological treatment 
according to the tumor site, it was found an 
increased activity of anti-EGFR drugs in the left-
sided primary tumor location, demonstrated in 
terms of PFS [50].

It is important to consider that the tumor 
microenvironment is different between the left 
and right colon. Indeed the right colon cancers 
have a higher share of eosinophils and intraepi-
thelial T cells [51, 52].

It has been speculated that this could be the 
result of a homeostatic balance in T cells between 
tolerance for the commensal microbiota and the 
immune response against pathogens [53].

Currently major attention is focused on the 
mismatch repair (MMR) gene deficiency, which 
can be sporadic or occurs within the Lynch syn-
drome. It is found in 1 out of 35 patients with 
colon–rectal cancer [54] and it leads to microsat-
ellite instability (MSI) represented by alterations 
in the length of tandem nucleotide repeats 
[55, 56].

MSI overall predicts for a better prognosis. 
The correlation between the microenvironment 
rich in lymphocyte cells, the immune-score and 
the favorable outcome in tumors with MSI needs 
additional investigation [57].

The immune-score is characterized by the 
determination of the number of cytotoxic and 
memory T cells represented in intra-tumor and 
peri-tumor infiltration and it is considered a bio-
marker with prognostic relevance [58, 59].

The presence of high levels of CD8 + lympho-
cytes in the microenvironment that express the 
chemokine-receptor-7 (CCR7) is found to influ-
ence the prognosis increasing the overall survival 
and progression-free survival after a first-line 
chemotherapy [60].

Moreover, high levels of FOXP3+ T lympho-
cyte correlate with the outcome of patients who 
undergo chemotherapy or chemo-immunotherapy 
[61].

All together, these findings open a new bio-
logical scenario where the immune system plays 
a substantial role. In fact, there is now a renewed 
interest for the immunotherapy which has opened 
the way for immune checkpoint inhibitors devel-
opment that modulate immune response against 
tumor cells. While in some tumors, such as 
malignant melanoma, immunotherapy has pro-
duced highly successful results, in others unfor-
tunately did not reach the same activity, such as 
in mCRC. In fact, only a small subgroup of 
mCRC patients with deficiency of the MMR 
mechanism benefit from treatment with pro-
grammed death-1 (PD-1) checkpoint inhibitors 
(5–10% of all mCRC patients) [62].

A phase 2 trial showed the efficacy of treat-
ment with pembrolizumab in tumors with MMR 
deficiency [63]. Tumors with defective MMR are 
more responsive to the PD1 block confirming the 
successful advantage of high density of immune 
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system cells in the microenvironment and the 
mismatch repair deficiency [64–66].

Another potential predictive biomarker is rep-
resented by mutation in exonuclease domain of 
DNA polymerase epsilon (Pol-ε). This mutation 
correlates with a higher immune infiltrate (like 
MMR deficiency) and a better disease-free sur-
vival in MSI-proficient tumors. Both MMR defi-
ciency and Pol-ε mutation lead to increased 
tumor mutation burden and to the onset of tumor 
specific neo-antigens, which could activate the 
immune system in a tumor specific response [67].

Recently, it has been focused on HER2 gene 
alterations (HER2 over-expression or amplifica-
tion) that make the cancer sensitive to a specific 
combination of direct molecular targeted drugs 
against this target [68].

To conclude, the selection of the most appro-
priate treatment should be based on the patient, 
on the biological characteristics of the tumor, on 
the objectives to be achieved, on the toxicity of 
the treatment, and finally on the continuum of 
care, which indeed needs to be also considered.

At present only negative predictors of response 
to various treatments are available and validated 
for the clinical scenario. The biomarker that has 
demonstrated a deep impact in the history of 
colorectal cancer is the RAS mutational status, 
which is indeed a negative predictor.

To guide the oncologist in the decision-
making process of treatment of colorectal cancer, 
positive predictive biomarkers are eagerly 
awaited for treatment individualization and need 
validation in prospective trials (Fig. 2.1).

�Future Perspective: Molecular 
Landscape of Colorectal Cancer

�Genomic Classificationof Colorectal 
Cancer

Surgery is the mainstay treatment for CRC 
patients although, at the time of diagnosis, CRC 
is often a systemic disease and therefore adjuvant 
chemotherapy is the best choice for preventing 
disease relapse. The standard classification of 
CRC considers pathological staging  a clinical 

prognostic factors to select patients for adjuvant 
chemotherapy.

For this lethal disease, with an estimated heri-
tability of approximately 5%, exists a classifica-
tion based on molecular profiling and linkage 
studies. In fact, germline mutations on APC gene 
and DNA MMR genes characterized the heredi-
tary colorectal cancer syndromes, while other 
low penetrance genetic variants have been corre-
lated to approximately 20% of the familial asso-
ciation in CRC [69]. Inherited CRC syndromes 
are classified based on the presence of large num-
bers of adenomatous polyps like familial adeno-
matous polyposis (FAP), attenuated FAP and 
MUT-Y-homolog-associated polyposis (MAP) 
and the presence of hamartoma polyps like pri-
mary lesions in Peutz–Jeghers syndrome (PJS) 
and juvenile polyposis syndrome (JPS) as well as 
non-adenoma syndromes Lynch 1 and 2. 
Hyperplastic polyposis (HPP) is a condition that 
produces substantially increased cancer risk. 
Somatic mutations and polymorphic features in 
TP53 gene impact susceptibility to sporadic 
CRC, prognosis and response to therapy [70].

According to gene expression profile, super-
vised approaches contributed to identify signa-
tures related to relevant outcomes such as 
recurrence, metastasis and overall survival, while 
semi-supervised approaches refined outcome 
prediction according to patients selection based 
on stage disease [71, 72].

Recently, an unsupervised analysis considers 
inherent molecular subtypes for CRC classifica-
tion and correlates them to prognosis [73, 74], 
while recent studies proposed a consensus clas-
sification system identifying three groups: the 
Goblet/Inflammatory group, the TA/Enterocyte 
group, and the stem/serrated/mesenchymal 
(SSM) group [75, 76]. However, it has been pro-
posed also a sub-classification of CRC that dis-
tinguishes those with MSI (which arises on a 
hereditary and sporadic basis, located primarily 
in the right colon and associated with the CpG 
island methylator phenotype (CIMP) and hyper-
mutation) and those that are microsatellite stable 
(MSS) but chromosomally unstable (CIN) [77]. 
Barat et  al. utilized microarray-based gene 
expression and methylation dataset to identify 
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methylation-based subgroups and distinguished 
three main clusters: highly methylated (HM), 
intermediately methylated (IM) and large clus-
ters with both lower and rarer locus-specific 
methylation (LM) [78]. The study provides evi-
dence that integration and combination of gene 
expression and methylation datasets analyses 
could better described the CRC subtypes. Gene 
expression profiles and genomic characterization 
influence CRC outcome (Fig. 2.2).

Critical genes and pathways, including the 
WNT, RAS–MAPK, PI3K, TGF-b, P53 and 
DNA MMR pathways, are involved in the initia-
tion and progression of CRC [77, 79]. They are 
associated with different mutation frequencies of 
the main oncogenes RAS, BRAF, APC and other 
genetic events, whose expression redefines treat-
ment selection. With the exception of hyper-
mutated cancers, CRC have similar patterns of 
genomic alteration, and there is evidence of sig-

Patient
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Medicine

Biological tumor characteristics

BRAF RAS

Folfoxiri+
Bevacizumab Pembrolizumab
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AntiEGFR mAb/
AntiVEGF mAb+/-
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Fig. 2.1  This chart 
describes the possible 
molecular alterations 
that lead to the therapy’s 
customization based on 
the molecular profile of 
each patient. The center 
of our attention is 
precision medicine that 
has to guide the 
oncologist’s decision in 
order to provide the best 
choice based on the 
characteristics of patient, 
tumor, and treatment
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nificant intra-tumor genetic heterogeneity due to 
variations in  localized somatic mutations and 
copy number abnormalities [80].

Through bioinformatics tools in 750 patients 
with stage I to IV CRC, undergone to surgical 
treatment, it has been possible to stratify CRC by 
transcriptomic-based classification on the bases of 
clinical-pathological features and common DNA 
markers [76]. In fact, six prognostic molecular 
subgroups of CRC sample have been identified 
and validated on the bases of gene expression 
data, associated with clinical and pathological 
characteristics, molecular alterations, specific 
gene expression signatures and deregulated sig-
naling pathways. Today, although official guide-
lines indicate a risk stratification, no clear 
recommendations for adjuvant chemotherapy in 
stage II disease are available, and molecular tech-
nologies are strictly required to improve the selec-
tion of individualized therapeutics [81]. Promise 
derives now from validation clinical trials evaluat-

ing two prognostic tests, based on the expression 
of different gene panels like ColoPrint (Agendia, 
Amsterdam, the Netherlands), which are based on 
18 genes, and Oncotype DX (Genomic Health, 
Redwood City, CA) which includes 12 genes 
(seven recurrence risk genes and five reference 
genes) and represents the individual prognostic 
score most widely retrospectively evaluated with a 
little overlapping [82, 83]. Until now ColoPrint 
and Oncotype DX were available to improve risk 
prediction in early-stage CRC [83, 84] and have 
been investigated in three independent datasets of 
stage II–IIIA CC and as a prognostic score in the 
QUASAR and CALGB9581 trials, respectively 
[76]. Presently current pathological staging is not 
able to predict recurrence in a phase of curable 
disease, so it is necessary to take benefit from 
additional tools. Nomograms such as “Adjuvant 
Online” or Memorial Sloan Kettering Cancer 
Center (MSKCC) and Bayesian Belief Network 
(BBN) can be used in clinical practice to show 
outcome of patients in the same disease condition 
and predict the probability of CRC patient’s to 5 
years OS after surgical removal of all cancerous 
tissue [85]. Another prognostic nomograms was 
developed by Peng et al. for predicting outcome in 
patients with locally advanced rectal cancers with-
out preoperative treatment, while no nomogram 
can predict long-term outcome after CRC surgery 
for all disease stages [86, 87].

It is clear that all the above-described tools 
represent sound decision supporting instruments 
but cannot be defined bona fide precision medi-
cine approaches, taking into account the intrinsic 
heuristic nature. Despite this complex scenario, 
presently there isn’t an integrated view of the 
CRC genetic and genomic changes in initiation 
and subsequent different stages of disease pro-
gression. Further insight may help the 
understanding of CRC pathophysiology and the 
identification of potential therapeutic targets.

Recently, Dalerba et al. identified a subgroup 
of stage II CRC patients who might benefit from 
adjuvant chemotherapy for the lack of caudal-type 
homeobox transcription factor 2 (CDX2) expres-
sion in their cancer stem cells [88]. By a bioinfor-
matics approach, the authors, in order to identify a 
single prognostic biomarkers for stratification of 

Fig. 2.2  Diagram of gene alteration pathways based on 
genomic characterization: the related outcome according 
to CRC subtypes
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CRC undifferentiated tumors, have analyzed a 
large database of gene expression arrays obtained 
from populations of stem and progenitor cells and 
searched for genes associated with differentiation 
processes. Among the 16 selected candidate genes 
for identification of predictive biomarkers, nega-
tively linked to the activated leukocyte–cell adhe-
sion molecule (ALCAM/CD166) in CRC patients 
with stage II or stage III, they selected the homeo-
box transcription factor CDX2 strictly correlated 
to ALCAM expression and tested for the associa-
tion with disease-free survival and a benefit from 
adjuvant chemotherapy. In particular, it was iden-
tified that subgroup of high-risk stage II CRC 
patients benefit from adjuvant chemotherapy and 
was characterized by lack of CDX2 expression 
and high levels of ALCAM.

The translation of this knowledge in CRC has 
had an important impact into drug development 
and biomarker discovery for the different sub-
types and examples of molecular targeted thera-
pies are tyrosine kinase inhibitors, regorafenib 
and bevacizumab.

�Pharmacogenomicsand 
Irinogenomics

In CRC, despite the standard chemotherapy and 
novel targeted drugs provided an improvement in 
terms of response rate and patient’s survival, tox-
icity remains an unsolved problem and PGx has 
helped the routinely administration of drugs in 
CRC patients [89]. In CRC as well as in other 
cancers, the treatment paradigm is to give the 
dose which achieves the best drug exposure and 
effectiveness, with an acceptable risk of toxicity 
[90]. Unluckily, the inter-patient PK variability is 
a limiting factor due not only to differences in 
body size but also to variability in absorption, 
metabolism, distribution and/or excretion 
(ADME) of the drug and metabolites. In fact, 
several enzymes and transporters that are part of 
the ADME processes can condition drug efficacy 
and toxicity because their expression and activity 
are highly variable between patients, partially 
due to germline genetic variability. Germline 
variants in the coding region can change protein 

activity, while variations outside of the coding 
region could influence protein expression [91]. 
Another important aspect to consider is patient’s 
germline variation underlying sensitizing condi-
tion that mimics the toxicity and can be worsened 
by the drug. Thus, a patient who carries a sensi-
tizing germline variant would not be able to toler-
ate the dose required for treatment efficacy and 
might require to receive a dose adjustment or the 
selection of an alternative treatment agent. The 
most frequent type of genetic variants among 
people (10 million in the human genome) associ-
ated with the interindividual variability in drug 
response are the single nucleotide polymorphisms 
(SNPs) which represent a difference in a single 
nucleotide in certain stretch of DNA sequence 
between two genes. Frequently they are devoid 
of a functional role but, if a SNP occurs within a 
gene or in a regulatory region near a gene, they 
could play a more direct role in disease or in drug 
metabolism by affecting gene’s function. Most of 
identified SNPs are in linkage disequilibrium 
with gene variants with higher or lower activity 
and serve therefore as markers predictive of 
activity or toxicity due to different enzyme func-
tion. SNPs linked to genes coding for enzymes 
involved in drug metabolism and transport affect 
therefore the body response and PK profile influ-
encing the efficacy and toxicity of treatment. The 
possibility to identify SNPs as predictive bio-
markers of response to antineoplastic agents by 
classical approaches like candidate-gene-based 
research and the genome-wide association study 
(GWAS) or by technologic advances like the 
Affymetrix (Santa Clara, California, USA) Drug 
Metabolizing Enzymes and Transporters 
(DMET™) microarray platform will allow an 
improvement of patient care in the optic of 
personalized therapy. In particular by DMET™ 
platform is possible to investigate 1931 SNPs 
and five copy number variations (CNV) in 231 
genes related to drugs metabolism contributing to 
discover polymorphic variants associated to the 
individual risk of adverse drug reactions (ADRs) 
and to drug efficacy. By this technology, in case-
control studies we identified several polymorphic 
variants associated with toxicity in different dis-
eases and added novel information on irinoge-
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nomics (see below) [92–97]. DMET™ platform 
offers wide opportunity to identify and validate 
biomarkers of drug sensitivity for tailored treat-
ment of CRC patients.

Pharmacological treatment of CRC is based 
on cytotoxic agents like fluoropyrimidines 
(FdUMP (fluorodeoxyuridine monophosphate, 
fluorouracil (5-FU), and its oral precursor, 
capecitabine), irinotecan (IRI, CPT-11), and 
oxaliplatin (OX), used either alone or in combi-
nations in FOLFIRI (folinic acid, fluorouracil 
(5-FU), and irinotecan) and FOLFOX (folinic 
Acid, 5-FU, and oxaliplatin) regimens, and novel 
targeted agents. Recently, CRC treatment has 
benefited of novel biological agents as monoclo-
nal antibodies (mAbs) targeting VEGF (i.e. beva-
cizumab, aflibercept) and EGFR (i.e. cetuximab, 
panitumumab) pathways or agents leading to a 
multiple-kinase inhibition (regorafenib) [98]. 
Cytotoxic drugs have a narrow therapeutic index 
and strictly dose-related effect also conditioned 
by interindividual variability in their metabolism. 
Therefore PGx knowledges, validated biomark-
ers, integrative genomic approaches and the 
availability of genetic testing could allowed the 
identification of subgroups of CRC patients with 
benefits in terms of prognosis and drug efficacy 
in the aim of precision medicine. In cytotoxic 
CRC therapy, important PGx studies have been 
done on  highly polymorphic specific targets, 
whose genetic or molecular deregulation might 
correlate to treatment efficacy. Unfortunately, the 
translation of PGx researches into clinical prac-
tice is presently limited with small exceptions 
regarding the metabolism of 5-FU/capecitabine 
and irinotecan. For 5-FU SNPs in two important 
metabolic enzymes have a relevance in clinical 
practice: the thymidylate synthase (TYMS) and 
dihydropyrimidine dehydrogenase (DPD), while 
for irinotecan polymorphic variants in uridine 
diphosphate glucuronosyltransferases (UGTs) 
influence variability in biliary excretion and the 
degradation of irinotecan is conditioned by inher-
ited variations in metabolic pathway. 
5-Fluorouracil (5-FU) or its prodrug capecitabine 
is a cytotoxic drug, classified as “antimetabolite,” 
and represents the main chemotherapeutic regi-
men adopted in CRC treatment, having an 

improving impact on survival and other solid 
cancer [99].

The activity of this pyrimidine analog is due to 
the incorporation of fluoronucleotides into RNA 
and DNA and to the irreversible inhibition of its 
target enzyme the thymidylate synthase (TS). 
Three major active metabolites derive from 5-FU 
intracellular metabolism: fluorodeoxyuridine 
monophosphate (FdUMP), fluorodeoxyuridine tri-
phosphate (FdUTP), and fluorouridine triphosphate 
(FUTP). Genetic variants in the three drug-
metabolizing enzymes thymidine phosphorylate 
(TP), TYMS and DPD are responsible for variabil-
ity in response, toxicity and overall survival (OS) in 
5-FU-based treatment schedules [100].

5-FU cytotoxic activity is mediated by its 
methylation to dUMP with 
5,10-methylenetetrahydrofolate (CH2THF) as 
cofactor, which forms in the cell a stable ternary 
complex with TYMS enzyme and supplies the 
only de novo source of thymidylate. Consequently, 
its cytotoxicity is due to the blocking access of 
dUMP to the nucleotide-binding site and to the 
inhibition and depletion of deoxythymidine 
monophosphate (dTMP) production, important 
for DNA replication and repair [101, 102]. In 
5-FU metabolism in normal and cancer cells its 
conversion in dihydrofluorouracil (DHFU) is 
mediated by dihydropyrimidine dehydrogenase 
(DPD) and represents the rate-limiting step. DPD 
is abundant in the liver where is normally catabo-
lized more than 80% of administered 5-FU [100]. 
The administration of the oral prodrug of 5-FU, 
capecitabine, has revealed a 5-FU comparable 
efficacy but a lower toxicity [103, 104]. In the 
liver, capecitabine is converted to 5′-deoxy-5-
fluoruridine (DFUR) by carboxylesterase and 
cytidine deaminase and then converted to 5-FU 
by thymidine phosphorylase (TP) and/or uridine 
phosphorylase (UP) [105, 106]. The tumor-
selective activation of capecitabine might be 
explained by the higher expression of both TP 
and UP in tumor tissue compared to normal tis-
sue [107]. Patients with a decrease activity of 
catabolic enzymes in 5-FU pathway revealed an 
interindividual variability to cytotoxic chemo-
therapy with an increase in drug concentration 
and consequent high toxicity risk. DPD catalyzes 
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5-FU and eliminates >80% of administered drug. 
Its activity is influenced by dihydropyrimidine 
dehydrogenase (DPYD) gene which is variable at 
tumoral tissue level and can influence drug effi-
cacy in consideration that intra-tumor drug con-
centration is fundamental for dug efficacy and 
antitumor activity. Mucositis, granulocytopenia 
and neuropathy are the most frequent toxic 
effects for which might be necessary a dose 
reduction [108].

In 5–10% of the general population, a partial 
DPD activity deficiency is demonstrated and only 
in 0.2% a total loss of enzyme activity [109]. 
However, DPD polymorphisms influenced the 
23–38% of 5-FU toxicity [110]. The most com-
mon polymorphic variant recognized to be asso-
ciated with partial DPD deficiency and 
consequent 5-FU toxicity is IVS14+1G>A muta-
tion in intron 14 coupled with exon 14 deletion 
(DPYD*2A), together with the SNPs at 496A>G 
in exon 6, at 2846A>T in exon 22, and at T1679G 
(DPYD*13) in exon 13, also recognized to be 
associated with 5-FU toxicity [111–113].

The US Food and Drug Administration (FDA) 
has underlined, in the drug labels for 5-FU and 
capecitabine, that their use should not be allowed 
in carriers of high-risk alleles. The Dutch 
Pharmacogenetics Working Group has recom-
mended an alternative treatment in patients 
homozygous for the high-risk allele and almost a 
dose reduction of 50% or an alternative drug in 
patients heterozygous for a decreased-activity 
allele [114, 115] (in agreement with the more 
recent Clinical Pharmacogenetics Implementation 
Consortium Guidelines for Dihydropyrimidine 
Dehydrogenase Genotype and Fluoropyrimidine 
Dosing).

Polymorphic variants in TYMS gene are 
responsible for an increased expression of the 
enzyme with a consequent high risk of 5-FU tox-
icity and reduced drug efficacy. TS overexpres-
sion is frequently associated with a reduced 
response to 5-FU treatment based both in adju-
vant and in advanced CRC patients with more 
severe side effects [116, 117].

In CRC patients carrying low levels of TYMS 
gene product, a significantly higher rate of treat-

ment response and a prolonged overall survival 
compared to CRC patients with higher TS expres-
sion in tumor tissue have been described [109].

Two meta-analyses supported the role of TS 
expression on overall response rate and overall 
survival [118, 119]. However, further analyses 
are necessary to allow a better identification of 
TYMS transcription regulatory mechanisms and 
the understanding of the role played by genetic 
different SNPs combinations in several metabolic 
enzymes and their frequency in general popula-
tions to better clarify the interindividual variabil-
ity to drugs response. Until now, no 
recommendations are suggested according to TS 
phenotype in CRC patient underwent to fluoro-
pyrimidines treatment and although an assay for 
DPD and TYMS polymorphisms testing is com-
mercially available, pre-emptive testing is not 
recommended. No recommendations have been 
issued on dosing of fluoropyrimidines by TS 
phenotype.

Other gene polymorphisms possibly impor-
tant for fluoropyrimidine efficacy and toxicity for 
various enzymes have currently been explored 
(e.g., dihydropyrimidinase, beta-
ureidopropionase, methylenetetrahydrofolate 
reductase), but available research data are insuf-
ficient for conclusions on their potential clinical 
usefulness. Several other polymorphic variants in 
enzymes involved at different levels in 5-FU met-
abolic pathways probably influenced intrinsic 
and acquired 5-FU pharmacoresistance in CRC 
patients, but no translation in clinical practice is 
validated, until now [120].

In CRC treatment another widely used anti-
cancer drug is irinotecan, a camptothecin analog 
and inactive prodrug, activated at liver level via 
human carboxylesterases CES1 and CES2 into 
the active form SN-38, subsequently inactivated 
through glucuronidation via members of the 
UDP-glucuronosyltransferase (UGT) enzyme 
family catalyzing also bilirubin glucuronidation. 
Somatic tumor-specific mutations seem to influ-
ence irinotecan toxicity and efficacy  as well as  
interindividual variability limited its PK and PD 
[121–123]. Severe diarrhea and neutropenia rep-
resent dose-limiting toxicities. Despite the 
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unequivocal confirmation of the role of somatic 
mutations on patient’s outcome who under-
went to irinotecan treatment, scientific evidences 
confirmed a role of polymorphic variants in 
UGTs family members, especially for UGT1A1 
isoenzyme and other isoforms [103]. Polymorphic 
variants in UGT1A1 enzyme are responsible for 
impaired glucuronidating activity and conse-
quent toxicity due to elevated serum levels of 
SN-38 and bilirubin [124, 125]. Ando et al. pub-
lished the first evidence on the role of UGT1A1*28 
(UGT1A1 7/7 genotype) in the development of 
irinotecan toxicity [126]. The homozygous 
UGT1A1*28 allele phenotype, responsible for 
increased risk for severe neutropenia and diar-
rhea, is represented in the 8–10% of the popula-
tion and according to the FDA treatments in 
combination with other agents or as a single 
agent requires a reduction in the starting dose 
[127]. Dias et al. put in evidence an association 
between UGT1A1 genotype and overall response 
rate in patients treated with irinotecan, but no 
direct evidences confirm that a dose reduction in 
UGT1A1*28 homozygous phenotypes will not 
lead to an important reduction in overall response 
rate [128]. Despite FDA recommendations, in 
clinical practice the preemptive UGT1A1*28 
allele testing is not yet applied although commer-
cial assays for UGT1A1 testing are available. 
There are other important polymorphic genes 
involved in irinotecan metabolic pathways under 
investigation for their role as putative biomarkers 
of hematological and gastric toxicities, but fur-
ther validations are necessary for their potential 
clinical utility in irinogenomics [93, 129, 130].

�Future Perspectives: Precision 
Medicine Based on Integrative 
Genomics

In the recent years, the development of a variety 
of high technology platforms has led researchers 
to produce large amount of data at different 
molecular levels and network, in different disci-
plines of the omic world. Traditionally, 
approaches of bioinformatics analysis were 

focused on the use of single classes of data (i.e. 
genomic data or proteomic data). The rising 
number of data has made clear that the integra-
tion of data at different levels could produce 
more relevant results. Consequently, many differ-
ent approaches have pointed to such kind of inte-
gration, leading to the rise of a novel discipline, 
often defined as integromics, or integrated analy-
sis of omic data, in which computer science, bio-
informatics, and mathematical modeling have the 
main role. This discipline focuses on the elucida-
tion of basic principles of the interplay among 
different biological molecules (such as proteins 
or genes), where the network theory plays a syn-
ergistic role [131–133]. The focus of computa-
tional integrative genomics is to identify basic 
principles of interplay of different molecules in 
order to better elucidate the molecular mecha-
nism. This is under the assumption that the infor-
mation gathered from integrated analysis is 
higher than in the single and separate study of 
any data source [131]. It usually utilized a com-
mon approach for findings that share a common 
flow of information. The flow starts from gather-
ing data of different data sources. Then all data 
are integrated into a single network model, and 
the model is analyzed with different algorithms 
tailored to the specific application. Data sources 
of integrative omics mainly reside on messenger 
RNA (mRNA), miRNA and protein expression, 
DNA copy number, SNPs and may be produced 
in dedicated experiments or extracted from dif-
ferent available databases. Specifically, miRNA 
therapeutics is emerging as a valuable tool in 
translational precision oncology [134–139]. The 
scientific community has recently produced a 
large number of different databases useful for 
integrated analysis. In addition to academic data, 
pharmaceutical and biotech companies retain 
large amounts of “proprietary data”  – inherited 
from their own and other sources. Most of the 
data is stored in older types of databases designed 
to manage a single type of data; therefore, the 
integration of these data source into a single com-
prehensive one is a relevant challenge [140].

From a biological point of view, it is clear that 
the main actors of this process are mRNAs, miR-
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NAs, and transcription factors (TFs), those play 
an interacting role in the regulation of gene 
expression that results in variable levels of gene 
transcripts and proteins. Usually, the integration 
of such datasets relies on the formalism provided 
from graph theory. As a result, bioinformatics 
approaches for the integrated analysis usually 
build comprehensive graphs in which nodes are 
mRNAs, miRNAs, and TFs (or other molecules) 
and edges represent the interactions among them. 
Edges include two main categories: (i) activation 
edges modeling the interplay between molecules, 
among whose one may increase the level of 
another one, and (ii) inhibition edges that model 
the action of inhibition. The analysis of such 
graphs uses different algorithms tailored to the 
specific application. For instance, the individua-
tion of small and connected subgraphs with three 
different classes of nodes is often used for the 
identification of loops (feedback and feed-
forward) in which the regulation of the expres-
sion of a gene could be related to a synergistic 
action of both miRNA and TF.

All the methods of analysis available share 
some specific characteristics. First, the use of an 
internal knowledge base containing information 
collected from literature and from different data-
bases. The knowledge base usually stores asso-
ciation among mRNAs, miRNAs, and TFs 
modeled as graphs. This internal knowledge base 
guides the analysis of experimental data. Second, 
the approaches enable the user to take external 
experimental datasets from a pool of samples 
extracted from patients in case-control or time-
series experiments. Then, data of knowledge 
bases allow to build the association graph includ-
ing experimental data. Finally, this association 
graph is mined to extract knowledge.

We here list some main approaches of integra-
tive analysis focusing only on freely available 
tools.

MAGIA2 is the evolution of the precedent 
MAGIA web tool for the integrated analysis of 
both mRNA and miRNA.  MAGIA receives as 
input, expression level data obtained by case-
control or time-series experiments. In this way, it 

is able to integrate literature evidence, prediction 
algorithms, and mRNA and miRNA experimen-
tal data based on anticorrelation of miRNA-tar-
get expression, using four different relatedness 
measures. It is able to highlight different regula-
tory circuits involving either miRNA or TF as 
regulators: (i) a TF that regulates both a given 
miRNA and its target gene and (ii) a miRNA that 
regulates both a given TF and its regulated gene. 
Furthermore, this tool provides functional 
enrichment of the gene network using DAVID 
platform [141].

The dchip GEMINI is a freely available web 
server that receives as input expression levels of 
miRNA and mRNA obtained from time-series 
experiments analyzing two conditions, e.g., nor-
mal and cancer conditions. It is able to individu-
ate Feed-Forward Loops (FFLs) consisting of 
TFs, miRNAs and their common target genes. 
The association among miRNA and their target 
(TF and mRNA) information is extracted from 
the literature and stored into the web server. TFs 
derived from literature used as null model to sta-
tistical ranks predicted FFLs from the experi-
mental data [142].

mirConnX is a software tool based on a web 
interface to build gene regulatory networks start-
ing from mRNA and miRNA expression data on 
a whole-genome scale. It based on a network 
built using as a priori model consisting of 
TF-gene associations and miRNA target predic-
tions for human and mouse derived by computa-
tional methods and literature. Experimental data 
allow inference of experimental associations 
among TF, miRNA and genes. These associa-
tions allow to weight the predefined network and 
the resulting weighted network can be visualized 
by the user [143].

miRIN is a web application designed for the 
identification of the modules of protein–protein 
interaction networks regulated by miRNAs. The 
approach of analysis consists of the integration of 
miRNA target data from literature, protein–pro-
tein interactions between target genes from liter-
ature, as well as mRNA and miRNA expression 
profiles provided as data input. The output of 
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miRIN is a set of regulatory networks involving 
miRNAs, mRNAs, TFs, and proteins (Table 2.1).

We should note that the literature also reports 
an approach of integration available for Ingenuity 
Pathway Analysis (IPA®, Qiagen, Hilden, 
Germany). The IPA® platform enables the recon-
struction of causal networks constructed from 
individual relationships providing a set of tools 
for inferring and scoring upstream regulators of 
gene expression data [144]. This approach has 
been presented in a previous work by Di Martino 
et al. and has been applied to the analysis of mul-
tiple myeloma data [145]. With respect to the 
prior work, the authors first applied the integrated 
analysis into a clinical relevant scenario by apply-
ing results to the profiling of MM patients. The 
workflow of analysis was based on the use of pub-
licly available published by Wu et al. [146]. Data 
were, initially, preprocessed by Affymetrix pro-
prietary software and filtered using the freely 
available DChip tool. Through the use of DChip, 
the authors identified significant differentially 
expressed (SDE) miRNA and mRNA in two sub-
groups of multiple myeloma patients: hyperdip-
loids (HD) MM versus non-hyperdiploids (nHD) 
MM. These data (SDE genes and SDE miRNAs) 
were integrated into a single model by using the 
approach of Kramer et al. implemented into the 
IPA® software [144]. This approach also enabled 
to consider the role of TFs and to extract causal 
relationships among them. The authors also ana-

lyzed data into a functional space looking at 
canonical pathways and bio-functions, carried out 
by SDE genes and miRNAs. The main result of 
this analysis was the identification of different 
biological events related to the two MM subtypes, 
while the upstream regulator analysis enabled to 
identify URs related to the identified transcription 
events, drawing a new molecular scenario of the 
two main disease subgroups (Fig. 2.3).

�Conclusions

Precision medicine is a reality, but the shift from 
single gene analysis to multilayered approaches 
as integrative genomics is likely to produce a 
novel way to identify targets and individualize 
treatment. The growing interest for immunother-
apy makes this point even more compelling tak-
ing into account that each therapeutic approach 
needs to be personalized based on the immunobi-
ology of the individual patients, which will drive 
to another shift to tumor analysis to tumor/micro-
environment axis evaluation. These perspectives 
need not only robust technologies but also a novel 
way to validate findings and novel research 
approaches which are mostly based on Bayesian 
design.

Precision medicine does not substitute for 
good clinics but even allow better and wiser 
clinics.

Table 2.1  Available software tools that integrate in a single model miRNA and mRNA data

Tool Input Output Model Website

MAGIA2 miRNA/mRNA 
Expression Data 
Time Series

Feed-forward loops 
(FFL) Ontological 
Analysis

Statistical model 
and literature 
evidence

http://gencomp.bio.unipd.it/
magia2/start/

dCHIPGemini miRNA/mRNA 
Expression Data 
Time Series

Feed-Forward Loops 
(FFL)

Statistical model 
and literature 
evidence

http://www.canevolve.org/
dChip-GemiNi

mirConnX miRNA, mRNA 
time series

Regulatory Networks Pre-built network http://www.benoslab.pitt.edu/
mirconnx

miRIN miRNA, mRNA Regulatory networks 
of miRNA, mRNA, 
TFs, and proteins

Associations derived 
from literature

http://mirin.ym.edu.tw/
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