
HyMU: A Hybrid Map Updating Framework

Tao Wang, Jiali Mao, and Cheqing Jin(B)

School of Data Science and Engineering,
School of Computer Science and Software Engineering,

East China Normal University, Shanghai, China
{toy king,jlmao1231}@stu.ecnu.edu.cn, cqjin@sei.ecnu.edu.cn

Abstract. Accurate digital map plays an important role in mobile nav-
igation. Due to the ineffective updating mechanism, existing map updat-
ing methods cannot guarantee completeness and validity of the map. The
common problems of them involve huge computation and low precision.
More importantly, they scarcely consider inferring new roads on sparse
unmatched trajectories. In this paper, we first address the issue of find-
ing new roads in sparse trajectory area. On the basis of sliding window
model, we propose a two-phase hybrid framework to update the digi-
tal map with inferred roads, called HyMU, which takes full advantage
of line-based and point-based strategies. Through inferring road candi-
dates for consecutive time windows and merging the candidates to form
missing roads, HyMU can even discover new roads in sparse trajectory
area. Therefore, HyMU has high recall and precision on trajectory data
of different density and sampling rate. Experimental results on real data
sets show that our proposal is both effective and efficient as compared
to other congeneric approaches.

1 Introduction

With the widespread use of onboard navigators and smart phones, the accu-
racy of navigation map has aroused universal concern. An inaccurate road map
with disconnected and misaligned roads may make the experienced drivers get
lost and even cause traffic accidents. Essentially, the accuracy and completeness
of a digital map depend on whether road information is updated timely and
effectively. However, such a task is difficult to achieve due to two factors, one
is the rapid development of road construction, and the other is the ineffective
map updating mechanism. Specifically, rapid construction of roads has increased
great difficulties to timely update of digital map. Massive amount of roads all
over the world change every year. According to the reports by the Ministry of
Transport of China1, 4,500 km of new expressways will be built in China, and
29 road projects will be pushed forward in Shanghai in 2016. While at the same
time, existing techniques cannot guarantee the timeliness of map updating. The
commercial map companies update digital map by periodically conducting geo-
logical survey of the entire road network. To cut down the overall cost, survey
1 http://www.chinahighway.com/.

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 19–33, 2017.
DOI: 10.1007/978-3-319-55699-4 2

http://www.chinahighway.com/

20 T. Wang et al.

Fig. 1. An example of point-based and line-based method

period is quite long and thus the map updating rate lags far behind the con-
struction of new roads. Alternative mechanism is to adopt the crowdsourced
map project to generate customized map (e.g. OpenStreetMap), but it largely
depends on the geographic data directly provided by volunteers. As a result, the
amount of users and even the editing skills of users greatly influence the quality
of map updating. As mentioned above, it is desirable to devise a low-cost but
high reliable map updating mechanism.

Huge amount of trajectory data of vehicles can be applied to update the
map. Recently, a few researches have been done in map updating with trajec-
tories [13,16,18], and they can be grouped into two classes: line-based strategy
(e.g., CrowdAtlas [16]) and point-based strategy (e.g., Glue [18] and COBWEB
[13]). To be specific, the former is to infer the missing roads for a given map
based on clustering considerable volume of unmatched trajectory segments, and
the latter on massive unmatched trajectory points. These methods still face a
series of problems, such as high computational overhead, low accuracy of inferred
roads, and bad timeliness of map updating, etc. Moreover, line-based strategy
has poor performance in processing low-sampling data (sampling interval longer
than 30 s [18]), because it may infer the roads with false directions when the line
segments cross over several roads. Although point-based methods can overcome
this issue, they easily infer some short road segments rather than long roads due
to the low coverage caused by point-based clustering. As shown in Fig. 1(a), two
consecutive sampling points that are located on two roads are connected as a
line segment, and accordingly an incorrect road R2-b is inferred by line-based
strategy. Though point-based strategy solves the above deficiencies, it infers two
short road segments, R2-a and R2-b, instead of a long road that covers them, as
illustrated in Fig. 1(b). Thus, the inferred roads in Fig. 1(a) and (b) are incor-
rect. To improve the inferring accuracy and obtain the ideal result in Fig. 1(c),
it necessitates a hybrid framework to integrate virtues of both line-based and
point-based strategies.

Furthermore, the aforementioned map updating mechanisms focus on discov-
ering the missing roads on trajectory data of dense areas. They usually define
a threshold of minimum clustering quantity standard, and cluster unmatched
trajectory line segments (or points) to infer new roads only when satisfying a
specific threshold. Hence, for the top road region with sparse positional points
in Fig. 1(a) and (b), both line-based and point-based strategies cannot infer the

HyMU: A Hybrid Map Updating Framework 21

road R3 in Fig. 1(c). Actually, we can obtain two insights from the observation
of trajectories. When the new roads first come into service, relatively few vehi-
cles will drive along them and thus the track data are more sparse than that of
normal roads. Distinct from noisy data, sparse trajectories appear on such roads
in many days, i.e., the amount of trajectories will not increase tremendously in a
short time period. If simply lowering the threshold of aforementioned methods,
noisy data may also be clustered and some incorrect roads can be inferred. Thus,
both methods are not tailored to inferring new roads in sparse trajectory area.
Given the two insights above, on the basis of sliding window model, we propose
a two-phase road inferring framework, including candidate generation and miss-
ing roads inferring, called HyMU. Additionally, we employ a hybrid scheme to
enhance the accuracy of map updating by integrating line-based and point-based
strategies. Specifically, the contributions of this paper are summarized below.

– We first address the issue of new roads inferring on sparse trajectory data to
improve the overall inferring precision.

– Based on the sliding window model, we take full advantage of line and point-
based strategies, and propose a two-phase hybrid framework to update the
map, called HyMU.

– We compare our proposal with other congeneric approaches by conducting sub-
stantial experiments on real data sets. Experimental results show that HyMU
method has good inferring performance on trajectory data under different
sampling rate and density.

The remainder of this paper is organized as follows. Section 2 reviews the
most related work. In Sect. 3, the preliminary concepts are introduced and the
problem is defined formally. In Sect. 4, we outline and analytically study the
details of HyMU framework. In Sect. 5, a series of experiments are conducted on
real datasets to evaluate our proposal. Finally, we briefly conclude this article in
Sect. 6.

2 Related Work

In this section, we briefly conduct a systematic review over the related work in
two relevant areas: map inference and map updating.

2.1 Map Inference

Based on the track data set or satellite images, map inference aims to infer the
entire road map. Image processing technology is mainly applied to infer map from
satellite images [10,12]. But it is costly to obtain high-resolution satellite images
data. Therefore, most researches on map inference are based on the trajectories of
vehicles and they can be divided into three classes: K-means [1,5,11], KDE algo-
rithm [2,4], and trace merging algorithm [3,8]. Nevertheless, most approaches
have poor performance in handling trajectory data with excessive random noise,
nonuniform distribution, and uneven sampling rate. Additionally, they are too
time-consuming to fit online map inference.

22 T. Wang et al.

2.2 Map Updating

Compared with time overhead of inferring the whole map, simply adding or
modifying the roads for a given map is more realistic. Map updating methods
are to discover missing roads to update a given map based on unmatched tra-
jectories, including CrowdAtlas [16], Glue [18] and COBWEB [13]. CrowdAtlas
consists of four stages: trajectory clustering, centerline fitting, connection and
iteration. When the number of unmatched trajectory segments reaches the spec-
ified quantity criterion, CrowdAtlas implements clustering and polyline fitting
functions to generate the centerlines that represent new roads. However, Crow-
dAtlas may infer new roads with false directions when unmatched trajectory
segments cross over two or more roads, as illustrated in Fig. 1(a). In addition,
CrowdAtlas obtains poor accuracy when dealing with low sampling rate data. To
improve the precision of inferred roads on low sampling rate trajectory data, Glue
clusters the unmatched trajectory points to infer new roads. Similarly, COBWEB
organizes the GPS points using a Cobweb data structure and reduces the ver-
tices and edges from Cobweb to generate Road-Tree, and finally finishes map
updating. Nevertheless, both Glue and COBWEB cluster unmatched trajectory
points and easily infer incomplete road segments instead of intrinsically long
roads, as illustrated in Fig. 1(b). Moreover, all the above mentioned approaches
cannot infer the new roads based on sparse trajectory data. Thus, it necessitates
devising a map updating mechanism with high precision and noise tolerance
to online infer the new roads on trajectory data of various sampling rate and
density.

3 Problem Definition

In this section, we introduce preliminary concepts, and formally define the prob-
lem of map updating upon trajectory data.

A complete digital map contains road type, geometry, turn restriction, speed
limit, etc. We aim to find the roads that have not been marked on the map. The
road network G that corresponds to the map is defined as follows.

Definition 1 (Road Network). A road network is denoted by a graph G =
(V,E), where V is a set of vertexes and E refers to a set of edges. Each edge
e ∈ E represents a road segment.

To infer the missing roads, we need to cope with the continuously arrived
trajectories. The trajectory of an object that consists of a series of points is
defined below.

Definition 2 (Trajectory). The trajectory of a moving object, denoted as Tr,
consists of a sequence of points, (p1, t1), (p2, t2), · · · , where pi is the position at
ti. Such records arrive in chronological order, i.e., ∀i < j, ti < tj. A trajectory
segment is a line segment between two adjacent trajectory points, which is denoted
as Ts = (pi, pi+1).

HyMU: A Hybrid Map Updating Framework 23

Fig. 2. An example of denoising in distance and direction (Color figure online)

Trajectory data are collected in real-time with massive scale. In order to
describe the portions of trajectories in different time periods, we employ the
sliding window model, and a trajectory in a time window is denoted as Tw. Given
a window size N , the window range at timestamp t0 is (t0, t0+N). Hereafter, we
infer the missing road candidates based on the trajectories in each time window.

Due to different resolutions of various GPS-enabled equipments and city
canyon surrounded by high-rise buildings, trajectory data are noisy. According
to our observation, noisy data often behave abnormally in direction or distance
relative to its neighborhood. The neighborhood of a trajectory segment Ts(x) is
defined as follows.

Definition 3 (Trajectory Segment Neighborhood). Given a trajectory
segment Ts(x), a distance threshold thdis, and a set of trajectory segments TS,
if we denote dist(Ts(x), T s(y)) as the shortest Euclidean distance between any
two points in two line segments, the neighborhood of Ts(x) is defined as follows:

Nd(Ts(x)) = {Ts(y) ∈ TS|dist(Ts(x), T s(y)) ≤ thdis}

Correspondingly, the neighborhood of a trajectory point pi is denoted as
Nd(pi), which represents the set of points that their distances to pi are within
a distance threshold thdis. Subsequently, we define noisy trajectory segment as
below.

Definition 4 (Noisy Trajectory Segment). Given a trajectory segment
Ts(x) and the directions’ distribution of its surrounding segments U(Ts(x)), Ts(x)

is noisy if Nd(Ts(x)) is empty or the direction of Ts(x) does not tally with the
top-k most popular directions of its surrounding segments.

We take the starting point of Ts(x) as center and the length of Ts(x) as radius
of a circle, and generate a region. For example, in Fig. 2(a), we divide the region
into 8 pieces representing 8 sector [6]. The distribution is represented as below.

U(Ts(x)) = (C1, C2, C3, C4, C5, C6, C7, C8)

24 T. Wang et al.

Fig. 3. The framework of HyMU

where Ci records the number of trajectory segments of Nd(Ts(x)) that belong to
the ith direction. Considering that each road usually has at least two lanes with
opposite directions, we decide whether Ts(x) is a noisy trajectory segment by
calculating whether Ts(x) belongs to the top two most popular directions. For
example, in Fig. 2(a), for a trajectory segment Ts(x), we can determine which
direction the trajectory segment Ts(x) belongs to according to the angle range
between Ts(x) and V1, denoted as ∠(Ts(x), V1).

Besides, each inferred road is represented by a road centerline.

Definition 5 (Road Centerline). A road centerline, denoted as Rc, is rep-
resented by a polyline. It consists of a sequence of continuous positional points,
(p1, p2, . . . , pn), where pi is the geographical position.

Finally, we summarize the problem as below.
Given a road network G and a set of trajectories in different time periods,

our goal is to infer the missing roads as early as possible, and then update the
road network G by using the inferred missing roads.

4 Framework

In this section, we introduce a novel framework, which is called Hybrid Map
Updating (HyMU). HyMU is to identify missing roads based on trajectory
data. As shown in Fig. 3, HyMU is mainly composed of two phases: candidates
generation and missing roads inferring. During the first phase, we obtain the
unmatched trajectories in each time window by map matching, distance denois-
ing and direction denoising. Then, through clustering and centerline fitting on

HyMU: A Hybrid Map Updating Framework 25

Algorithm 1. Candidate Generation
Input: A trajectory set TwS in current time window
Output: Line-based candidate set RCl and point-based candidate set RCp

1 RCl ← ∅; RCp ← ∅; //line-based and point-based candidate set
2 TuS ← ∅; //unmatched trajectory segment set

3 foreach trajectory Tw(i) in TwS do

4 Tu ← MapMatching(Tw(i)); //unmatched trajectory segments
5 TuS ← TuS ∪ Tu;

6 foreach trajectory segment Ts(x) in TuS do

7 if Ts(x) is noisy trajectory segment then

8 TuS ← TuS \ {T (x)
s };

9 CSl ← LClustering(TuS); //line-based clustering
10 CSp ← PClustering(TuS); //point-based clustering

11 foreach cluster CS
(i)
l in CSl do

12 RCl ← RCl ∪ CLFitting(CS
(i)
l); //line-based candidate generation

13 foreach cluster CS
(j)
p in CSp do

14 RCp ← RCp ∪ CLFitting(CS
(j)
p); //point-based candidate generation

15 return RCl and RCp;

the unmatched and denoised trajectories, we derive the road candidates in each
time window. During the second phase, we combine the candidates of multiple
time windows via continuous observation. When the number of hybrid candidates
related to a certain road reaches the threshold k, they will be merged to form
a missing road. Finally, through road combination, we update the road network
with inferred roads. Note that our hybrid framework integrates the advantages
of line-based and point-based strategies, including high coverage and greater
precision of inferred roads.

4.1 Candidate Generation

As shown in Algorithm 1, the candidate generation phase involves map matching
(at lines 3–5), denoising (at lines 6–8), clustering (at lines 9–10) and centerline
fitting (at lines 11–14). First, the trajectories in each time-window are matched
with the road network to obtain unmatched trajectories. Then, after denoising,
the denoised and unmatched trajectories are grouped into clusters using both
line-based and point-based clustering methods. Finally, each cluster is fitted into
a polyline that represents a road candidate through centerline fitting.

Map Matching. The purpose of map matching is to match the GPS trajecto-
ries to the right roads. Commonly used map matching can be divided into two
categories: incremental approach [9,15], which aims to select the best match-
ing candidate only on the basis of the preceding observations; global methods
[14,17], which is to observe the entire series to select the best candidate. The
Fast Viterbi [17], one of the most popular map matching methods, has been

26 T. Wang et al.

Algorithm 2. LClustering
Input: Trajectory segment set TuS, a threshold thc

Output: Cluster set CS
1 CS ← ∅; l ← 1;

2 foreach unvisited segment Ts(i) in TuS do

3 Mark Ts(i) as visited;

4 if Nd(Ts(i)) > thc then

5 Cl ← {Ts(i)}; Q ← ∅; Q.enqueue(Ts(i));
6 while Q is not empty do

7 Ts(x) ← Q.dequeue();

8 foreach segment Ts(y) in Nd(Ts(x)) do

9 Mark Ts(y) as visited;

10 if Nd(Ts(y)) > thc and Ts(x) and Ts(y) are similar then

11 Q.enqueue(Ts(y));

12 if Ts(y) does not belong to any cluster then

13 Cl ← Cl ∪ {Ts(y)};

14 CS ← CS ∪ {Cl}; l ← l + 1;

15 return CS;

adopted by most of map updating methods (e.g. CrowdAtlas and Glue) due to
its excellent performance. Likely, the MapMatching function in Algorithm1 (at
line 4) also implements Viterbi, and derives unmatched trajectory segments by
selecting candidates with the maximal weight after calculating the candidate
positions within a certain radius. Finally, we will obtain a set of unmatched
trajectory segments.

Denoising. GPS samples often have a few noisy data of position or direction.
To improve the accuracy of inferred missing roads, denoising process is required
to reduce the noisy samples. For example, there are a few noisy points (in red) in
Fig. 2(b). First, the red circled points can be removed through distance denoising
because they are far from most of its surrounding points. Subsequently, as the
red track points in Fig. 2(b) are significantly different from most of its surround-
ing points in directions, they are removed by direction denoising [6]. Specifically,
we search the nearby segments of each trajectory segment, and compare the
direction of it with its neighboring segments. Then, we identify a noisy trajec-
tory segment according to the significant gap between its direction and most
of its surrounding segments’ direction. The denoising result after distance and
direction denoising is shown in Fig. 2(c).

Clustering. After map matching and denoising, the unmatched trajectory seg-
ments need to be clustered to infer the road candidates. To enhance the accuracy
of inferred missing roads, we combine both line-based clustering (LClustering)
and point-based clustering (PClustering). The point-based clustering takes two
endpoints of all trajectory segments as input, while the line-based cluster takes

HyMU: A Hybrid Map Updating Framework 27

trajectory segments as input. In Algorithm2 (LClustering), each trajectory seg-
ment is initialized as a cluster once the number of its similar trajectory segments
is greater than a specific threshold, i.e., Nd(pi) > thc (at lines 2–5). The similar
trajectory segment is defined below.

Definition 6 (Similar Trajectory Segment). Given two trajectory segments
T

(x)
s and T

(y)
s , a distance threshold thdis and a direction threshold thdir, T

(x)
s and

T
(y)
s are two similar trajectory segments if the distance between Ts(x) and Ts(y)

is smaller than thdis, and the angle between Ts(x) and Ts(y) is less than thdir.

Then, for each segment Ts(x) in one cluster and each segment Ts(y) in
Nd(Ts(x)), if they are similar and Nd(Ts(y)) > thc, we add Ts(y) into queue.
If Ts(y) does not belong to any cluster, it should also be added into the clus-
ter of Ts(x) (at lines 7–13). The PClustering approach also divides the input
points into several clusters according to the similar criterion. The directions of
two endpoints of a segment can be seen as the direction of the segment. Due to
space limitations, we omit the detail of PClustering.

Centerline Fitting. The centerline fitting step aims to generate the centerlines
to represent road candidates. Since a cluster that consists of the trajectory points
or segments may belong to the same road candidate, we need to fit a centerline
to represent a road candidate. For the clustering results of former stage, we use
the sweeping line method in [7] to realize the centerline fitting process. The
CLFitting function in Algorithm1 takes trajectory points or segments as input,
and generates the road candidates (at lines 11–14). Finally, we obtain line-based
candidates and point-based candidates.

4.2 Missing Roads Inferring

In this phase, we group road candidates belonging to the same road based on
two kinds of road candidates, RCl and RCp, generated in Algorithm 1. To be
specific, if k road candidates (at least one line-based candidate and one line-based
candidate) are located on the same road, they are merged to infer a missing
road. After that, we connect the inferred roads with existing roads in network.
Therefore, the missing roads inferring phase is composed of two steps, including
continuous observation and road combination.

R c 3
R c 2

R c 1i n f e r r e d m i s s i n g r o a d

Fig. 4. An example of missing road
generated in the MBR

d e l e t e d r o a d i n m a p

i n f e r r e d m i s s i n g r o a d

T s 1 T s 2 T s 3 T s 4

T s 1' T s 2' T s 3' T s 4'

Fig. 5. An example of two similar road
centerlines

28 T. Wang et al.

Algorithm 3. Continuous Observation
Input: Road candidate sets RCp and RCl, a threshold k (k � 3)
Output: A missing road set RS = {R1, R2, ..., Rm}

1 RS ← ∅; i ← 1;

2 foreach unvisited candidate Rc(i) in RCp ∪ RCl do

3 Z ← Rc(i) ∪ {Rc(j) | Rc(j) ∈ RCp ∪ RCl, Rc(i) and Rc(j) are similar} ;
4 Mark all road candidates in Z as visited;
5 if |Z| � k and at least one point-based candidate in Z then
6 Ri ← CLFitting(Z) ;
7 RS ← RS ∪ {Ri}; i ← i + 1;

8 return RS;

Continuous Observation. As mentioned in Sect. 1, since the sparse trajecto-
ries in one time window may be confused with noise, the road candidates derived
from them may imply wrong missing roads. To improve the precision, we pro-
pose a continuous observation approach to infer the missing roads based on the
candidates of multiple time windows. To be specific, as show in Algorithm 3, we
collect the candidates of consecutive time windows so far and take them as input.
First, we divide all road candidates according to the roads which they belong to
(at line 3). When the number of road candidates exceeds a predefined threshold
k (k � 3) and at least one point-based candidate is involved, we can identify
a missing road. Next, we fit them into a missing road by invoking CLFitting
function (at line 6).

For example, there are three similar road candidates (e.g. the black poly-
line) co-exist in Fig. 4. As the number of road candidates reaches the predefined
threshold (k = 3), we combine them to generate a new road centerline to repre-
sent a missing road. To be specific, given two road candidates Rc(x) and Rc(y),
if ∃Ts(i) ∈ Rc(x), T s(j) ∈ Rc(y), and Ts(i) and Ts(j) are similar, we take Rc(y)

as one of the similar road candidates of Rc(x) and take them as candidates of
the same road. In Fig. 4, if the number of road candidates reaches k (k = 3), a
missing road will be inferred through centerline fitting. If k = 4, we continue to
observe the road candidates in the following time windows until the number of
road candidates belonging to the same road reaches 4.

Road Combination. After inferring missing roads, we update the existing road
network by connecting the inferred roads to the existing neighboring roads. Given
an inferred missing road Rc(x), we try to find a road Rc(y) in the road network
such that the Rc(y) is close to one of the endpoints of Rc(x) (e.g. smaller than
20 m). If such Rc(y) exists, we update the existing road network by connecting
Rc(x) and Rc(y).

5 Experimental Evaluation

We conduct substantial comparison experiments on real data sets to evaluate the
performance of HyMU. Specifically, we compare HyMU with line-based method

HyMU: A Hybrid Map Updating Framework 29

(CrowdAtlas [16]) and point-based method (Glue [18]) to verify the superiority
of HyMU. Our codes, written in Java, are conducted on a PC with 16 GB RAM,
Intel Core CPU 3.2 GHz i7 processor, and the operating system is Windows 10.

5.1 Evaluation Method

In order to ensure fairness, we randomly select an area on the existing map and
remove some road segments from this region. The goal is to verify whether the
deleted road segments can be inferred by different map updating methods. Evalu-
ation criteria includes Precision, Recall and F-measure [8,18]. Let truth denote
the deleted roads, inferred denote all inferred road segments, and tp denote
the correctly inferred roads. Accordingly, we use len(truth), len(inferred) and
len(tp) to represent the length of all the deleted roads, the inferred roads and
the correctly inferred roads respectively. Then, Precision, Recall and F-measure
can be calculated as follows.

Precision =
len(tp)

len(inferred)
Recall =

len(tp)
len(truth)

F-measure =
2 × Precision × Recall

Precision + Recall

As shown in Fig. 5, the deleted roads and their corresponding inferred missing
roads are split into small segments with fixed length. Then, tp can be denoted
as below.

tp = {si(Ts(x), T s(y))|∀Ts(x) ∈ inferred, ∀Ts(y) ∈ truth}
The function si(Ts(x), T s(y)) returns Ts(x) if Ts(x) and Ts(y) are similar.

Otherwise, it returns null.

5.2 Data Sets and Map

We use two real data sets to evaluate the effectiveness of HyMU method, includ-
ing a taxi trajectory data set of 2015 in ShanghaiOpen Data Apps2 (here-
after termed Taxi2015) and a high-sampling Shanghai taxi data set in 2013
(hereafter termed Shanghai2013). In addition, we choose an open source map
OpenStreetMap(OSM)3 as our map data.

Taxi2015 contains the GPS logs of taxis from Apr. 1 to Apr. 30, 2015. It
involves about 10,000 trajectories every day (about 115 million points). Each
GPS log, represented by a sequence of time-stamped points, contains Vehicle
ID, Time, Longitude and Latitude, Speed, etc.

Shanghai2013 contains the GPS logs of taxis in 2 days (from Oct. 1 to Oct.
2). It involves about 50,000 trajectories every day (about 107 million points).
The average sampling rate of the objects is about 60 s. Besides, each GPS log,
represented by a sequence of time-stamped points, contains Vehicle ID, Time,
Longitude and Latitude, Speed, etc.
2 http://soda.datashanghai.gov.cn/.
3 http://wiki.openstreetmap.org/.

http://soda.datashanghai.gov.cn/
http://wiki.openstreetmap.org/

30 T. Wang et al.

(a) OSM Map (b) AutoNaviMap

Fig. 6. Visualization result of HyMU on Taxi2015

5.3 Effectiveness Evaluation

Results for Taxi2015. We first implement HyMU on Taxi2015 to infer about
150 road segments that haven’t been described in OSM map. The visualization
result is shown in Fig. 6(a), where the red lines represent the missing roads
detected by HyMU. As compared to the roads in AutoNaviMap4 (as shown in
Fig. 6(b)), we can find that six roads (R1–R6) are correctly inferred by HyMU.
This verifies the high precision of our proposal. In addition, we infer the road R7

that is not marked on AutoNaiveMap, which further confirms the superiority of
HyMU in discovering missing roads on sparse trajectory data.

Results for Shanghai2013. We compare HyMU with CrowdAtlas and Glue
on Shanghai2013 and randomly select a test area consists of 19 road segments
(from North Zhang Yang Road, through Wuzhou Avenue and Shenjiang Road, to
Jufeng Road). Firstly, to verify the robustness of HyMU, we evaluate sensitivity
of parameters (thdis, thdir and k) on Shanghai2013, as illustrated in Fig. 7. After
tuning them repeatedly, we find that HyMU achieves the best performance on
Shanghai2013 when thdis = 20m, thdir = π

6 and k = 3. Secondly, we further
evaluate HyMU, CrowdAtlas and Glue by varying the sampling interval from 40 s
to 160 s. As shown in Fig. 8, we find that Glue has the best precision because
the point-based strategy will not infer the missing roads with wrong direction.
But it does not take into account inferring roads on sparse region, which result
in a lower recall rate. By contrast, HyMU combines the advantage of line-based
and point-based strategies. It attains almost the same precision as Glue, and
the highest recall as well as F-measure. Thirdly, we evaluate the performance of
HyMU, CrowdAtlas and Glue under various data volume, as shown in Fig. 9. As
data volume becomes larger, we observe that the precision, recall and F-measure
value of HyMU increases accordingly, and the precision approaches Glue. Hence,
HyMU has a good scalability. Additionally, we observe that HyMU has higher
recall than other methods in all situations, which demonstrates that it is capable
of inferring missing roads on sparse trajectory data.

4 http://ditu.amap.com/.

http://ditu.amap.com/

HyMU: A Hybrid Map Updating Framework 31

(a) Varying thdis (b) Varying thdir (c) Varying k

Fig. 7. Performance of HyMU under different parameters on Shanghai2013

(a) Precision (b) Recall (c) F-measure

Fig. 8. Performance comparison under various sampling intervals on Shanghai2013

(a) Precision (b) Recall (c) F-measure

Fig. 9. Performance comparison under various data volume on Shanghai2013

5.4 Efficiency Evaluation

Next, we assess the efficiency of HyMU by comparison with CrowdAtlas and Glue
on Shanghai2013. As shown in Fig. 10(a), HyMU run faster than the other two
methods with the increase of trajectory data. It indicates that HyMU is more
efficient than other map updating methods. GLUE, by contrast, is extremely
time-costing, due to the cost on calculating direction of each point. Addition-
ally, we evaluate the efficiency of HyMU by varying the time window size N .
Figure 10(b) shows the processing time comparison when N is set to 3 h, 6 h
and 21 h respectively. When N = 6 h, the execution time is the smallest. This is
due to that massive amount of data in a time window requires to be denoised
and clustered which is quite time-consuming if the time window size is large.
Conversely, when time window size is small, we need to deal with too many road
candidates, which is also time-consuming. So the appropriate window size is 6 h

32 T. Wang et al.

(a) Efficiency comparison (b) Efficiency of HyMU

Fig. 10. Efficiency evaluation

on Shanghai2013, and we also use this optimal value to execute effectiveness
evaluation on Shanghai2013. Consequently, HyMU is efficient and effective to
infer the missing roads for a given map.

6 Conclusion

In this paper, we address the issue of inferring missing roads on sparse trajec-
tory data of vehicles. On the basis of sliding window model, we propose a hybrid
framework called HyMU to infer the missing roads. HyMU is mainly composed
of two phases: road candidates generation and missing roads inferring. Owing
to advantages of the hybrid framework, HyMU attains a better performance as
compared to the other map updating methods. Substantial experimental results
demonstrate the superiority of HyMU especially in dealing with sparse trajec-
tory data. In addition, since there are other forms of road changes in the road
network (e.g. blocked roads). Such road changing information is very important
in navigation applications. In the future work, we proceed to study how to detect
road changes, and provide real-time traffic information to users to enable route
planning.

Acknowledgement. Our research is supported by the National Key Research and
Development Program of China (2016YFB1000905), NSFC (61370101, 61532021,
U1501252, U1401256 and 61402180), Shanghai Knowledge Service Platform Project
(No. ZF1213).

References

1. Agamennoni, G., Nieto, J.I., Nebot, E.M.: Robust inference of principal road paths
for intelligent transportation systems. IEEE Trans. Intell. Transp. Syst. 12(1), 298–
308 (2011)

2. Biagioni, J., Eriksson, J.: Map inference in the face of noise and disparity. In:
SIGSPATIAL, pp. 79–88 (2012)

3. Cao, L., Krumm, J.: From GPS traces to a routable road map. In: GIS, pp. 3–12
(2009)

HyMU: A Hybrid Map Updating Framework 33

4. Davies, J.J., Beresford, A.R., Hopper, A.: Scalable, distributed, real-time map
generation. IEEE Pervasive Comput. 5(4), 47–54 (2006)

5. Edelkamp, S., Schrödl, S.: Route planning and map inference with global posi-
tioning traces. In: Computer Science in Perspective, Essays Dedicated to Thomas
Ottmann, pp. 128–151 (2003)

6. Ge, Y., Xiong, H., Zhou, Z., Ozdemir, H.T., Yu, J., Lee, K.C.: Top-eye: top-k
evolving trajectory outlier detection. In: CIKM, pp. 1733–1736 (2010)

7. Lee, J., Han, J., Whang, K.: Trajectory clustering: a partition-and-group frame-
work. In: SIGMOD, pp. 593–604 (2007)

8. Liu, X., Biagioni, J., Eriksson, J., Wang, Y., Forman, G., Zhu, Y.: Mining large-
scale, sparse GPS traces for map inference: comparison of approaches. In: KDD,
pp. 669–677 (2012)

9. Mazhelis, O.: Using recursive bayesian estimation for matching GPS measurements
to imperfect road network data. In: International IEEE Conference on Intelligent
Transportation Systems, pp. 1492–1497 (2010)

10. Mokhtarzade, M., Zoej, M.J.V.: Road detection from high-resolution satellite
images using artificial neural networks. Int. J. Appl. Earth Obs. Geoinf. 9(1),
32–40 (2007)

11. Schrödl, S., Wagstaff, K., Rogers, S., Langley, P., Wilson, C.: Mining GPS traces
for map refinement. Data Min. Knowl. Discov. 9(1), 59–87 (2004)

12. Seo, Y., Urmson, C., Wettergreen, D.: Exploiting publicly available cartographic
resources for aerial image analysis. In: SIGSPATIAL, pp. 109–118 (2012)

13. Shan, Z., Wu, H., Sun, W., Zheng, B.: COBWEB: a robust map update system
using GPS trajectories. In: UbiComp, pp. 927–937 (2015)

14. Thiagarajan, A., Ravindranath, L., Balakrishnan, H., Madden, S., Girod, L.: Accu-
rate, low-energy trajectory mapping for mobile devices. In: NSDI (2011)

15. Velaga, N.R., Quddus, M.A., Bristow, A.L.: Developing an enhanced weight-based
topological map-matching algorithm for intelligent transport systems. Transp. Res.
Part C Emerg. Technol. 17(6), 672–683 (2009)

16. Wang, Y., Liu, X., Wei, H., Forman, G., Chen, C., Zhu, Y.: CrowdAtlas: self-
updating maps for cloud and personal use. In: MobiSys, pp. 27–40 (2013)

17. Wei, H., Wang, Y., Forman, G., Zhu, Y., Guan, H.: Fast viterbi map matching
with tunable weight functions. In: SIGSPATIAL, pp. 613–616 (2012)

18. Wu, H., Tu, C., Sun, W., Zheng, B., Su, H., Wang, W.: GLUE: a parameter-tuning-
free map updating system. In: CIKM, pp. 683–692 (2015)

http://www.springer.com/978-3-319-55698-7

	HyMU: A Hybrid Map Updating Framework
	1 Introduction
	2 Related Work
	2.1 Map Inference
	2.2 Map Updating

	3 Problem Definition
	4 Framework
	4.1 Candidate Generation
	4.2 Missing Roads Inferring

	5 Experimental Evaluation
	5.1 Evaluation Method
	5.2 Data Sets and Map
	5.3 Effectiveness Evaluation
	5.4 Efficiency Evaluation

	6 Conclusion
	References

