
Chapter 2
Case Studies

2.1 Introduction

In this chapter, we present the two case studies that are used as running examples
throughout the book.

The first example considers a decision-analytic model. This is a popular tool in
health economic evaluation, when the objective is to compare the expected costs and
consequences of decision options by synthesising information frommultiple sources
[1]. Examples of decision-analytic models include decision trees or Markov models.
As these models are based on several different sources of information, they can offer
decision-makers the best available information to reach their decision, as opposed to
modelling based on a single randomised clinical trial (RCT).Additionally, RCTsmay
be limited in scope (e.g. in terms of the temporal follow up) and thus not be ideal for
characterising the long-term consequences of applying an intervention. Thus, even
when RCT data are available, a health economic evaluation is often extended to a
decision-analytic approach to allow decision-makers to capture information about
the long-term effects and costs.

The second example is a multi-decision problem. This means that, in contrast to
standard economic modelling, where a new intervention t = 1 is compared to the
status quo t = 0, we consider here T = 4 potential interventions. This is naturally
linked to the wider topic of network meta-analysis [2], which is an extension of
different statistical methods that allow researchers to pool evidence coming from
different sources and include direct and indirect comparisons. This is particularly
relevant when head-to-head evidence is only available for some of the interventions
under consideration. Suitable statistical modelling can be used to infer about the
direct comparisons with no information by using the indirect ones.

For both examples, we first introduce the general background, discussing the dis-
ease area and the interventions under consideration.We thendescribe the assumptions
underlying the statistical model (e.g. in terms of distributions for the observed/ob-
servable variables and the unobservable parameters). We also show how these can
be translated into suitable code to perform a full Bayesian analysis and obtain
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samples from the relevant posterior distributions (see Sect. 1.2). Finally, we demon-
strate any post-processing required to produce the relevant inputs for the economic
model (e.g. the population average differential of costs and benefits—see Sect. 1.4).
In the rest of the book, we refer (rather interchangeably) to OpenBUGS [3] and JAGS
[4], arguably the most popular software to perform Bayesian analysis by means of
Markov Chain Monte Carlo simulations.

The examples are then used to showcase the facilities of BCEA and to explain
the process of performing an economic evaluation in R, once the statistical model
has been fitted. It is important to note (and we will expand on this point in Chap. 3)
that BCEA can be used to perform cost-effectiveness analysis when the full statistical
model has not been fitted within the Bayesian framework. Nevertheless, we strongly
advocate the use of a Bayesian framework and thus we have included these examples
to demonstrate a full Bayesian analysis.

Starting from this chapter on, the text will include frequent code blocks to show
how to execute commands and use the BCEA package. R code is presented in code
blocks in the text, with each new line startingwith the symbol >. Indentation indicates
lines continuing from the previous statement. Hash symbols (i.e. #) in code blocks
indicate comments. In-line words formatted in mono-spaced font (such as this)
indicate code, for example short commands or function parameters.

2.2 Preliminaries: Computer Configuration

In this section, we briefly review the ideal computer configuration we are assuming to
run the examples later in this chapter and in the rest of the book. It is difficult to guar-
antee that these instructions will be valid for every future release of the programmes
we consider here, although they have been tested under the current releases.

We assume that the user’s computer has the following software installed:

• R and the package BCEA. Other optional packages (e.g. R2OpenBUGS, R2jags,
reshape, plyr or INLA) may need to be installed;

• OpenBUGS or JAGS. These are necessary to perform the full Bayesian analyses we
discuss in the rest of the book. It is not necessary to install both;

• The R front-end, for example Rstudio (available for download at the webpage
https://www.rstudio.com/). This is also optional and all the work can be done
using the standard R terminal;

• A spreadsheet calculator, e.g. MS Excel or the freely available LibreOffice,
which is a decent surrogate and can be downloaded at https://www.libreoffice.
org/.

In the following, we provide some general instructions, for MS Windows, Linux
or Mac OS operating systems.

http://dx.doi.org/10.1007/978-3-319-55718-2_1
http://dx.doi.org/10.1007/978-3-319-55718-2_1
http://dx.doi.org/10.1007/978-3-319-55718-2_3
https://www.rstudio.com/
https://www.libreoffice.org/
https://www.libreoffice.org/
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2.2.1 MS Windows Users

For MS Windows users, the set-up should be fairly easy and amounts to the following
steps:

1. Install OpenBUGS

• Download the latest release (currently it is version 3.2.3, stored in the file
OpenBUGS323setup.exe) from http://openbugs.net/w/Downloads and run it
by double-clicking on it.

2. Install R

a. Download R from the Comprehensive R Archive Network (CRAN): http://
cran.r-project.org/bin/windows/ (click on the link “install R for the first time”).

b. When the process is finished, open R and type in the terminal the following
command.
> install.packages("BCEA")
> install.packages("R2OpenBUGS")

These commands will download and install the packages BCEA and
R2OpenBUGS. The latter is needed to interface OpenBUGS with R. Follow the
on-screen instructions (you will be asked to select a mirror from which to
obtain the necessary files). Notice that the command install.packages
("Name_of_the_package") can be used to install any other R package.

3. (Optional): Install JAGS

a. Download the installer from the webpage http://sourceforge.net/projects/
mcmc-jags/files/JAGS/4.x/Windows/ by clicking on the latest available exe-
cutable file (currently, JAGS-4.2.0.exe). Executing this file will install JAGS
on the user’s machine.

b. In the R terminal type the command
> install.packages("R2jags")

This will install the package R2jags, which allows to interface JAGS from R.

2.2.2 Linux or Mac OS Users

2.2.2.1 Installing R and BCEA

Linux or Mac OS users should follow slightly different approaches. The installation
of R is pretty much the same as for MS Windows users. From the webpage http://
cran.r-project.org/ select the relevant operating system (Linux or Mac OS) and then
the relevant version (e.g. debian, redhat, suse or ubuntu, for Linux). Follow the
instructions to install the software. Once this is done, open R and install the package
BCEA following the process described above.

http://openbugs.net/w/Downloads
http://cran.r-project.org/bin/windows/
http://cran.r-project.org/bin/windows/
http://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Windows/
http://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Windows/
http://cran.r-project.org/
http://cran.r-project.org/
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2.2.2.2 Installing OpenBUGS and JAGS in Linux

OpenBUGS runs natively in Linux and so it can be installed following the instructions
given at http://openbugs.net/w/Downloads. First, download themost recent ver-
sion of the source file, currently OpenBUGS-3.2.3.tar.gz. Then open a Linux ter-
minal and follow these steps:

1. Unpack the file and move to the newly created directory OpenBUGS-3.2.3. by
typing the following commands.

tar zxvf OpenBUGS -3.2.3. tar.gz
cd OpenBUGS -3.2.3

2. Compile and install the software

./ configure
make
sudo make install

Notice that if the user does not have administrative access, this command will
fail. A possible workaround is to specify a location to which OpenBUGS should be
installed that is owned by the user, for example

./ configure --prefix =/home/user/myfolder
make
sudo make install

— it is possible to check permission by using the Unix command

ls -ls /home/user

which returns a list of the folders and files contained in the folder /home/user.
This will look something like

4 drwxr -xr -x 9 user user 4096 Jul 5 17:02 Desktop
4 drwx ------ 25 user user 4096 Jul 14 09:23 myfolder

196 -rw-rw-r-- 1 root root 197534 Jul 11 16:08 some_file.png
...

and, in this case, the folder myfolder does belong to the user user and thus the
installation of OpenBUGS in that folder would be completed successfully.

It is also possible to install JAGS, following these steps:

1. Download the latest tar.gz file (currently, JAGS-4.2.0.tar.gz) from the web-
page http://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Source/.

2. Open a Linux terminal window, extract the content of the archive file and move
to the newly created folder JAGS-4.2.0

tar xzvf JAGS -4.2.0. tar.gz
cd JAGS -4.2.0

http://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Source/
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3. Run the configuration

sudo ./ configure --prefix =/usr
sudo make
sudo make install

4. Clean up the unnecessary files and folder

cd ..
sudo rm -fr JAGS -4.2.0
rm JAGS -4.2.0. tar.gz

5. Install R2jags from the R terminal, as discussed in Sect. 2.2.1.

2.2.2.3 Installing OpenBUGS and JAGS in Mac OS

While OpenBUGS does not run natively under Mac OS, a possible workaround is to
install a hardware virtualisation software such as Parallels Desktop for Mac Os
(http://www.parallels.com/uk/products/desktop/), or a “compatibility layer”, such as
wine (https://www.winehq.org/download/),which allow to run Windows applications
from Mac.

Conversely, JAGS does run natively under Mac OS too and can be installed using
the following steps:

1. Download the latest.dmgfile (currently,JAGS-4.2.0.dmg) fromhttps://sourceforge.
net/projects/mcmc-jags/files/JAGS/4.x/Mac%20OS%20X/

2. Double click the .dmg file to make its content available (the name will show up
in the Finder sidebar), usually a window opens showing the content as well;

3. Drag the application from the .dmg window into /Applications to install (you
may need an administrator password);

4. Wait for the copy process to finish;
5. Eject the .dmg (by clicking the eject button in the Sidebar);
6. Delete the .dmg from Downloads.

Several tutorial are available online to guide in the process of installation and use
of both OpenBUGS and JAGS.

2.3 Vaccine

Consider an infectious disease, for instance influenza, for which a new vaccine has
been produced. Under the current management of the disease some individuals treat
the infection by taking over-the-counter (OTC)medications. Some subjects visit their
doctor and, depending on the gravity of the infection, may receive treatment with
antiviral drugs, which usually cure the infection. However, in some cases complica-
tions may occur. Minor complications will need a second doctor’s visit after which
the patients become more likely to receive antiviral treatment. Major complications

http://www.parallels.com/uk/products/desktop/
https://www.winehq.org/download/
https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Mac%20OS%20X/
https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Mac%20OS%20X/
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are represented by pneumonia and can result in hospitalisation and possibly death. In
this scenario, the costs generated by themanagement of the disease are represented by
OTCmedications, doctor visits, the prescription of antiviral drugs, hospital episodes
and indirect costs such as time off work.

The focus is on the clinical and economic evaluation of the policy that makes the
vaccine available to those who wish to use it (t = 1) against the null option (t = 0)
under which the vaccine will remain unavailable. More details of this example can
be found in [5] and references therein.

2.3.1 (Bayesian) Statistical Model

2.3.1.1 Assumptions

In a population made of N individuals, consider the number of patients taking up the
vaccine when available V1 ∼ Binomial(φ, N ) where φ is the vaccine coverage rate.
Obviously, V0 = 0 as the vaccine is not available under the status quo. For conve-
nience, we denote the total number of patients in the two groups, vaccinated (v = 1)
and non-vaccinated (v = 0), by ntv with nt1 := Vt and nt0 := N − Vt , respectively.

The relevant clinical outcomes are: j = 1 influenza infection; j = 2 doctor visit;
j = 3minor complications; j = 4major complications; j = 5hospitalisation; j = 6
death; and j = 7 adverse events of influenza vaccination. For each clinical outcome
j , β j is its baseline rate of occurrence and ρv is the proportional reduction in the
chance of infection due to the vaccine. Vaccinated patients (v = 1) will experience a
reduction in the chance of infection by a factor ρ1; conversely, for v = 0, individuals
are not vaccinated and so the chance of infection is just the attack rate β1. This is
equivalent to setting ρ0 := 0.

Under these assumptions, the number of individuals becoming infected in each
group is Itv ∼ Binomial(πv, ntv), where πv := β1(1 − ρv) is the probability of infec-
tion. Among the infected subjects, the number visiting a doctor for the first time is
GP (1)

tv ∼ Binomial(β2, Itv). Using a similar reasoning, among those who have had
a doctor visit, we can define: the number of individuals with minor complications
GP (2)

tv ∼ Binomial(β3,GP
(1)
tv ); the number of those with major complications Ptv ∼

Binomial(β4,GP
(1)
tv ); the number of hospitalisations Htv ∼ Binomial(β5,GP

(1)
tv );

and the deaths Dtv ∼ Binomial(β6,GP
(1)
tv ). The number of individuals experienc-

ing adverse events due to vaccination is computed as AEtv ∼ Binomial(β7, ntv)—
obviously, this will be identically 0 under the status quo (t = 0) and among those
individuals who choose not to take the vaccine up in the vaccination scenario
(t = 1, v = 0).

The model also includes other parameters, such as the chance of receiving a
prescription after the first doctor visit (γ1) or following minor complications (γ2) for
a number of antiviral drugs (δ); of taking OTC medications (ξ); and of remaining
off-work (η) for a number of days (λ). Combining these with the relevant populations
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at risk, we can then derive the expected number of individuals experiencing each of
these events.

As for the costs, we consider the relevant resources as h = 1: doctor visits; h = 2:
hospital episodes;h = 3: vaccination;h = 4: time to receive vaccination;h = 5: days
off work; h = 6: antiviral drugs; h = 7: OTC medications; h = 8: travel to receive
vaccination. For each, we defineψh to represent the associated unit cost for which we
assume informative lognormal distributions, a convenient choice to model positive,
continuous variables such as costs.

Finally, we include in themodel suitable parameters to represent the loss in quality
of life generated by the occurrence of the clinical outcomes. Let ω j represent the
QALYs lost when an individual experiences the j-th outcome.We assume that doctor
visits do not generate loss in QALYs and therefore set ω2 = ω3 := 0; the remaining
ω j ’s are modelled using informative lognormal distributions.

The assumptions encoded by thismodel are that we consider a population parame-
ter θ = (θ0,θ1), with the two components being defined as θ0 = (β j , γ1, γ2, δ, ξ, η,
λ,ψh,ω j ) and θ1 = (φ,β j , ρv, γ1, γ2, δ, ξ, η,λ,ψh,ω j ). We assume that the com-
ponents of θ have the distributions specified in Table2.1, which are derived by using
suitable “hyper-parameters” that have been set to encode knowledge D available
from previous studies and expert opinion. For example, the parameter φ identifies
a probability (the vaccine coverage) and we may have information about past sea-
sons to suggest that this has been estimated to be between 25 and 63%; this can be
translated to a Beta distribution whose parameters can be determined so that roughly
95% of the probability mass lie between these two values. See [5] for a more detailed
discussion of this point.

It is easy to check that the assumptions in terms of the interval estimates for the
parameters are consistent with the choice of distributions in R, for example using
something like the following code:

> phi <- rbeta (100000 ,11.31 ,14.44)

> c(quantile(phi ,.025) ,quantile(phi ,.5),quantile(phi ,.975))

2.5% 50% 97.5%

0.2581039 0.4368227 0.6292335

2.3.1.2 Coding the Assumptions into BUGS/JAGS Language

The assumptions and themodel structure defined above can be translated into suitable
code to perform a MCMC analysis and obtain estimates from the posterior distribu-
tions of all the relevant parameters. For example, we could write the following code
to be used with OpenBUGS or JAGS:

model {

# 1. Define the number of people in each group n[v,t], where t=1,2 is status

quo vs vaccination and v=1,2 is non vaccinated vs vaccinated

# t=1: If the vaccine is not available , no one will use it

# number of vaccinated in the population

V[1] <- 0

# number of individuals in the two groups
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n[1,1] <- N - V[1] # non vaccinated

n[2,1] <- V[1] # vaccinated

# t=2: When the vaccine is available , some people will use it but

some people won ’t

# number of vaccinated in the population

V[2] ~ dbin(phi ,N)

# number of individuals in the two groups

n[1,2] <- N - V[2] # non vaccinated

n[2,2] <- V[2] # vaccinated

# 2. Vaccination coverage

phi ~ dbeta(a.phi ,b.phi)

# 3. Probability of experiencing the clinical outcomes (in total , N.outcomes =

7)

# 1. Influenza infection

# 2. GP visits

# 3. Minor complications (repeat visit)

# 4. Major complications (pneumonia)

# 5. Hospitalisations

# 6. Death

# 7. Adverse events due to vaccination

for (r in 1:4) {

beta[r] ~ dbeta(a.beta[r],b.beta[r])

}

for (r in 5:6) {

beta[r] ~ dlnorm(a.beta[r],b.beta[r])

}

beta[N.outcomes] ~ dbeta(a.beta[N.outcomes],b.beta[N.outcomes ])

# 4. Vaccine effectiveness in reducing influenza (for v=1, it is obviously 0)

rho [1] <- 0

rho [2] ~ dlnorm(mu.rho ,tau.rho)

# 5. Probability of influenza infection

for (t in 1:2) {

for (v in 1:2) {

pi[t,v] <- beta [1]*(1 - rho[v])

}

}

# 6. Number of patients experiencing the events for both

interventions & compliance groups

for (t in 1:2) {

for (v in 1:2) {

Infected[t,v] ~ dbin(pi[t,v],n[v,t])

GP[t,v] ~ dbin(beta[2], Infected[t,v])

Repeat.GP[t,v] ~ dbin(beta[3],GP[t,v])

Pneumonia[t,v] ~ dbin(beta[4],GP[t,v])

Hospital[t,v] ~ dbin(beta[5],GP[t,v])

Death[t,v] ~ dbin(beta[6],GP[t,v])

Trt[1,t,v] ~ dbin(gamma [1],GP[t,v])

Trt[2,t,v] ~ dbin(gamma [2],Mild.Compl[t,v])
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Mild.Compl[t,v] <- Repeat.GP[t,v] + Pneumonia[t,v]

}

}

Adverse.events ~ dbin(beta[N.outcomes],n[2,2])

# 7. Probability of experiencing other events (impacts on costs and QALYs/QALDs

)

for (i in 1:2) {

# Treatment with antibiotics after GP visit

gamma[i] ~ dbeta(a.gamma[i],b.gamma[i])

}

# Number of prescriptions of antivirals

delta ~ dpois(a.delta)

# Taking OTC

xi ~ dbeta(a.xi ,b.xi)

# Being off work

eta ~ dbeta(a.eta ,b.eta)

# Length of absence from work for influenza

lambda ~ dlnorm(mu.lambda ,tau.lambda)

# 8. Costs of clinical resourses (N.resources = 8)

# 1. Cost of GP visit

# 2. Cost of hospital episode

# 3. Cost of vaccination

# 4. Cost of time to receive vaccination

# 5. Cost of days work absence due to influenza

# 6. Cost of antiviral drugs

# 7. Cost of OTC treatments

# 8. Cost of travel to receive vaccination

for (r in 1:N.resources) {

psi[r] ~ dlnorm(mu.psi[r],tau.psi[r])

}

# 9. Quality of life adjusted days/years loss

# 1. Influenza infection

# 2. GP visits (no QALD/Y loss)

# 3. Minor complications (repeat visit , no QALD/Y loss)

# 4. Major complications (pneumonia)

# 5. Hospitalisations (same QALD/Y loss as pneumonia)

# 6. Death

# 7. Adverse events due to vaccination

omega [1] ~ dlnorm(mu.omega[1],tau.omega [1])

omega [2] <- 0; omega [3] <- 0;

for (r in 4:N.outcomes) {

omega[r] ~ dlnorm(mu.omega[r],tau.omega[r])

}

}
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Table 2.1 Distributional assumptions for the model. For each parameter, the distributions are
chosen to model the available prior knowledge, represented by existing data or expert opinions.
The mathematical form of the distributions is chosen according to the nature of the parameter (i.e.
parameters describing probability of occurrence of an event are usually given a Beta distribution),
while the values of the hyper-parameters are chosen so that the distribution is consistent with the
prior information derived by the clinical literature or expert opinion

Parameter Mean 2.5% Median 97.5% Distribution

φ 0.435 0.245 0.436 0.625 Beta (11.31, 14.44)

β1 0.0701 0.0387 0.0680 0.1116 Beta (13.01, 172.38)

β2 0.295 0.124 0.288 0.497 Beta (5.80, 13.80)

β3 0.401 0.388 0.401 0.415 Beta (1909.50, 2851.86)

β4 0.01339 0.00852 0.01322 0.01938 Beta (20.94, 1538.71)

β5 0.000378 0.000223 0.000364 0.000616 Lognormal (−7.91, 14.93)

β6 0.000748 0.000366 0.000702 0.001331 Lognormal (−7.26, 7.66)

β7 0.1021 0.0255 0.0954 0.2265 Beta (3.50, 31.50)

ρ1 0.688 0.593 0.686 0.794 Lognormal (−0.374,
0.00524)

γ1 0.420 0.417 0.420 0.423 Beta (45471.58, 62794.09)

γ2 0.814 0.806 0.814 0.822 Beta (7701.86, 1759.89)

δ 6.97 2.00 7.00 12.00 Poisson (7.00)

ξ 0.950 0.940 0.950 0.959 Beta (1804.05, 94.95)

η 0.900 0.890 0.900 0.909 Beta (3239.10, 359.90)

λ 2.90 1.22 2.69 5.97 Lognormal (0.98, 0.17)

ψ1 20.55 12.36 19.77 32.07 Lognormal (3.00,
0.0606)

ψ2 2661.92 1554.18 2575.67 4106.98 Lognormal (7.85,
0.0606)

ψ3 7.21 4.22 6.95 11.42 Lognormal (1.95,
0.0606)

ψ4 10.26 6.16 9.92 15.90 Lognormal (2.29, 0.0606)

ψ5 46.31 27.20 44.96 70.69 Lognormal (3.80, 0.0606)

ψ6 3.86 2.39 3.73 5.95 Lognormal (1.31, 0.0606)

ψ7 1.592 0.949 1.562 2.452 Lognormal (0.44, 0.0606)

ψ8 0.807 0.484 0.776 1.311 Lognormal (−0.241,
0.0606)

ω1 4.26 2.14 4.05 7.59 Lognormal (1.40, 0.0993)

ω4 6.39 3.81 6.23 9.82 Lognormal (1.82, 0.0606)

ω5 6.34 3.83 6.15 9.94 Lognormal (1.82, 0.0606)

ω6 15.20 9.09 14.88 23.34 Lognormal (2.70, 0.054)

ω7 0.556 0.316 0.541 0.932 Lognormal (−0.634,
0.0717)
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The model consists of nine modules as annotated in the code above. Notice that
the values of the parameters for each distribution are kept as variables (rather than
hard-coded as a fixed number). This is in general a good idea, since changes in
the assumed values can be reflected directly using the same code. Of course, this
means that the numerical value must be passed to the computer code somewhere else
in the scripting process. This, however, helps clarify the whole process and makes
debugging easier.

As is possible to see, most of the commands in the BUGS/JAGS language are effec-
tively typed in away that strongly resembles the standard statistical notation, with the
twiddle symbol∼indicating a stochastic relationship (i.e. a probability distribution),
while the assignment symbol -> indicates logical (or deterministic) relationships.

Typically, this code is saved to a text file, say vaccine.txt. It is good practice to
store the files in a well-structured set of directories or at least to provide pointers for
R so that it can search for the relevant files efficiently. Examples include the directory
from which R is launched or alternatively in the directory that is currently in use by
R (also termed the “working directory”). The R command

> setwd (" PATH_TO_RELEVANT_FOLDER ")

can be used to set the working directory to any folder, while the command

> getwd ()

[1] "/home/user/MyStuff"

returns the current (working) directory. Note that R uses Unix-like notation and
forward slashes / to separate folders in a text string. Conversely, MS Windows uses
backward slashes \ to accomplish the same task. This means that on a MS Windows
computer, the working directory will be defined by R as something like

> # On a Windows machine:

> getwd ()

[1] "C:/user/MyStuff"

while the MS Windows notation (e.g. by copying and pasting the address of the folder
from the file explorer) would actually be "C:\user\MyStuff". It is thus important
to be careful when copying and pasting folder locations from MS Windows into R and
the user has two options, both based on Unix-like notation: the first one is to just
convert any backward slash to a forward slash. The second option is to escape the
backward slashes using a double backward slash (\\), for example as in the following
R code.

> # On a Windows machine , these two commands are the same:

> # 1. using forward slashes

> setwd ("C:/user/Mystuff)

> # 2. using double backward slashes

> setwd ("C:\\ user\\ MyStuff ")
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2.3.1.3 R Code to Pre-process and Load the Data

The following R code is used to pre-process and load the data in the R workspace
before the model and the health economic analysis can be run.

> ## Launches the file Utils.R which contains useful functions used throughout

this script

> source ("http :// www.statistica .it/gianluca/BCEABook/WebMaterial/Utils.R")

> ## Loads the values of the hyper -parameters (needed to run the Bayesian model

using JAGS)

> # Number of people in the populations

> N <- 100000

> # Vaccine coverage

> a.phi <- betaPar2 (.434 ,.6 ,.95) $res1

> b.phi <- betaPar2 (.434 ,.6 ,.95) $res2

> # Baseline probabilities of clinical outcomes

> # 1. Influenza infection

> # 2. GP visits

> # 3. Minor complications (repeat visit)

> # 4. Major complications (pneumonia)

> # 5. Hospitalisations

> # 6. Death

> # 7. Adverse events due to vaccination

> N.outcomes <- 7

> mu.beta <- c(.0655 ,.273 ,.401 ,.0128 ,.00038 ,.00075)

> upp.beta <- c(.111 ,.51 ,.415 ,.0197 ,.00067 ,.000132)

> sd.beta <- c(NA ,NA ,NA ,NA ,.0001 ,.00028)

> a.beta <- b.beta <- numeric ()

> for (i in 1:4) {

+ a.beta[i] <- betaPar2(mu.beta[i],upp.beta[i] ,.975) $res1

+ b.beta[i] <- betaPar2(mu.beta[i],upp.beta[i] ,.975) $res2

+ }

> for (i in 5:6) {

+ a.beta[i] <- lognPar(mu.beta[i],sd.beta[i]) $mulog

+ b.beta[i] <- 1/ lognPar(mu.beta[i],sd.beta[i]) $sigmalog ^2

+ }

> a.beta[N.outcomes] <- betaPar (.1 ,.05) $a

> b.beta[N.outcomes] <- betaPar (.1 ,.05) $b

> # Decrease in risk of infection due to vaccination

> mu.rho <- lognPar (.69 ,.05) $mulog; tau.rho <- 1/ lognPar (.69 ,.05) $sigmalog ^2

> # Treatment with antibiotics after GP visit

> mu.gamma <- c(.42 ,.814); sd.gamma <- c(.0015 ,.004)

> a.gamma <- b.gamma <- numeric ()

> for (i in 1:2) {

+ a.gamma[i] <- betaPar(mu.gamma[i],sd.gamma[i])$a

+ b.gamma[i] <- betaPar(mu.gamma[i],sd.gamma[i])$b

+ }

> # Number of prescriptions of antibiotics

> a.delta <- 7

> # Taking OTC

> a.xi <- betaPar (.95 ,.005)$a

> b.xi <- betaPar (.95 ,.005)$b
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> # Being off work

> a.eta <- betaPar (.9 ,.005) $a

> b.eta <- betaPar (.9 ,.005) $b

> # Length of absence from work for influenza

> mu.lambda <- lognPar (2.9 ,1.25) $mulog

> tau.lambda <- 1/ lognPar (2.9 ,1.25) $sigmalog ^2

> # Costs (N.resources = 8)

> # 1. Cost of GP visit

> # 2. Cost of hospital episode

> # 3. Cost of vaccination

> # 4. Cost of time off for individuals to receive vaccination

> # 5. Cost of days work absence due to influenza

> # 6. Cost of antibiotics

> # 7. Cost of OTC treatments

> # 8. Cost of travel to receive vaccination

> N.resources <- 8

> m.psi <- c(20.66 ,2656 ,7.24 ,10.16 ,46.27 ,3.81 ,1.6 ,.81)

> sd.psi <- c(5.015 ,440.75 ,1.81 ,2.54 ,11.57 ,.955 ,.4 ,.2)

> sd.psi <- .25*m.psi

> mu.psi <- tau.psi <- rep(0,N.resources)

> for (i in 1:N.resources) {

+ mu.psi[i] <- lognPar(m.psi[i],sd.psi[i]) $mulog

+ tau.psi[i] <- 1/ lognPar(m.psi[i],sd.psi[i]) $sigmalog ^2

+ }

> # Quality of life weights (N.outcomes = 7)

> # 1. Influenza infection

> # 2. GP visits (no QoL loss)

> # 3. Minor complications (repeat visit , no QoL loss)

> > # 4. Major complications (pneumonia)

> # 5. Hospitalisations

> # 6. Death

> # 7. Adverse events due to vaccination

> m.omega <- c(4.27 ,0 ,0 ,6.35 ,6.35 ,15.29 ,.55)

> sd.omega <- c(1.38 ,0 ,0 ,1.5875 ,1.5875 ,3.6 ,.15)

> mu.omega <- tau.omega <- rep(0,N.outcomes)

> for (i in c(1,4,5,6,7)) {

+ mu.omega[i] <- lognPar(m.omega[i],sd.omega[i]) $mulog

+ tau.omega[i] <- 1/ lognPar(m.omega[i],sd.omega[i]) $sigmalog ^2

+ }

(notice that the + at the beginning of a line inside the for loops is just R standard
notation to indicate commands that span over more than one line).
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The very first line of the script executes the file Utils.R from its remote location
(http://www.statistica.it/gianluca/BCEABook/WebMaterial/Utils.R); this
file contains a set of functions and commands that are used throughout the script and
thus is fundamental to launch it before the rest of the script can be executed. Although
the number of files necessary to run the entire analysis may increase (thus, at face
value, increasing the complexity of the process), it is actually good programming
practice to use a combination of many smaller, focussed scripts, rather than include
every commands or functions required in one single, massive file. This, again, makes
the process transparent and easier to debug or critically appraise.

The rest of the script defines the values for the parameters used in the distributions
associated to the quantities modelled and described above. For example, the function
betaPar2 (which is defined in the file Utils.R) can be used to determine the values
of the parameters of a Beta distribution so that its average is around 0.436 and 95%
of the mass is below the value of 0.6. In particular, running this command on a R
terminal gives the following output:

> betaPar2 (.434 ,.6 ,.95)

$res1

[1] 11.30643

$res2

[1] 14.4411

$theta.mode

[1] 0.434

$theta.mean

[1] 0.4391267

$theta.median

[1] 0.437

$theta.sd

[1] 0.09595895

betaPar2 creates a list of results: the first two elements of the list, res1 and res2
are the estimated values of the parameters to be used with a Beta distribution so that
roughly 95% of the probability mass is below 0.6. This is in line with the assumptions
presented in Table2.1 for the parameter φ. Again, we can check the appropriateness
of this choice by simply typing the following commands to the R terminal.

> phi <- rbeta (100000 ,11.30643 ,14.4411)

> c(quantile(phi ,.025) ,quantile(phi ,.5),quantile(phi ,.975))

2.5% 50% 97.5%

0.2566397 0.4371251 0.6296423

The other elements of the list are theta.mode, theta.mean, theta.median and
theta.sd, which store the values for themode, mean, median and standard deviation
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of the resulting Beta distribution. Notice the R “dollar” notation, which can be used
to access elements of an object — in other words, if the object x is stored in the R
workspace and contains the elements y, z and w, then these can be accessed by using
the notation x$y, x$z or x$w.

Another thing to notice is that it is fairly easy to annotate the R code in an infor-
mative way. This again increases transparency and facilitates the work of reviewers
or modellers called upon a critical evaluation of the analysis process. In line with
the point we made above about using many simpler and specific files to execute the
several steps of the analysis, rather than one large (and potentially messy) file, it
is a good idea to save this code to a script file, say LoadData.R, again assumed to
be stored in the working directory. From within the R terminal, the script can be
launched and executed by typing the command

> source (" LoadData.R")

which runs all the instructions in the script sequentially.

2.3.1.4 R Code to Remotely Run BUGS/JAGS and the Bayesian Model

At this point, the user is ready to run the model—in a full Bayesian context, this
typically means performing a MCMC analysis (cfr. Sect. 1.2.3) to obtain a sample
from the posterior distribution of the random quantities of interest. We reiterate here
that these may be unobservable parameters as well as unobserved variables.

R is particularly effective at interfacing with the main software for Bayesian
analysis—here we refer to the most popular OpenBUGS [3] and JAGS [4], but there is
a R package to interface with a more recent addition, Stan [6]. This means that it is
possible to produce a set of scripts that can be run in R to pre-process the data, call
the MCMC sampler in the background and run the model (written in a .txt file, as
shown above) and then post-process the results, e.g. to obtain the suitable measures
of population average costs and effectiveness.

For example, the following commands can be used to run the Bayesian model
defined above:

> # Loads the package to run OpenBUGS or JAGS from R
> library(R2OpenBUGS)
> library(R2jags)
> # Defines the current as the working directory
> working.dir <- paste(getwd() ,"/",sep ="")
> # Launches the file Utils.R which contains useful functions used

throughout this script
> source ("http :// www.statistica.it/gianluca/BCEABook/WebMaterial/

Utils.R")
> # Loads the data into R (assumes the file is stored in the

working directory - if not the full path can be provided)
> source (" LoadData.R")

> # Defines the data list to be passed to BUGS/JAGS
> data <- list("N","a.phi","b.phi","mu.rho","tau.rho","a.beta","b.

beta","a.gamma","b.gamma",mu.omega","tau.omega","mu.psi","tau.

http://dx.doi.org/10.1007/978-3-319-55718-2_1
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psi","N.outcomes","N.resources ","mu.lambda","tau.lambda","a.xi
","b.xi","a.eta","b.eta","a.delta")

> # Defines the file with the model code
> filein <- "vaccine.txt"

> # Defines the quantities to be monitored (stored)
> params <- c("beta","phi","omega","rho"," Infected","GP","Repeat.

GP"," Pneumonia ","Hospital","Death","Mild.Compl","Trt","Adverse
.events","n","gamma","delta","psi","lambda","pi","xi","eta")

> # Generates the initial values
> inits <- function (){
+ list(phi=runif (1),beta=runif(N.outcomes ,0,1),rho=c(NA ,runif (1)),

gamma=runif (2,0,1),delta=rpois (1,2),omega=c(runif (1),NA ,NA,
runif (1),NA ,runif (2,0,1)),psi=runif(N.resources ,0,10),lambda=
runif (1),eta=runif (1),xi=runif (1))

+ }

> # Defines the number of iteration , burn -in and thinning , and
runs BUGS or JAGS

> n.iter <- 100000
> n.burnin <- 9500
> n.thin <- floor((n.iter -n.burnin)/500)

> # 1. This runs OpenBUGS
> vaccine <- bugs(data , inits , params , model.file=filein ,n.chains

=2, n.iter , n.burnin , n.thin , DIC=FALSE , working.directory=
working.dir)

> # 2. This runs JAGS
> vaccine <- jags(data , inits , params , model.file=filein ,n.chains

=2, n.iter , n.burnin , n.thin , DIC=FALSE , working.directory=
working.dir , progress.bar="text")

> # Prints the summary stats and attaches the results to the R
workspace

> print(vaccine ,digits=3, intervals=c(0.025 , 0.975))

> # In OpenBUGS:
> attach.bugs(vaccine)
> # In JAGS:
> attach.jags(vaccine)

For convenience, we can save them in a file, say RunMCMC.R, which can then be
run from within the R terminal using the source command.

> source (" RunMCMC.R")

This script proceeds by first loading the relevant packages (which allow R to
interface with either OpenBUGS or JAGS); this can be done using the command
library(R2OpenBUGS) or library(R2jags), depending on the Bayesian software



2.3 Vaccine 39

of choice. Of course, for these to work, either or both OpenBUGS and JAGS need to be
installed on the user’s machine (we refer interested readers to Sect. 2.2 or the relevant
websites, where information is provided on installation and use under different oper-
ating systems). In the first part of the script, we also execute the files Utils.R and
LoadData.R, presented above, which prepare the data for either OpenBUGS or JAGS
to use. Finally, the current folder is set up as the working directory (but of course,
the user can choose any folder for this).

The next step amounts to storing all the relevant input data for the model code
into a list. In this case, we need to include all the values for the parameters of the
distributions used in the file vaccine.txt, which encodes the model assumptions.
Then, we instruct R to read the model assumptions from the file vaccine.txt and
finally we define the “parameters” to be monitored. Again, we note that with this
terminology we refer to any unobserved or unobservable quantity for which we
require inference in the form of a sample from the posterior distribution.

Before we run OpenBUGS or JAGS we need to define the list of “initial values”,
which are used to start the Markov chain(s). Notice that both BUGS or JAGS can
randomly generate initial values. However, it is generally better to closely control
this process [7]. This can be done by creating a suitable R function that stores in a list
random values for all the quantities that need initialisation. These are obtained by
specifying the underlying distribution—for instance, in this case we are generating
the initial value for φ from a Uniform(0, 1) distribution (this is reasonable as φ is a
probability and so it needs to have a continuous value between 0 and 1). In principle,
any quantity that is modelled using a probability distribution and is not observed
needs to be initialised. With reference to the model code presented above, it would
not possible to initialise the node n[1,2], because it is defined as a deterministic
function of other quantities (in this case N and V[2]).

Finally, we define the total number of iterations, the number of iterations to be
discarded in the estimate of the posterior distributions (burn-in) and the possible value
of the “thinning”.This refers to the operationof only savingone every l iterations from
the Markov Chains. This can help reduce the level of autocorrelation in the resulting
chains. For example, we could decide to store 1,000 iterations and obtain this either
by saving the last 1,000 runs from the overall process (i.e. by discarding the first 9,000
of the 10,000 iterations produced), or by running the process for 100,000 iterations,
discarding the first 9,500 and then saving one every 181 iterations. Of course, the
latter alternative involves a longer process just to end up with the same number
of samples on which to base the estimation of the posteriors. But the advantage is
that it is likely that it will show a lower level of autocorrelation, which means a
larger amount of information and thus better precision in characterising the target
distributions.

Once these steps have been executed, we can use the commands bugs or jags
to run the model. Both would call the relevant MCMC sampler in the back-
ground and produce the MCMC estimates. When the process is finished, the user
regains control of the R session. A new object, in this case named vaccine, is
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created in the current workspace. This object can be manipulated to check model
convergence, visualise the summary results (using the print method available for
both R2OpenBUGS and R2jags) and save the results (i.e. the simulated values from
the posterior distributions) to the R workspace.

For example, a summary table can be obtained as follows (here, we only present
the first few rows, for simplicity):

> print(vaccine ,interval=c(.025 ,.975) ,digits =3)
Inference for Bugs model at"vaccine.txt", fit using jags ,
2 chains , each with 10000 iterations (first 9500 discarded), n.thin = 181
n.sims = 1000 iterations saved

mu.vect sd.vect 2.5% 97.5% Rhat n.eff
Adverse.events 4384.479 2518.102 969.425 10740.800 1.005 310
Death [1,1] 1.573 1.539 0.000 5.000 1.000 1000
Death [2,1] 0.850 1.084 0.000 4.000 1.001 1000
Death [1,2] 0.000 0.000 0.000 0.000 1.000 1
Death [2,2] 0.248 0.545 0.000 2.000 1.000 1000
GP[1,1] 2045.987 896.964 654.925 4092.150 1.000 1000
GP[2,1] 1148.308 543.198 340.925 2435.475 1.000 1000
GP[1,2] 0.000 0.000 0.000 0.000 1.000 1
GP[2,2] 279.658 151.580 78.000 658.325 1.000 1000
Hospital [1,1] 0.764 0.959 0.000 3.000 1.001 1000
Hospital [2,1] 0.438 0.698 0.000 2.000 1.002 620
...

For each parameter included in the list of quantities to be monitored, this table shows
the mean and standard deviation (the columns labelled as mu.vect and sd.vect),
together with the 2.5 and 97.5% quantiles of the posterior distributions (which give
a rough approximation of a 95% credible interval).

The final columns of the table (indexed by the labels Rhat and n.eff, respectively)
present some important convergence statistics. The first one is the potential scale
reduction R̂, often termed theGelman–Rubin statistic. This quantity can be computed
when theMCMCprocess is based on running at least two parallel chains and basically
compares the within to the between chain variability. The rationale is that when this
ratio is close to 1, then there is some evidence of “convergence” because all the
chains present similar variability and do not vary substantially among each other, thus
indicating that they are all visiting a common area in the parameter’s space. Typically,
values below the arbitrary threshold of 1.1 are considered to suggest convergence to
the relevant posterior distributions.

The second one is the “effective sample size” neff . The idea behind this quantity is
that theMCMCanalysis is based on a sample of n.sims iterations (in this case, this is
1,000). Thus, if thesewere obtained using a sample of independent observations from
the posterior distributions, this would be worth exactly 1,000 data points. However,
because MCMC is a process in which future observations depends on the current
one, there is some intrinsic “autocorrelation”, which means that often a sample of
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S iterations has a value in terms of information that is actually lower. This value is
quantified by the effective sample size.When n.eff is close to n.sims, this indicates
that the level of autocorrelation is low and that in effect the n.sims points used to
obtain the summary statistics are worth more or less their nominal value. On the
other hand, when the two are very different this indicates that the MCMC sample
contains less information about the posterior.

For example, because of the autocorrelation, the 1,000 simulations used to charac-
terise the posterior distribution of the node Adverse.events are actually equivalent
to a sample made by around 310 independent observations from that posterior. In
cases such as this, when R̂ < 1.1 but n.eff is much smaller than n.sims we could
conclude that the sample obtained has indeed converged to the posterior distribu-
tion but does not contain enough information to fully characterise it. For example,
the mean and the central part of the distribution may be estimated with good preci-
sion, but the tails may not. One easy (albeit potentially computationally intensive)
workaround is to run the MCMC for a (much) longer run and possibly increase the
thinning.

Additional analyses to check on convergence may be performed, for example
by providing traceplots of the chains, e.g. as in Fig. 1.3(d), for example using the
following command

> traceplot(vaccine)

which produces an interactive traceplot for each of the monitored nodes. More
advanced graphing and analysis can be done by subsetting the object vaccine and
accessing the elements stored therein. Details on how to do this are shown, for exam-
ple, in [7].

2.3.2 Economic Model

In order to perform the economic analysis, we need to define suitable summary mea-
sures of cost and effectiveness. The total cost associated with each clinical resource
can be computed by multiplying the unit cost ψh by the number of patients consum-

ing it. For instance, the overall cost of doctor visit is
(
GP (1)

tv + GP (2)
tv

)
× ψ1. If, for

convenience of terminology, we indicate with Ntvh the total number of individuals
consuming the h-th resource under intervention t and in group v, we can then extend
this reasoning and compute the average population cost under intervention t as

ct := 1

N

1∑
v=0

8∑
h=1

Ntvhψh . (2.1)

Similarly, the total QALYs lost due to the occurrence of the relevant outcomes
can be obtained by multiplying the number of individuals experiencing them by ω j .
For example, the total number of QALYs lost to influenza infection can be computed
as Itv × ω1. If we let Mtv j indicate the number of subjects with the j-th outcome

http://dx.doi.org/10.1007/978-3-319-55718-2_1
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in intervention t and group v, we can define the population average measure of
effectiveness for intervention t as

et := 1

N

1∑
v=0

7∑
j=1

Mtv jω j . (2.2)

The results of the MCMC procedure used to run the model described above can
be obtained by simply running the scripts discussed in Sect. 2.3.1. However, they are
also available in the R object vaccine.RData, which can be directly downloaded at
http://www.statistica.it/gianluca/BCEABook/vaccine.RData. For example, this can
be uploaded to the R session by typing the following command:

> load("http :// www.statistica .it/gianluca/BCEABook/vaccine.RData ")

> ls()

[1] "Adverse.events" "Death" "GP" "Hospital"

[5] "Infected" "N" "Pneumonia" "Repeat.GP"

[9] "delta" "eta" "gamma" "lambda"

[13] "n" "n.sims" "omega" "psi"

[17] "xi"

Each of these R objects contains nsims = 1000 simulations from the relevant pos-
terior distributions. Before the economic analysis can be run, it is necessary to define
the measures of overall cost and effectiveness given in Eqs. (2.1) and (2.2), respec-
tively. This can be done using the results produced by the MCMC procedure with
the following R code. Notice that since the utilities are originally defined as quality
adjusted life days, it is necessary to rescale them to obtain QALYs.

> ## Compute effectiveness in QALYs lost for both strategies

> QALYs.inf <- QALYs.pne <- QALYs.hosp <- QALYs.adv <- QALYs.death <- matrix (0,

n.sims ,2)

> for (t in 1:2) {

QALYs.inf[,t] <- (( Infected[,t,1] + Infected[,t,2])*omega [ ,1]/365)/N

QALYs.pne[,t] <- (( Pneumonia[,t,1] + Pneumonia[,t,2])*omega [ ,4]/365)/N

QALYs.hosp[,t] <- (( Hospital[,t,1] + Hospital[,t,2])*omega [ ,5]/365)/N

QALYs.death[,t] <- (( Death[,t,1] + Death[,t,2])*omega [,6])/N

}

> QALYs.adv[,2] <- (Adverse.events*omega [ ,7]/365)/N

> e <- -(QALYs.inf + QALYs.pne + QALYs.adv + QALYs.hosp + QALYs.death)

The notation Infected[,t,1] indicates all the simulations (the first dimension
of the array) for the t-th intervention (which the for loop sets sequentially to 1
and 2 to indicate t = 0, 1, respectively) and for the first vaccination group. Sim-
ilarly, Infected[,t,2] indicates all the simulations for the t-th intervention and
for the second vaccination group. Thus, each of these two elements effectively pro-
duces the value Mtv1 (where j = 1 indicates the first outcome) and consequently, the
code ((Infected[,t,1] + Infected[,t,2])*omega[,1]/365)/N does identify

http://www.statistica.it/gianluca/BCEABook/vaccine.RData
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the quantity 1
N

∑1
v=0 Mtv1ω1. Following a similar reasoning for all the other out-

comes and summing them all up, we do obtain the measure of effectiveness, which
is stored in a matrix e with nsims rows and 2 columns (one for each intervention
considered).

We can follow a similar strategy to identify the costs associated with each inter-
vention. First we define the number of “users” (which we indicated earlier as Ntvh

and according to the resource depends on the number of doctor (general practitioner)
visits, hospitalisations, infections, repeated hospitalisations, or individuals at risk);
then we multiply these by the associated cost (contained in the variable psi). Then
we sum all the components to derive the overall average cost for each treatment
strategy.

> ## Compute costs for both strategies

> cost.GP <- cost.hosp <- cost.vac <- cost.time.vac <- cost.time.off <- cost.

trt1 <- cost.trt2 <- cost.otc <- cost.travel <- matrix (0,n.sims ,2)

> for (t in 1:2) {

cost.GP[,t] <- (GP[,t,1]+GP[,t,2]+ Repeat.GP[,t,1]+ Repeat.GP[,t,2])*psi

[,1]/N

cost.hosp[,t] <- (Hospital[,t,1]+ Hospital[,t,2])*psi[,2]/N

cost.vac[,t] <- n[,2,t]*psi[,3]/N

cost.time.vac[,t] <- n[,2,t]*psi[,4]/N

cost.time.off[,t] <- (Infected[,t ,1]+ Infected[,t,2])*psi[,5]*eta*lambda/N

cost.trt1[,t] <- (GP[,t,1]+GP[,t,2])*gamma [,1]*psi[,6]* delta/N

cost.trt2[,t] <- (Repeat.GP[,t,1]+ Repeat.GP[,t,2])*gamma [,2]*psi[,6]* delta/

N

cost.otc[,t] <- (Infected[,t,1]+ Infected[,t,2])*psi[,7]*xi/N

cost.travel[,t] <- n[,2,t]*psi[,8]/N

}

> c <- cost.GP + cost.hosp + cost.vac + cost.time.vac + cost.time.off + cost.

trt1 + cost.trt2 + cost.travel + cost.otc

At this point we are ready to run the Decision Analysis and the Uncertainty
Analysis, which BCEA can take care of. We present these parts in Chaps. 3 and 4.

2.4 Smoking Cessation

In this example, we will consider a set T = {t = 0, 1, 2, 3} of T = 4 potential inter-
ventions to help smoking cessation; in particular, t = 0 represents no contact (status
quo); t = 1 is a self-help intervention; t = 2 is individual counselling; and t = 3
indicates group counselling. The interest is in the joint evaluation of the T interven-
tions. The analysis will be conducted in the form of a cost-consequence analysis,
and as such costs and health effects will not be correlated as it usually happens in
the wider framework of a cost-utility analysis. However, it should be noted that there

http://dx.doi.org/10.1007/978-3-319-55718-2_3
http://dx.doi.org/10.1007/978-3-319-55718-2_4
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is no substantive difference between a cost-consequence and cost-utility analysis, as
argued in [8]. Therefore, the costs and health effects will be analysed separately and
then jointly to produce a summary of the comparative cost-effectiveness profiles of
the interventions considered.

The available clinical evidence is made by a set of trials in which some com-
binations of the available interventions have been considered. However, not all the
possible pairwise comparisons are observed. The use of aBayesianmodel embedding
some suitable exchangeability assumptions allows the estimation of a suitable mea-
sure of effectiveness for all the interventions (using all the available evidence for each
t ∈ T ) and for all the possible pairwise comparisons. This is a meta-analysis tech-
nique generally referred to as Mixed Treatment Comparison (MTC), which expands
the concepts of Bayesian evidence synthesis to generate a network of evidence that
can be used to produce the required estimations. More detailed discussion is pre-
sented in [9] and [10]. The data used in this example were originally reported in
[11].

2.4.1 (Bayesian) Statistical Model

Assumptions

The dataset includes N = 50 data points nested within S = 24 studies . For each
study arm i = 1, . . . , N we observe a variable ri indicating the number of patients
quitting smoking out of a total sample size of ni individuals. In addition, we also
record a variable ti taking on the possible values 1, 2, 3, 4, indicating the treatment
associated with the i-th data point. The nesting within the trial is accounted for by a
variable si taking values in 1, . . . , S.

Most studies are simple head-to-head comparisons (i.e. comparing only two
interventions), while two of the them are multi-arm trials (the first one involving
t = 1, 3, 4, and the second one comparing t = 2, 3, 4). Most trials compare one of
the active treatments t = 2, 3, 4 against the control treatment “No intervention”. Five
of the studies consider comparisons between two or more active treatments. The full
dataset is presented in Table2.2.

Figure2.1 shows the description of the “network” of data available—the process
of combining this information into a consistent framework is often referred to as
“Network Meta-Analysis” (NMA).

For each study arm we model the number of observed quitters as the realisation
of a Binomial random variable:

ri ∼ Binomial (pi , ni )

where pi is the specific probability of smoking cessation. The main objective of the
model is to use the available data to derive a pooled estimation forπt , the intervention-
specific probability of smoking cessation.
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Table 2.2 The dataset containing information on the S = 24 trials on smoking cessation. The data
were originally reported in [11]

Study (si ) Intervention (ti ) Quitters (ri ) Participants (ni ) Comparator (ci )

1 1 9 140 1

1 3 23 140 1

1 4 10 138 1

2 2 11 78 2

2 3 12 85 2

2 4 29 170 2

3 1 75 731 1

3 3 363 714 1

4 1 2 106 1

4 3 9 205 1

5 1 58 549 1

5 3 237 1561 1

6 1 0 33 1

6 3 9 48 1

7 1 3 100 1

7 3 31 98 1

8 1 1 31 1

8 3 26 95 1

9 1 6 39 1

9 3 17 77 1

10 1 79 702 1

10 2 77 694 1

11 1 18 671 1

11 2 21 535 1

12 1 64 642 1

12 3 107 761 1

13 1 5 62 1

13 3 8 90 1

14 1 20 234 1

14 3 34 237 1

15 1 0 20 1

15 4 9 20 1

16 1 8 116 1

16 2 19 149 1

17 1 95 1107 1

17 3 143 1031 1

18 1 15 187 1

(continued)
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Table 2.2 (continued)

Study (si ) Intervention (ti ) Quitters (ri ) Participants (ni ) Comparator (ci )

18 3 36 504 1

19 1 78 584 1

19 3 73 675 1

20 1 69 1177 1

20 3 54 888 1

21 2 20 49 2

21 3 16 43 2

22 2 7 66 2

22 4 32 127 2

23 3 12 76 3

23 4 20 74 3

24 3 9 55 3

24 4 3 26 3

Fig. 2.1 A graphical
representation of the network
of evidence for the smoking
cessation studies

We use the following strategy. First we model the probabilities pi using a struc-
tured formulation

logit(pi ) = μsi + δsi ,ti
(
1 − I{ti = bsi }

)
.

The parameter μsi represents a study-specific baseline value, which is common to
all interventions being compared in study si . Notice that for each i = 1, . . . , N , si
takes on the integer values in [1; S]. Thus the vector μ comprises of S elements.
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The parameter δsi ,ti represents the incremental effect of treatment ti with respect to
the reference intervention being considered in the study si . Specifically,we assumeby
common convention that the intervention associated with the minimum label value
found in each study, is the reference intervention for that study. This formulation
allows for a clear specification of study-specific effects and can be easily extended to
include study-treatment interaction. The reference (or baseline) intervention for each
study is indicated by bsi ; thus δsi ,bsi = 0, with the effect of the baseline intervention
for each study s represented by μs . Consequently, in each study s we assume that the
comparator’s effect is the study baseline and that the incremental effect of treatment
t is represented by δs,t if t �= bs .

The parameters in μ are given independent minimally informative Normal distri-

butionsμs
iid∼ Normal(0, v), where v is a large fixed value identifying the initial value

of the variance of the distributions. On the contrary, we assume that the parameters
δsi ,ti represent “structured” effects

δsi ,ti ∼ Normal(mdi ,σ
2)

with
mdi = dti − dbsi .

The parameters d = (d1, . . . , dT ) represent some pooled intervention-specific effect
and the mean mdi is computed as the average difference between the effect for the
intervention in row i and the effect for the reference intervention bsi in study si . We
assume that d1 = 0, i.e. that the reference intervention has no effect other than the

baseline level, while we model di
iid∼ Normal(0, v) for i = 2, . . . , T .

The parameters d are defined on the logit scale, and thus in order to compute the
estimated probability of smoking cessation on the natural scale for each treatment we
need to rescale them.Weproceed by estimating the effect for the baseline intervention
t = 1. Since d1 was set to 0, the treatment effect π0 on the logit scale is given by
the average of the baseline effects in the trials including the intervention t = 1. The
treatment effects πt , t = 1, . . . , T are calculated as:

π0 = 1∑S
s=1 I{bs = 1}

∑
s:bs=1

μs

logit(πt ) = π0 + dt , t = 1, . . . , T

where s : bs = 1 indicates the subset of studies including the reference intervention
arm t = 1 as a comparator. The expression

∑S
s=1 I{bs = 1} indicates the number of

studies including treatment t = 1, since it is the sum of the indicator function over
the trials including that intervention as the baseline comparator.
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2.4.1.1 Running the MTC Model in JAGS

We run the MTC model in JAGS (although the code presented below will also work
in OpenBUGSwith only minor modifications—cfr. Sect. 2.3.1.4). To run the Bayesian
evidence synthesis model, it is necessary to store the model specification in a text
file that will be then interpreted by JAGS. This file contains the description of the
Bayesian model in terms of the stochastic and deterministic relationships between
the variables building the model network or graph (more precisely, a direct acyclic
graph, or DAG).

The model is an adaptation from the specifications reported by Welton et al.
(2012) and the NICE Decision Support Unit (2013) [9, 10]. The JAGS code used for
the analysis of the smoking cessation data is shown below:

### JAGS model ###
model{

for(i in 1:nobs){
r[i]~dbin(p[i],n[i])
p[i] <- ilogit(mu[s[i]]+ delta[s[i],t[i]])
delta[s[i],t[i]] ~ dnorm(md[i],tau)
md[i] <- d[t[i]]-d[b[s[i]]]

}
for(i in 1:ns){

mu[i]~ dnorm (0 ,.0001)
AbsTrEf[i] <- ifelse(b[i]==1,mu[i],0)

}
pi0 <- sum(AbsTrEf [])/incb
tau <- pow(sd ,-2)
sd~dunif (0.00001 ,2)
d[1] <- 0
for(k in 2:nt){

d[k]~ dnorm (0 ,.0001)
}
for(j in 1:nt){

logit(pi[j]) <- pi0+d[j]
for(k in 1:nt){

lor[j,k] <- d[j]-d[k]
log(or[j,k]) <- lor[j,k]
rr[j,k] <- pi[j]/pi[k]

}
}

}

To run the analysis it is necessary to save the model in a plain text file. No specific
extensions are required and in this example we will save the file with the name
smoking_model_RE.R in the directory from which we run R. We will assume that
the csv file containing the data inputs (i.e. smoking_data.csv) is in the same folder.
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The directory R is using can be displayed using the command getwd() and can be
modified by specifying the desired address as the argument of the function setwd,
i.e. setwd("PATH_TO_NEW_DIRECTORY").

It is necessary to import the data into R and to pre-process the inputs prior to
running the Bayesian model. This can be done by running the following code:
> # load the R2jags package and the the data file
> library(R2jags)
> smoking=read.csv(" smoking_data.csv",header=TRUE)

> # specify the name of the model file
> model.file=" smoking_model_RE.R"

> # copy smoking data.frame columns to local variables
> attach(smoking)
> nobs=nobs; s=s; t=i; r=r_i; n=n_i; b=b_i+1
> detach(smoking)

> # number of trials
> ns=length(unique(s))
> # number of comparators
> nt=length(unique(t))
> # number of observations
> nobs=dim(smoking)[1]
> # how many studies include baseline
> incb=sum(table(s,b)[,1]>0)

The package R2jags is necessary to connect R and JAGS, and is loaded with the
command library(R2jags). The command read.csv is used to read into R the
data inputs contained in the csv file smoking_data.csv, which will be saved as a
data.frame object. Since the quantities need to be available in the Rworkspace, they
are saved as new R variables. The baseline treatment is incremented by one when
saving it with the command b=b_i+1, so that the comparator t = 0 (no intervention)
is associated with the index 1, the intervention t = 1 (self-help) with the index 2, and
so on. This is because both R and JAGS index arrayswith the first element starting from
1 (as opposed to 0). The total number of studies, the arm index for each observation
in the respective trial, the number of comparators and observations and the number of
trials including the baseline reference treatment, in this case t = 0 (no intervention),
are also calculated from the data.

The jags function used to run the Bayesian evidence synthesis model requires
several inputs:

• data: a named list including all the inputs needed by the model;
• inits: a list of initial values or a function generating the initial values for (a
subset of) the stochastic parameters in the model. In this example, we set inits
to NULL, which means that JAGS will choose at random the initial values for all
the parameters in the model. The initial values of the parameters will be randomly
drawn from the space of values they can assume, determined by their stochastic
definition;

• parameters.to.save: a vector of variables to monitor, i.e. the parameters of
interest. JAGSwill save the output of the simulations from the associated posterior
distributions only of the monitored parameters;
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• model.file: the name or address of the file containing the model. Since we pre-
viously saved the model in the R as the file smoking_model_RE.R, the name of
this file will be the value passed to this argument;

• n.chains: the number of parallel Markov chains to run. It is highly recommended
that these are at least 2, to allow for checking the convergence and the mixing of
the chains;

• n.iter: the number of iterations to perform for each chain from initialisation;
• n.thin: the thinning rate, i.e. after how many iterations a single value form the
posterior distribution is saved, discarding the others;

• n.burnin: the length of the burn-in, i.e. the number of simulations to discard after
the initialisation of the chains before saving any value. If not specified as in this
case, by default it is set to n.iter/2.

More details on how to run a JAGS model and then post-process its results for the
purposes of health economic analysis are given in [7].

At this point, all the necessary data inputs have been pre-processed and it is
possible to run the MTC analysis model:
> # define data and parameters to monitor
> inputs=list("s","n","r","t","ns","nt","b","nobs","incb","na")
> pars=c("rr","pi","p","d","sd","T")

> smoking_output <- jags(data=inputs ,inits=NULL ,parameters.to.save=pars ,
model.file=model.file ,n.chains=2,n.iter =10000 ,n.thin =10)

The jags function will save the output of the model in the rjags object which
we called smoking_output. A summary of the model results can be printed out by
executing the following line of code:

> print(smoking_output)
Inference for Bugs model at "smoking_model_RE.txt", fit using jags ,
2 chains , each with 20000 iterations (first 10000 discarded), n.thin = 10
n.sims = 2000 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
d[1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1
d[2] 0.499 0.395 -0.278 0.245 0.501 0.757 1.306 1.001 2000
d[3] 0.843 0.239 0.383 0.684 0.833 0.995 1.338 1.000 2000
d[4] 1.107 0.446 0.248 0.817 1.094 1.391 2.011 1.001 2000
pi[1] 0.062 0.012 0.041 0.054 0.061 0.069 0.086 1.002 1000
pi[2] 0.100 0.031 0.053 0.078 0.096 0.117 0.172 1.001 2000
pi[3] 0.132 0.021 0.096 0.118 0.131 0.145 0.174 1.003 730
pi[4] 0.169 0.051 0.087 0.134 0.164 0.199 0.287 1.001 2000
rr[1,1] 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1
rr[2,1] 1.685 0.635 0.774 1.257 1.585 2.003 3.232 1.001 2000
rr[3,1] 2.200 0.497 1.416 1.858 2.129 2.469 3.346 1.000 2000
rr[4,1] 2.878 1.181 1.254 2.090 2.657 3.432 5.677 1.001 2000
rr[1,2] 0.676 0.252 0.309 0.499 0.631 0.795 1.292 1.001 2000
rr[2,2] 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1
rr[3,2] 1.454 0.551 0.672 1.054 1.366 1.726 2.814 1.001 2000
rr[4,2] 1.849 0.814 0.727 1.291 1.691 2.253 3.865 1.001 2000
rr[1,3] 0.476 0.103 0.299 0.405 0.470 0.538 0.706 1.000 2000
rr[2,3] 0.785 0.295 0.355 0.579 0.732 0.949 1.488 1.001 2000
rr[3,3] 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1
rr[4,3] 1.324 0.489 0.596 0.989 1.249 1.559 2.464 1.001 1700
rr[1,4] 0.403 0.159 0.176 0.291 0.376 0.478 0.798 1.001 2000
rr[2,4] 0.646 0.288 0.259 0.444 0.591 0.774 1.375 1.001 2000
rr[3,4] 0.856 0.316 0.406 0.641 0.801 1.011 1.677 1.001 1700
rr[4,4] 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1
sd 0.601 0.128 0.395 0.510 0.589 0.676 0.896 1.007 2000
deviance 281.227 9.952 263.929 274.289 280.731 287.548 302.935 1.001 2000

For each parameter , n.eff is a crude measure of effective sample size ,
and Rhat is the potential scale reduction factor (at convergence , Rhat =1).
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DIC info (using the rule , pD = var(deviance)/2)
pD = 49.5 and DIC = 330.8
DIC is an estimate of expected predictive error (lower deviance is better).

The table above reports for each monitored variable the estimated mean, standard
deviation, several percentiles of the posterior distributions (2.5, 25, 50, 75 and97.5%),
the convergence Gelman–Rubin R̂ diagnostic and the effective sample size n.eff.
The latter gives an indication of the presence of autocorrelation within the chains by
quantifying the information contained in the vector of simulations used to estimate
every parameter. The percentiles can be used to approximate a credibility interval
(CrI), which is an interval of values containing a posterior probability mass equal to
0.95; assuming the unimodality of the distributions (as it is the case), the posterior
95% CrI can be approximated by taking the 2.5 and 97.5% percentiles as the lower
and upper bound, respectively.1

The diagnostics measures indicate a good convergence of the model, with the
Gelman–Rubin R̂ statistics being below 1.1 for all the measures. In addition the
effective sample size does not signal the presence of autocorrelationwithin the chains.

From this output we can observe that the most effective treatment is t = 4 (Group
counselling) with an associated probability of patients quitting smoking equal to
π4 = 0.17 (95% CrI [0.09; 0.29]). It is followed by: t = 3 (Individual counselling)
associated with a probability of quitting of π3 = 0.13 (95% CrI [0.10; 0.17]); t = 2
(Self-help) with a probability of π2 = 0.10 (95% CrI [0.05; 0.17]); and lastly t = 1
(No intervention) with an estimated probability of quitting equal to 0.06 (95% CrI
[0.04; 0.09]). The results are represented graphically in Fig. 2.2. It can be observed
that the uncertainty associated with the effect size of group counselling is high, with
a 95% credible interval wider than the ones for the other interventions.

The plot in Fig. 2.2 can be reproduced using the following code:
> attach.jags(smoking_output)
> tr.eff=data.frame(t(apply(pi ,2,quantile ,c(0.025 ,0.975))))
> names(tr.eff)=c("low","high")
> treats=c("No intervention ","Self -help"," Individual counselling

","Group counselling ")
> tr.eff=cbind(tr.eff ,mean=smoking_output$BUGSoutput$mean$pi ,

interventions =factor(treats ,levels=treats))
> detach.bugs()

1It should be noted that the estimation of the “effective number of parameters” pD is controversial.
The definition reported in [12] and in [3], which is also the one adopted in BUGS, should be preferred
instead of the one reported by R2jags [13]. This statistic is calculated by R2jags as:

pD = Var[D̄model]/2
while both [12] and in [3] report that the preferred definition is:

pD = D̄model − D(̂θ)

where D̄model is the posterior deviance of the model and D(̂θ) is the deviance in correspondence
of the estimated posterior mean of the vector of parameters θ. It should be noted that the definition
of pD has a direct impact on the deviance information criteria (DIC), which is an index commonly
used for model comparisons, defined as DIC = D̄model + pD = D(̂θ) + 2pD .
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Meta−analysis results

No intervention

Self−help

Individual counselling

Group counselling

0.05 0.1 0.15 0.2 0.25

Probability of smoking cessation

Fig. 2.2 Mean and 95% credible intervals (CrI) of the re-estimated treatment effects of each treat-
ment. Group counselling resulted in having the best estimated efficacy, followed by individual
counselling, self-help and no intervention. The credible interval associated with the group coun-
selling estimate was substantially wider than the ones for the other comparators

> ggplot(tr.eff) + geom_point(aes(y=mean ,x=interventions )) +
geom_errorbar (aes(x=interventions ,ymin=low ,ymax=high),width
=0.15) + coord_flip () + theme_bw () + labs(x="",y=" Probability
of smoking cessation",title ="Meta -analysis results ")

The simulations from the posterior distributions of the parameters that will be used
in the economic model are stored in the BUGSoutput element of the rjags output
object. The vectors of simulations can be attached to the current workspace by using
the command attach.jags, which makes the values available in the workspace.2

As the economic model will be based on the 2,000 values obtained in JAGS, it is
necessary to extract these values from the output object. In the following code, we
attach the JAGS output to the workspace and copy the values simulated from the
posterior distributions of the estimated probability of cessation for each treatment
π = (π1,π2,π3,π4) in a 2000 × 4 matrix pi. The latter will be used as inputs for
the economic model.

> attach.jags(smoking_output)
> pi <- pi

2When using OpenBUGS and R2OpenBUGS, the object can be attached to the R workspace using the
command attach.bugs(object) or attach.jags(object), respectively.
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2.4.2 Economic Model

Similarly to the Vaccine example, we need now to include other variables and, gener-
ally, post-process the output of the Bayesian model to obtain the quantities necessary
to perform the Decision and Uncertainty Analyses.

For example, in this case no data on the costs were provided in addition to the
effectiveness reported in [11]. Thus, for the purposes of this example, we extracted
information published in [14], who reported costs for different class of interventions
for smoking cessation. The costs in British pounds were taken from [15]. Although
the interventions reported in [11] were not described in detail, a comparison of the
meta-analysis results with the comparative efficacy measures given in [14] showed
consistent results, indicating substantial similarity between the interventions in the
two studies.

The costs for the comparators included in the analysis are composed as follows:
No intervention:

• No costs: £0;

Self-help:

• Nicotine replacement therapy (NRT) for five weeks (35 patches at £1.30 each);

Individual counselling:

• NRT for five weeks (35 patches at £1.30 each);
• Five clinic visits (£10.00 each);

Group counselling:

• NRT for five weeks (35 patches at £1.30 each);
• Five group visits (£19.46 each).

The total average costs per intervention were: £0 for t = 0; £45.50 for t = 1;
£95.50 for t = 2; and £142.80 for t = 3. Due to the expected variability associ-
ated to the compliance to the interventions in general practice and to the potential
need of additional counselling and pharmacological treatment for some patient, it is
reasonable to describe the uncertainty associated with the costs with a probability
distribution.

For simplicity, a triangular distribution is associated with all treatment costs
(excluding the reference “No intervention” comparator), with limits defined by the
average intervention cost±30%.The triangular distribution is a triangle-shaped curve
with a null associated density of probability outside the specified lower and upper
bounds. It increases linearly from the lower bound to its mode, and decreases linearly
up to the upper limit. A graphical representation is given in Fig. 2.3. A real-world
analysis could be based on more appropriate assumptions for the cost distributions.

The distributions of the costs need to be simulated to be inputted in the cost-
effectiveness model. The reference comparator t = 0 is assumed not to have an
associated costs, i.e. its cost is always null. In formal terms, a degenerate proba-
bility distribution which assumes the value zero with probability equal to one is
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Fig. 2.3 The distribution represents the uncertainty associated with the costs for the self-help
intervention. The curve is shaped as a triangle, hence its name. In this case the mean is equidistant
to the lower and upper bound, thus corresponding to the mean (and median) of the distribution

assigned to this parameter. The costs for the other interventions are simulated from
the intervention-specific triangular distributions described above. Functions to sam-
ple from a triangular distribution are not included in the default libraries of R, thus
the triangle package needs to be installed to use the following code. The package
is available on CRAN, and can be installed as usually from a GUI or by inputting
the following command:

> install.packages (" triangle ")

The code to obtain the simulated values from the probability distributions of the
costs, stored in the cost matrix, is presented below. Since we populated the matrix
with zeroes when creating the object, the costs for t = 0 are automatically assigned.
The function rtriangle accepts as arguments the number of simulations needed, the
lower bound of the distribution a and the upper bound b. If not specified, the mode
of the distribution c is calculated by default as the average of the two extremes; since
we are using symmetric distributions and thus the mode corresponds to the mean,
there is no need to specify this parameter.

Table 2.3 Life expectancy increments gained by smoking cessations per gender and age at quitting.
Source: [16]

Life years gained relative to continuing smokers

Age at quitting Men Women

35 8.5 7.7

45 7.1 7.2

55 4.8 5.6

65 4.6 5.1
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Table 2.4 Proportion of smokers per age group. The data on smoking statistics have been published
by the charity Action on Smoking and Health in October 2013, reporting the prevalence of cigarette
smoking in the UK. Source [17]

Age group Proportion of smokers (%)

16–19 15

20–24 29

25-34 27

35–49 23

50–59 21

60+ 13

> library(triangle)
> cost.t1 =45.5
> cost.t2 =95.5
> cost.t3 =142.8
> c=matrix(data=0,nrow =2000, ncol =4)
> c[,2]= rtriangle (2000,a=cost.t1*.8,b=cost.t1 *1.2)
> c[,3]= rtriangle (2000,a=cost.t2*.8,b=cost.t2 *1.2)
> c[,4]= rtriangle (2000,a=cost.t3*.8,b=cost.t3 *1.2)

As for the measure of effectiveness, we can use data from [16] on the increments
in life expectancy gained. The authors analysed the increments in life expectancy
observed in a US survey, reported in Table2.3.

Data on the prevalence of smoking in the British setting were obtained from the
2013 report of the charity Action on Smoking and Health (ASH) [17]. The data have
been summarised in Table2.4. A split by both gender and age was not included, but
the overall proportions of men and women smoking were reported as 22 and 20% in
2012, respectively. This means that the proportion of men among smokers was 52%.
It has been assumed that the proportion was not different among the age groups due
to lack of data.

The distribution by age of the population in the UK was taken from the 2011
census by the Office of National Statistics (ONS). The data tables are available from
the ONS website.3

The data for the life years gained reported in [16] did not include individuals
younger than 35 or older than 65 years. For simplicity, we assume here that the gain
for quitters younger than 35 years was the same observed for the quitters at 35 years
and that individuals aged 65–80 years quitting had the same gain as 65 years old
quitters (Table2.5).

The average life expectancy was calculated using a simulation-based approach.
For each of the 2,000 simulations, 1,000 smoking individuals were drawn from the
distribution of smokers per age, calculated on the basis of the age distribution in the
UK and the proportion of smokers per age group. The gender was simulated from

3At the address http://www.ons.gov.uk/ons/publications/re-reference-tables.html?edition=tcm%
3A77-270247.

http://www.ons.gov.uk/ons/publications/re-reference-tables.html?edition=tcm%3A77-270247
http://www.ons.gov.uk/ons/publications/re-reference-tables.html?edition=tcm%3A77-270247
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Table 2.5 Data inputs for the simulation of life years gained by smoking cessation. The dataset is
contained in the file smoking_cessation_simulation.csv

Age Population Propotion
of smokers

Smokers Proportion
of age group

Male life
years

Female life
years

15–19 3,997,000 0.15 599,550 0.08 8.50 7.70

20–24 4,297,000 0.29 1,246,130 0.09 8.50 7.70

25–29 4,307,000 0.27 1,162,890 0.09 8.50 7.70

30–34 4,126,000 0.27 1,114,020 0.08 8.50 7.70

35–39 4,194,000 0.23 964,620 0.09 8.50 7.70

40–44 4,626,000 0.23 1,063,980 0.09 7.10 7.20

45–49 4,643,000 0.23 1,067,890 0.09 7.10 7.20

50–54 4,095,000 0.21 859,950 0.08 4.80 5.60

55–59 3,614,000 0.21 758,940 0.07 4.80 5.60

60–64 3,807,000 0.13 494,910 0.08 4.60 5.10

65–69 3,017,000 0.13 392,210 0.06 4.60 5.10

70–74 2,463,000 0.13 320,190 0.05 4.60 5.10

75–79 2,006,000 0.13 260,780 0.04 4.60 5.10

a Binomial model based on the split reported in the ASH smoking statistics and the
life years reported in [16] were assigned.

To obtain the 2,000 simulations from the posterior distribution of the average
life years gained by quitters, the code below has been used. Notice that, in order to
use the code, the file smoking_cessation_simulation.csv needs to be available
in the same directory from which R is run, or the correct address to the file needs
to be specified. Each of the 1,000 individuals in the cohorts are associated with
a simulated age. This is drawn from a multinomial distribution with a vector of
probabilities equal to the observed frequency for each age group. The gained life
years are calculated for each group based on the gender split. The results are then
averaged over the sample, to obtain a vector composed by 2,000 elements. To repeat
the process 4 times, obtaining 2,000 simulations for each treatment, 8,000 samples
from the multinomial distribution are taken. These are successively arranged in a
matrix with 2,000 rows and 4 columns.

> data=read.csv(file=" smoking_cessation_simulation .csv")
> life.years=with(data ,rmultinom (2000*4 ,1000 , pr.age) *

(.52* Male.ly +.48* Female.ly))
> life.years=matrix(apply(life.years ,2,sum)/1000,

nrow =2000, ncol =4)

At this point it is possible to obtain the life years gained for each intervention. It is
only necessary to multiply the probability of smoking cessation π for each treatment
by the average number of life years gained by quitting. This can be obtained by a
multiplication of the two quantities:

> e=pi*life.years
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Again, this process is completed by running BCEA and performing the Decision
and Uncertainty Analysis (as described in details in Chaps. 3 and 4).
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