
Chapter 2
Fundamentals of Evolutionary Computation

Abstract The key evolutionary approaches used in the next chapters, including
genetic algorithms, quantum-inspired evolutionary algorithms, ant colony optimiza-
tion, particle swarm optimization and differential evolution are presented.

2.1 Introduction

Evolutionary algorithms (EAs) refer to a generic metaheuristic optimization
algorithms characterized by implementations looking at a guided random search of
an iterative process [49, 59, 111, 122]. EAs include a family of heuristic algorithms,
called metaheuristics [10–12]. As a branch of soft computing referring to less exact
calculations [115], EAs has become a well-known research area in computer science
[82, 111].

Inspired by natural selection [26] and molecular genetics [18], EAs started with
three research topics in the 1950s and 1960s: genetic algorithms (GAs) developed by
Holland [58], evolution strategies (ES) invented by Rechenberg [102] and Schwefel
[106, 107] and evolutionary programming (EP) introduced by Fogel et al. [40], and
has a tremendous growth in the past three decades as witnessed by the increasing
number of international conferences, workshops, papers, books and dissertations as
well as more and more journals dedicated to the field. Historically, one can divide
the EAs research into two groups: classic EAs and recently developed EAs. The
former consists of GAs, ES, EP, and genetic programming (GP) [71–73], which were
developed in the 1990s. The latter is still in a stage of rapid development and includes
quantum-inspired evolutionary algorithms (QIEAs) [54, 119], simulated annealing
(SA) [20, 70], ant colony optimization (ACO) [30], particle swarm optimization
(PSO) [66, 90, 109], differential evolution (DE) [27, 98], estimation of distribution
algorithms (EDAs) [74, 94], biogeography-based optimization (BBO) [110, 111],
cultural algorithms (CA) [103], tabu search (TS) [48], artificial fish swarm algorithm
(AFSA) [76, 87], artificial bee colony algorithm (ABC) [61], firefly algorithm (FA)
[118], bacterial foraging optimization algorithm (BFOA) [93], teaching learning
based optimization algorithm (TLBO) [100], shuffled frog leaping algorithm (SFL)
[37].

© Springer International Publishing AG 2017
G. Zhang et al., Real-life Applications with Membrane Computing,
Emergence, Complexity and Computation 25, DOI 10.1007/978-3-319-55989-6_2

11

12 2 Fundamentals of Evolutionary Computation

Underlying the different variants of EAs, there are several common features: a
fundamental algorithm structure show in Algorithm1 [2, 119], a single solution or
a population of tentative solutions, guided random search by an evaluation func-
tion called fitness function, iterative progress toward better solutions to the problem
[36, 111]. In Algorithm1, an EA starts from a single or a population of candidate
solution(s) P(t) (also called individual(s)), where t represents the number of evo-
lutionary generations, to a problem, and then goes to an iterative search process,
and finally stops when a single or a set of satisfactory solution(s) is found. The
search process consists of the evaluation of candidate solution(s), the variation of
individual(s) from P(t) to Q(t) by using various evolutionary mechanisms and the
generation of the offspring individual(s) P(t+1). Defining practical and robust opti-
mization methodologies, EAs have shown outstanding characteristics, such as global
search capabilities, flexibility, robust performance and adaptability, in the process of
solving complex problems with combinations, discontinuities, constrains, multiple
or many objectives, uncertainties or dynamics [1, 2, 36, 111]. So EAs have been
increasinglywidely applied to problems ranging from practical applications in indus-
try and commerce to leading-edge scientific research [36, 60].

Algorithm 1 EA Fundamental algorithm structure
Require: A single or a population of initial solution(s) P(t), t = 0
1: Evaluate P(t)
2: while (not termination condition) do
3: Q(t) ← Vary P(t)
4: Evaluate Q(t)
5: Produce P(t + 1) from Q(t)
6: t ← t + 1
7: end while

This chapter is devoted to five EA variants, GAs, QIEAs, ACO, PSO and DE,
which are the foundation of membrane algorithms and their engineering applica-
tions described in the next two chapters. Thus, the following sections focus on the
presentation of fundamental concepts and principles, rather than on demonstrating
experiments and results. One can note that the EAs discussed in this chapter are used
to solve optimization problems.

2.2 Genetic Algorithms

As genetic algorithms (GAs) are the earliest, most well-known, and most widely
used EAs, there are numerous publications describing them [2, 36, 68, 111]. The
aim of this section is to briefly highlight the fundamental concepts and evolution
principle so as to make it easy for readers to understand the following four EA
variants, QIEAs, ACO, PSO and DE, and membrane algorithms in the next chapter

2.2 Genetic Algorithms 13

because the notions, operations and procedure underlying GAs are the basics of other
types of EAs.

Inspired by natural selection [26] andmolecular genetics [18], Holland introduced
GAs in the mid-1970s [58], on the basis of the influential works of Fraser [41], Box
[14], Friedberg [42], Friedberg et al. [43] and Bremermann [16] in the late 1950s.
In a GA, a potential or candidate solution to an optimization problem is called an
individual; the encoding (binary, numeric, or others) of an individual is known as
its genome or chromosome. A population is a set consisting of a certain number of
individuals. A chromosome is composed of a sequence of genes; specific genes are
known as genotypes, and the problem-specific parameter representing by a genotype
is termed a phenotype; the value of a gene is called an allele. The individuals at
the current generation are named parents and correspondingly the new individuals
produced by them are called children or offspring. The function used to evaluate
an individual is called fitness function and correspondingly the function value with
respect to the individual is called its fitness, which indicates the quality of the solution
in the context of a given problem. The whole process of searching for an optimal
solution to a problem is called evolution [68].

Underlying various variants of GAs, there is a common algorithm structure shown
in Algorithm2, where each step is detailed as follows:

Algorithm 2 GA Algorithm structure
Require: A group of random generated initial solutions P(t), t = 0
1: Evaluate P(t)
2: while (not termination condition) do
3: Select individuals from P(t) to form Q1(t) for crossover
4: Crossover Q1(t) to form Q2(t)
5: Mutate Q2(t) to form Q3(t)
6: Evaluate Q3(t)
7: P(t + 1) ← Q3(t)
8: t ← t + 1
9: end while

Step 0: An initial population P(t), t = 0, consisting of a certain number of individ-
uals is randomly generated. Each individual is composed of a sequence of codes
such as binary, numeric and permutation codes.

Step 1: Each individual in P(t) is evaluated by using the fitness function associated
with the optimization problem. Thus, each individual has assigned a fitness value.

Step 2: The termination criterion may be the prescribed maximal number of evolu-
tionary generations or the preset difference between the best solution searched
and the optimal/desired solution of the optimization problem.

Step 3: Determine each pair of individuals in P(t) to perform crossover opera-
tion. As usual the roulette-wheel selection with respect to fitness, which is also
called fitness-proportional selection or fitness-proportionate selection, is used.
The selected population is represented as Q1(t).

14 2 Fundamentals of Evolutionary Computation

Step 4: Swap partial genes of each pair of selected individuals in Q1(t) with each
other by a probabilistic value called crossover probability. The crossovered pop-
ulation is denoted as Q2(t). It is well known that the crossover probability should
be assigned a bigger value.

Step 5: Each gene of each individual in Q2(t) is mutated by a probabilistic value
called mutation probability, which is usually set to a smaller value. The mutated
population is denoted as Q3(t). The uniform mutation is a popular approach.

Step 6: This step is similar to Step 1, i.e., each individual in Q3(t) is evaluated.
Step 7: The individuals in Q3(t) are assigned to P(t+1) as the offspring individuals.
Step 8: The evolutionary generation t increases by 1.

The GA research was mainly developed in the past decades with respect to encod-
ing techniques, selection, crossover operators, mutation operators, fitness functions,
hybridization with other techniques and theoretical analysis. As usual the individ-
ual representation, selection methods, crossover and mutation operators, and fitness
functions depend on the optimization problem. The individuals in GAs could be rep-
resented by using various types of codes, such as binary and m-ary codes, numeric
values, permutation codes and quantum-inspired bits. The analysis of various rep-
resentations can be found in [13, 54, 95, 104]. Most of the researches on GAs are
related to the modification of selection, crossover and mutation operators. So numer-
ous variants of selection, crossover andmutation operators and their effect on the GA
performance were reported in literature [15, 44, 55, 62, 63, 81, 89, 92]. Moreover,
the influence of crossover and mutation probabilities were also investigated [3, 4,
79]. To select a suitable fitness function to a real-world application problem is also an
important issue. In [60], a comprehensive survey of the research on fitness approx-
imation in GAs was reviewed with respect to approximation levels, approximate
model management schemes and model construction techniques. Recent research
on GAs principally focused on the hybridization with other techniques such as tabu
search, simulated annealing, quantum computing, rough set, fuzzy logic theory and
other types of EAs. These investigations mentioned above are more concerned with
the question ofwhether GAswork. Actually, the theoretical analysis of GAs answers
satisfactorily the questions of how or why GAs work, which are important and chal-
lenging issues in the further advance of GAs, even of EAs [111]. Some methods like
schema theory, Markov models and Fourier andWalsh transforms have been applied
to analyze the GAs behavior [2, 59, 111].

2.3 Quantum-Inspired Evolutionary Algorithms

The past three decades have witnessed the use of various properties from quantum
physics to devise a new kind of computers, quantum computers [46, 88]. In contrast
with classical computers processing binary digits (bits), quantum computers work
by handling quantum bits (qubits), which are the smallest information units that can
be stored in a two-state quantum computer [56]. A qubit can be in a superposition

2.3 Quantum-Inspired Evolutionary Algorithms 15

of the usual ‘0’ and ‘1’ states other than themselves. Thus, a quantum particle could
simultaneously be in many incompatible states [88]. Each superposition, |ψ〉 can be
represented as a linear sum of the basis states, |ψ〉 = α|0〉+β|1〉, where α and β are
numbers that denote the corresponding states’ probability amplitudes. The values
|α|2 and |β|2 are the probabilities that the observation of a qubit in state |ψ〉 will
render a ‘0’ or ‘1’ state, respectively [47], and normalization property requires that
|α|2 + |β|2 = 1. A quantum gate can be used to modify the state of a qubit [56]. A
quantum system |ψn〉 with n qubits can represent 2n states simultaneously [5, 50] as

|ψn〉 =
2n∑

j=1

C j |Sj 〉, (2.1)

where C j is the probability amplitude of the j th state Sj described by the binary
string (x1x2 · · · xn), where xi , i = 1, 2, · · · , n, is either 0 or 1. Nonetheless, the
system will “collapse” to a single state if a quantum state is observed.

Inspired byquantumcomputing, a computationalmethod called quantum-inspired
computation is designed to solve various problems in the context of a classical
computing paradigm [83]. Amongst the quantum-inspired computation topics, a
quantum-inspired evolutionary algorithms (QIEA) is receiving renewed attention.
A QIEA is a novel EA for a classical computer rather than for a quantum machine
(or computer). Generally speaking, a QIEA is designed by integrating the EA frame-
work with quantum-inspired bits (Q-bits), quantum-inspired gates (Q-gates) and
probabilistic observation.

Conventional EAs use several different representations to encode solutions onto
chromosomes, such as symbolic, binary, and numeric representations [57]. While in
a QIEA, a novel probabilistic description, Q-bit representation, of Q-bit individuals
is used. A Q-bit individual is represented as a string of Q-bits. The basic computing
unit in a QIEA, Q-bit, is defined as a column vector

[α β]T , (2.2)

where α and β are real numbers satisfying the normalization condition |α|2 +|β|2 =
1. Equation (2.2) is usuallywritten asα|0〉+β|1〉 in quantummechanics ket-notation.
The values |α|2 and |β|2 are the probabilities that the Q-bit will be found in the ‘0’ or
‘1’ state, respectively, in quantum theory [54]. By using a probabilistic observation,
each Q-bit can be rendered into one binary bit. Algorithm3 shows the observation
process, where x is the observed value of the Q-bit shown in (2.2). Differing from the
binary representation that uses 0 or 1 to deterministically represent a bit, the Q-bit
representation uses a Q-bit to describe a probabilistic linear superposition of 0 and
1. The Q-bit representation can be easily extended to multi-Q-bit systems.

16 2 Fundamentals of Evolutionary Computation

Algorithm 3 Observation process in the QIEA [54]
Require: A Q-bit [α β]
1: if random[0, 1) < |α|2 then
2: x ← 0
3: else
4: x ← 1
5: end if

In what follows, the QIEA in [54] is taken as an example to detail the QIEA
algorithm. Algorithm4 shows the pseudocode QIEA algorithm, where each step is
described below.

Algorithm 4 Pseudocode algorithm of the QIEA in [54]
Require: An initial population Q(t), t = 0
1: Make P(t) by observing the states of Q(t)
2: Evaluate P(t)
3: Store all solutions in P(t), into B(t) and the best solution b in B(t)
4: while (not termination condition) do
5: t ← t + 1
6: Make P(t) by observing the states of Q(t − 1)
7: Evaluate P(t)
8: Update Q(t) using Q-gates
9: Store all solutions in P(t), into B(t − 1) and the best solution b in B(t)
10: if (migration condition) then
11: Migrate b or btj to B(t) globally or locally, respectively
12: end if
13: end while

Step 0: In the step of “initialize Q(t)”, a population Q(0) with n multi-Q-bit indi-
viduals is produced, Q(t)={q t

1, q
t
2, · · · , q t

n}, at the generation moment t = 0,
where q t

i (i = 1, 2, · · · , n) is an arbitrary individual in Q(t), denoted as

q t
i =

[
αt
i1|αt

i2| · · · |αt
im

βt
i1|βt

i2| · · · |βt
im

]
, (2.3)

where m is the string length of the Q-bit individual, that is, the number of
Q-bits used in each individual’s representation. The values αt

i j and βt
i j , j =

1, 2, · · · ,m, t = 0, are initialized by the same probability amplitude 1/
√
2,which

guarantees that all possible states are superposed with the same probability at the
beginning.

Step 1: By independently observing each Q-bit of Q(t) (where at this stage t = 0),
using the process described in Algorithm3, binary solutions in P(t), P(t) = {xt1,
xt2, · · · , xtn}, are obtained, where each xti (i = 1, 2, · · · , n) is a binary solution
with m bits. Each bit ‘0’ or ‘1’ is the observed value of a Q-bit [αt

i j βt
i j]T in q t

i ,
respectively, j = 1, 2, · · · ,m.

2.3 Quantum-Inspired Evolutionary Algorithms 17

Step 2: The binary solution xti (i = 1, 2, · · · , n) in P(t) is evaluated thus obtaining
its fitness.

Step 3: In this step, all solutions in P(t) are stored into B(t), where B(t) = {bt1, bt2,
· · · , btn} and bti = xti (i = 1, 2, · · · , n) (again, at this stage, t = 0). Furthermore,
the best binary solution b in B(t) is also stored.

Step 4: The termination criterion may be the prescribed maximal number of evolu-
tionary generations or the preset difference between the best solution searched
and the optimal/desired solution of the optimization problem.

Step 5: The evolutionary generation t increases by 1.
Step 6: This step is similar to Step 1. Observation of the states of Q(t − 1) produces

the binary solutions in P(t).
Step 7: This step is similar to Step 2.
Step 8: In this step, all the individuals in Q(t) are modified by applying Q-gates.

The QIEA uses a quantum rotation gate as a Q-gate. To be specific, the j th Q-bit
in the i th Q-bit individual q t

i , j = 1, 2, · · · ,m, i = 1, 2, · · · , n, is updated by
applying the current Q-gate Gt

i j (θ)

Gt
i j (θ) =

[
cos θti j − sin θti j
sin θti j cos θti j

]
, (2.4)

where θti j is an adjustable Q-gate rotation angle. Thus, the update procedure for
the Q-bit [αt

i j βt
i j]T can be described as

[
αt+1
i j

βt+1
i j

]
= Gt

i j (θ)

[
αt
i j

βt
i j

]
, (2.5)

where θti j is defined as
θti j = s(αt

i j ,β
t
i j)Δθti j , (2.6)

and s(αt
i j ,β

t
i j) and Δθti j are the sign and the value of θti j , respectively. The par-

ticular values used in the QIEA in [54] are illustrated in Table2.1, in which f (·)
is the fitness function, s(αt

i j ,β
t
i j) depends on the sign of αt

i jβ
t
i j , and b and x are

certain bits of the searched best solution b and the current solution x, respectively.
It is worth pointing out that Table2.1 was derived from a maximization problem
and hence the condition f (x) ≥ f (b) should be replaced by f (x) ≤ f (b) if a
minimization problem is to be considered.

Step 9: This step is similar to Step 3. The better candidate between xti in P(t) and
bt−1
i in B(t−1), i = 1, 2, · · · , n, is selected and stored into B(t). Simultaneously,

the best candidate b in B(t) is also stored.
Steps 10–11: This step includes local and global migrations, where a migration in

this algorithm is defined as the process of copying btj in B(t) or b to B(t). A global
migration is realized by substituting b for all the solutions in B(t), and a local
migration is realized between each pair of neighboring solutions in B(t), i.e., by

18 2 Fundamentals of Evolutionary Computation

Table 2.1 Lookup table of θti j , where f (·) is the fitness, s(αt
i j ,β

t
i j) is the sign of θti j , and b and x

are certain bits of the searched best solution b and the current solution x, respectively [54]

x b f (x) ≥ f (b) Δθti j s(αt
i j ,β

t
i j)

αt
i jβ

t
i j ≥ 0 αt

i jβ
t
i j < 0

0 0 false 0 ±1 ±1

0 0 true 0 ±1 ±1

0 1 false 0.01π +1 −1

0 1 true 0 ±1 ±1

1 0 false 0.01π −1 +1

1 0 true 0 ±1 ±1

1 1 false 0 ±1 ±1

1 1 true 0 ±1 ±1

substituting the better one of two neighboring solutions for the other solution. For
more information about the migrations, see [54].

In summary, in QIEA, Q-bits are applied to represent genotype individuals; Q-
gates are employed to operate on Q-bits to generate offspring; and the genotypes
and phenotypes are linked by a probabilistic observation process. QIEAs were firstly
introduced by Narayanan and Moore in the 1990s to solve the traveling salesman
problem [84], in which the crossover operation was performed based on the concept
of interference. The contribution of Narayanan and Moore signaled the potential
advantage of introducing quantum computational parallelism into the evolutionary
algorithm framework. No further attention was paid to QIEAs until a practical algo-
rithm was proposed by [53, 54], but they are now viewed as an emergent theme
in evolutionary computation. In the last sixteen years have been considered various
variants of QIEAs to solve a large number of problems (for a comprehensive survey
see [119]). The main characteristics of QIEAs can be summarized as follows:

• A QIEA uses a novel representation, Q-bit representation, to describe individuals
of a population. Q-bit representation provides probabilistically a linear superpo-
sition of multiple states.

• A QIEA employs a Q-gate guiding the individuals toward better solutions [54] to
produce the individuals at the next generation.

• A QIEA can exploit the search space for a global solution with a small number of
individuals, even with one element [54].

Currently there is intensive research in this area, but there are some aspects that
need to be addressed from the perspectives of theoretical research, engineering appli-
cations, comparative experiments, extensions ofQIEAs and hybrid algorithms. These
issues were presented in detail in [119].

2.4 Ant Colony Optimization 19

2.4 Ant Colony Optimization

Instead of simulating the process of natural selection, some researchers intro-
duced novel algorithms by simulating the collective behavior of decentralized, self-
organized colonies. Ant colony optimization (ACO), originally proposed by Dorigo
and co-workers in 1991 [33] and later explicitly defined in [32], is such a meta-
heuristic approach for combinatorial optimization problem inspired by the foraging
behavior of ants. In nature, to find the shortest path from the nest to a food source, ant
colonies exploit a positive feedback mechanism by laying and detecting the chemi-
cal trail (pheromone) on the ground during their trips. More pheromone is left when
more ants go through the trip, which improves the probability of other ants choosing
this trip. Furthermore, the pheromone has a decreasing action over time because
of evaporation of trail. In the ACO metaphor, a generic combinatorial optimization
problem is transformed into a shortest path problem which is encoded as a graph;
a number of paths are constructed by artificial ants walking on the graph based on
a probabilistic model using pheromone; the cost of the generated path is utilized to
modify the pheromone, and hence to bias the generation of further paths.

ACOwas initially applied to solve traveling salesman problem (TSP) [32], one of
the well-known NP-complete problems and most intensively studied combinatorial
optimization problems in the areas of optimization, operational research, theoretical
computer science, and computational mathematics. The TSP can be described as
follows [121]. Given a set C of N cities, i.e., C = {c1, c2, · · · , cN }, and a set D
of the pairwise travel costs, D = {di j |i, j ∈ {1, 2, · · · , N }, i �= j}, it is requested
to find the minimal cost of the path taken by a salesman visiting each of the cities
just once and returning to the starting point. More generally, the task is to find
a Hamiltonian tour with a minimal length in a connected, directed graph with a
positive weight associated to each edge. If di j = d ji , the TSP is symmetric in the
sense that traveling from city ci to city c j costs just as much as traveling in the
opposite direction, otherwise, it is asymmetric. This section uses symmetric TSP as
an example to describe ACO.

ACO is an iterative metaheuristic. At each iteration, a number of paths are con-
structed based on stochastic decisions which are biased by pheromone and heuristic
information. These paths are used for updating the pheromone in order to bias fur-
ther solutions towards promising regions of the search space. Algorithm5 gives the
pseudocode of a generic ACO algorithm. In the pseudocode, a local search procedure
may be applied for further improving the solutions constructed by ants. The use of
such a procedure is optional; however, it has been observed that its use improves the
algorithms’s overall performance. The most used and well-known tour improvement
local searches are 2-opt and 3-opt [69], in which two and three edges of a tour are
exchanged, respectively.

20 2 Fundamentals of Evolutionary Computation

Algorithm 5 Pseudocode of a generic ACO
Require: t = 0
1: Pheromone trail initialization
2: while (not termination condition) do
3: Construct tours
4: Apply local search (optional)
5: Update pheromone
6: t ← t + 1
7: end while

Themost well-knownACO algorithms in literature include the earliest ant system
(AS) [33, 34], MAX-MIN ant system [114], hyper-cube ant system [9], and ant
colony system (ACS) [29], and they differ in the way to construct tours and/or
update pheromone. According to the studies in [8, 28, 31], the ACS is one of the
most powerful ACO algorithms. Therefore, we take it as an example to describe the
ACO algorithm. Algorithm6 shows the pseudocode of an ACS algorithm, where
each step is described below.

Algorithm 6 Pseudocode algorithm of the ACS in [29]
Require: t = 0
1: Pheromone trail initialization
2: while (not termination condition) do
3: Randomly place M ants in the N nodes
4: for k = 1, 2, . . . , M do
5: for n = 1, 2, . . . , N do
6: Ants moving
7: end for
8: Evaluate the length of the path construct by ant k
9: Local pheromone updating
10: end for
11: Global pheromone updating
12: t ← t + 1
13: end while

Step 1: At the beginning of a run, the initial pheromone value τ0 is set to be 1/NDa ,
where N is the number of cities in a TSP and Da is the length of a feasible tour
generated randomly or by the nearest-neighbor heuristic.

Step 2: The termination criterion may be the prescribed maximal number of gen-
erations or the preset difference between the best path searched and the opti-
mal/desired path of the problem.

Step 3: The M ants are randomly positioned on the N nodes of the TSP graph as the
initial state of tour construction.

Step 4: The ants construct paths one by one.
Steps 5–7: Each ant constructs a whole path step by step using a pseudorandom

proportional rule. Specifically, the kth ant in the i th city chooses the next city j
by using the following formula

2.4 Ant Colony Optimization 21

j =
⎧
⎨

⎩
argmax
l∈N k

i

{[τil]α[ηil]β}, if q ≤ q0

J, otherwise
(2.7)

where arg max{·} stands for the argument of the maximum, that is to say, the set of
points of the given argument for which the value of the given expression attains its
maximum value; τil is the pheromone value of the edge connecting the i th node
and the lth node; ηil is a heuristic information value, equal to the inverse of the
distance between the i th and lth cities; the parameters α and β (α > 0 and β > 0)
determine the relative importance of the pheromone value τil and the heuristic
information ηil ;N k

i (N k
i ⊆ N) is the set of all nodes of the TSP graph that the kth

ant in the i th city can visit; q0 (0 ≤ q0 ≤ 1) is a user-defined parameter specifying
the distribution ratio of the two choices; q is a random number generated by using
a uniform distribution function in the interval [0, 1]; J means that the next city
j is chosen by using a random proportional rule, i.e., the kth ant in the i th city
visits the city j at the next step according to the probability

pki j =
⎧
⎨

⎩

[τi j]α[ηi j]β∑

l∈N k
i

[τil]α[ηil]β , j ∈ N k
i

0, otherwise
(2.8)

Step 8: At each time an ant construct a whole path, the length of this path is evaluated
and compared with the best path stored. If the new path is better than the stored
best path, the best path is updated.

Step 9: Ant releases a mount of pheromone on edges at its every traveling when it
completes a path construction procedure. In ACS, an ant updates the pheromone
value τi j of the tour by applying a local pheromone update rule, defined as follows

τi j = (1 − υ)τi j + υτ0 (2.9)

where υ (0 < υ < 1) is a local pheromone decay coefficient. The local pheromone
update is used to encourage subsequent ants to choose other edges and, hence, to
produce different solutions, by decreasing the pheromone value on the traversed
edges.

Step 11: In this step, the globally best ant, i.e., the ant which constructs the shortest
tour form the beginning of the trial, is allowed to deposit additional pheromone
via a global pheromone update rule. To be specific, the pheromone value τi j of
the edge connecting the i th node and the j th node is modified by

τi j = (1 − ρ)τi j + ρΔτi j (2.10)

where ρ (0 < ρ ≤ 1) is a global pheromone decay coefficient which is also called
pheromone evaporation rate, and Δτi j is

22 2 Fundamentals of Evolutionary Computation

Δτi j =
{
1/Db, if (i, j) ∈ Tb
0, otherwise

(2.11)

where Db is the length of the shorted path searched so far, and Tb is the path
corresponding to Db.

Step 12: The iteration counter t increases by 1.

At present, the research of ACO focuses on three main aspects, i.e., improve-
ment of different ACO algorithms, applications, and theoretic analysis. Regarding
the performance improvement, researchers proposed a large variety of ACO variants
by designing new path construct schemes, pheromone update schemes, mixing with
various local search operators, or even incorporating novel mechanism like chaos
[75]. As for applications, although ACO was originally introduced in connection to
TSP, it is now recognized as one of the state-of-the-art methods for solving other
kinds of discrete optimization problems, such as assignment problems, scheduling
problems, graph coloring, vehicle routing problems, design of communication net-
works. Furthermore, in recent years, some researchers have extended its use for
continuous optimization problems, multi-objective discrete problems and dynamic
problems. Since experimental results show better performance of ACO over other
meta-heuristics, researchers have paid much attention to the ACO theory to explain
why and how it works. The first convergence proof of ACO was given in [51]. Since
then various convergence proofs for various ACO variants have been published, e.g.
[19, 30, 52]. For more details of the progress of ACO, the readers can refer to the
comprehensive survey papers [6, 28].

2.5 Particle Swarm Optimization

Particle swarm optimization (PSO) is another well-known population-based meta-
heuristic approach proposed by Kennedy and Eberhart in 1995 for continuous opti-
mization problems [65]. This technique was motivated by social behavior of bird
flock. In PSO, each individual is called a “particle” with properties being described
by the current position vector, its velocity vector and its personal best position vector,
which represents a potential solution to a problem. Instead of using genetic opera-
tors (e.g., crossover, mutation) to evolve individuals, the trajectory of each particle is
adjusted by dynamically altering its velocity according to its own flying experience
and its companion’s experience.

Suppose there are N particles in a PSO, and each particle is treated as a point
in a D-dimensional space, representing a candidate solution to the problem. Each
particle is characterized by the current position vector xi = (xi,1, xi,2, . . . , xi,D),
velocity vector vi = (vi,1, vi,2, . . . , vi,D) and its personal best position vector pi =
(pi,1, pi,2, . . . , pi,D), i = 1, 2, . . . , N . The particle with its personal best position
which returns the best fitness value among the population is called the global best
particle and its position is recorded as pg = (pg,1, pg,2, . . . , pg,D), where g is the

2.5 Particle Swarm Optimization 23

index of the global best particle. Algorithm7 shows the pseudocode PSO algorithm,
where each step is described below [25, 77, 90, 116, 123].

Algorithm 7 Pseudocode algorithm of the PSO
Require: An initial population of N particles with positions P(t) and velocities V (t), t = 0
1: Evaluate the particles
2: Initialize personal best and global best
3: while (not termination condition) do
4: for i = 1, 2, . . . , N do
5: Change the velocity and position
6: Evaluate the particle
7: Update personal and global best positions
8: end for
9: t ← t + 1
10: end while

Step 0: In this step, uniform distribution on [xmin
j , xmax

j] (j = 1, 2, . . . , D) in the
j th dimension is used to generate the initial current position vector xi for the i th
particle,where xmin

j and xmax
j are lower limit andupper limit of particle positions in

the j th dimension. Similarly, the initial velocity vector vi is initialized by choosing
its j th component randomly in [−vmax

j , vmax
j] (j = 1, 2, . . . , D), where vmax

j is
the upper limit of velocities in the j th dimension. vmax

j is an important parameter
that determines the search behavior of the algorithm. If vmax

j is too small, particles
may become trapped in local optima, unable to move far away to a better position.
On the other hand, if vmax

j is too large, particles might fly past good solutions.
Step 1: The performance of each particle is measured according to a pre-defined

fitness function.
Step 2: For each particle, set its personal best position as the current position, i.e.,

pi = xi , i = 1, 2, . . . , N . Also, identify the global best position pg based on the
fitness value of the particles.

Step 3: The termination criterion may be the prescribed maximal number of gener-
ations or the preset difference between the best solution searched and the opti-
mal/desired solution of the problem.

Step 4: The particle flies one by one.
Step 5: The velocity and position of the i th particle are updated according to the

following equation,

vi = vi+c1r1(pi − xi)+c2r2(pg − xi) (2.12)

xi = xi + vi (2.13)

where c1 and c2 are acceleration coefficients, r1 and r2 are two different sequences
of random numbers uniformly distributed over (0, 1). In (2.12), the first part
represents the previous velocity, which provides the necessary momentum for
particles to roam across the search space; the second part is the “cognition” part,

24 2 Fundamentals of Evolutionary Computation

which represents the private thinking of the particle itself; the third part is the
“social” part, which represents the collaboration among the particles in finding
the global optimal solution. Equation (2.12) is used to calculate the particle’s new
velocity and the particle flies toward a new position according to (2.13). In this
step, if the particle’s velocity on j th dimension exceeds the maximum value vmax

j ,
then it is clamped to vmax

j .
Step 6: The performance of the particle ismeasured according to a pre-definedfitness

function.
Step 7: Comparing particle’s fitness with its personal best performance. If current

value is better than its personal best fitness, then update its personal best fitness
as the current fitness and set pi = xi . Also, comparing particle’s fitness with the
population’s overall previous best. If current value is better that the previous best
value, then update the global best fitness as the current value and set pg = xi .

Step 9: The iteration counter t increases by 1.

The original PSO has been found performing well in solving some simple
problems, however, its performance is not satisfactory when solving complex
problems. Therefore, a considerable amount of work has been done in develop-
ing the original PSO. For example, in [108], to reduce the importance of vmax

j , Shi
and Eberhart introduced the concept of inertia weight in the calculation of velocities
to balance the local and global search, and later they further improved the algo-
rithm performance with a linearly varying inertia weigh over the iterations. In [101],
time-varying acceleration coefficients are introduced to control the local search and
the convergence to the global optimum solution. In fully informed particle swarm
algorithm [80], the particle is affected by all its neighbors, sometimes with no influ-
ence from its own previous success. In [77], a novel learning strategy whereby all
other particles’ historical best information is proposed to update a particle’s velocity,
which enables the diversity of the swarm to be preserved to discourage premature
convergence. Instead of moving toward a kind of stochastic average of personal best
position and global best position, particles moving toward points defined by personal
best position and local best position is also widely investigated, where the best posi-
tion is the location of the particle’s neighborhood defined by a certain topology. Cur-
rently, various topologies have been studied, such as simple ring lattice, small-world
modifications [64, 117], or von Neumann structure [67]. Some theoretical analysis
for PSO approaches has been developed. For example, in [25], Clerc and Kennedy
analyzed a particles trajectory as itmoves in discrete time from the algebraic view and
in continuous time from the analytical view. In [24], Clerc analyzed the distribution
of velocities of a particle in order to observe algorithm behavior in stagnation phases.
As for applications, PSO has been applied across various areas, such as classification,
pattern recognition, planning, signal processing, power system, controller design. For
more information of the important work in PSO, the readers can refer to the survey
paper [96].

2.6 Differential Evolution 25

2.6 Differential Evolution

Differential Evolution (DE) is ameta-heuristic approach originally proposed byStorn
and Price in 1996 for handling continuous optimization problems [112, 113]. Rather
than using natural selection or colony collective behavior, DE relies on engineer-
ing aspects. In 1994, Price published a genetic annealing algorithm [97], which is a
population-based, combinatorial optimization algorithm that implements an anneal-
ing criterion via thresholds. Later, Genetic Annealing has been used to solve Cheby-
shev polynomial fitting problem. As the performance of genetic annealing was not
very satisfactory because of its slow convergence and difficulties to set effective con-
trol parameters, Price introduced floating-point encoding, arithmetic operations and
differential mutation operator in genetic annealing algorithm. As a result, these alter-
ations transformed the combinatorial algorithm genetic annealing into a numerical
optimizer, which becomes the first generation of DE. Due to its distinguished charac-
teristics, such as few control parameters, simple and straightforward implementation,
remarkable performance and low complexity, DE [27, 86] has been recognized as a
competitive continuous optimization technique.

Similar to GA or PSO, DE also maintains a population during the evolution.
Let P(t) = {xt1, xt2, . . . , xtN } be the population at the t th iteration, and xti =
(xti,1, x

t
i,2, . . . , x

t
i,D) (i = 1, 2, . . . , N) be the i th individual in P(t) that represents a

potential solution to the problem, where N is the population size and D is the number
of decision variables of the problem. Starting with an initial population P(t)(t = 0),
the optimization process involves three basic steps, i.e., mutation, crossover and
selection. Algorithm8 shows the pseudocode of a basic DE, where each step is
described below [21–23, 86].

Algorithm 8 Pseudocode algorithm of the basic DE
Require: An initial population P(t), t = 0
1: Evaluate the population P(t)
2: while (not termination condition) do
3: Mutate to form V (t)
4: Crossover to form U (t)
5: Evaluate U (t)
6: Selection to form P(t + 1)
7: t ← t + 1
8: end while

Step 0: The initial population P(0) = {x01, x02, . . . , x0N } is produced, where each
component of an individual is uniformly and randomly sampled in the feasible
space, that is,

x0i, j = xmin
j + rand(0, 1) · (xmax

j − xmin
j), (2.14)

26 2 Fundamentals of Evolutionary Computation

where i = 1, 2, . . . , N ; j = 1, 2, . . . , D; rand(0, 1) is a uniformly distributed
random variable within the interval [0,1], xmin

j and xmax
j are the lower and upper

bound of the j th decision variable.
Step 1: The performance of each individual is evaluated according to a pre-defined

fitness function.
Step 2: The termination criterionmaybe the prescribedmaximal number of iterations

or the preset difference between the best solution searched and the optimal/desired
solution of the problem.

Step 3: The mutation operator is performed on xti (called target vector)
(i = 1, 2, . . . , N) to create a mutant vector vti (called donor vector) by perturbing
a randomly selected vector xtr1 with the difference of two other randomly selected
vector xtr2 and xtr3 . This operation is formulated as

vti = xtr1 + F · (xtr2 − xtr3) (2.15)

where xtr1 , x
t
r2 and xtr3 are distinct vectors randomly selected from the current

population P(t), and they are selected a new for each mutation operation. F ∈
(0, 1) is a constant called differential factor, which scales the differential vector
(xtr2 − xtr3) added to the base vector xtr1 .

Step 4: Followingmutation, the donor individual vti (i = 1, 2, . . . , N) is recombined
with the target individual xti to produce an offspring uti (called trial vector) by
using a binomial crossover operator, which is a typical case of genes’ exchange,
formulated as

uti, j =
{

vt
i, j , if rand j (0, 1) ≤ Cr or j = jrand
xti, j , otherwise

, (2.16)

where j = 1, 2, . . . , D; Cr ∈ (0, 1) is a crossover rate which is used to control
the diversity of the population; and jrand ∈ {1, 2, . . . , D} is a random integer
generated once for each individual xti . The condition j = jrand makes sure that at
least one component of uti inherits from vti so that u

t
i will not be identical with x

t
i .

Step 5: The trial vector uti (i = 1, 2, . . . , N) is evaluated according to a pre-defined
fitness function.

Step 6: The selection operator is performed on P(t) andU (t) to construct the popula-
tion P(t+1) by choosing vectors between the trial vectors and their corresponding
target vectors following the formula

xt+1
i =

{
uti , if f (uti) ≤ f (xti)
xti , otherwise,

, (2.17)

where f (·) is a fitness function.
Step 7: The iteration counter t increases by 1.

In spite of several advantages, DE still suffers from prematurity and/or stagna-
tion. Hence a good volume of work in the literature has been devoted to overcome

2.6 Differential Evolution 27

its drawbacks, mainly from the perspectives of parameter control, operator design,
population structure, and hybridization with other meta-heuristics. Many attempts
have been made to improve DE performance by setting appropriate parameter values
[45, 105, 112] or using parameter adaptation techniques [17, 78, 99] for scale factor
F and crossover rate Cr . Also, lots of work focused on designing of new muta-
tion operators, such as trigonometric mutation [39], “DE/current-to-pbest” mutation
[120], GPBX-α mutation [35], or mixing mutation operators [78, 99]. The popu-
lation structure determines the way individuals share information with each other
and many researchers investigate the population structure in DE, see [21, 35, 38].
Hybridization has become an attractive route in algorithm design due to its capability
for handling quite complex problems. Therefore, significant work has been done on
hybridizing DE with other meta-heuristics, see [7, 85, 91]. In addition to improving
DE performance, DE has also been applied to various areas, like signal processing,
controller design, planning, power systems, clustering, etc. For more details of DE,
two most recently survey papers [27, 86], are recommended.

2.7 Conclusions

This chapter introduced the fundamental concepts and principles of several EA vari-
ants including GAs, QIEAs, ACO, PSO and DE. For each variant, we reviewed
its history, detailed its algorithm and addressed its future research issues. The five
variants will be used to design different types of membrane algorithms in the next
chapter.

References

1. Bäck, T. 1996. Evolutionary algorithms in theory and practice: evolution strategies, evolu-
tionary programming, genetic algorithms. Oxford: Oxford University Press.

2. Bäck, T., U. Hammel, and H. Schwefel. 1997. Evolutionary computation: comments on the
history and current state. IEEE Transactions on Evolutionary Computation 1 (2): 3–17.

3. Bae, S.H., and B.R. Moon. 2004. Mutation rates in the context of hybrid genetic algorithms.
In Genetic and Evolutionary Computation (GECCO 2004). Lecture Notes in Artificial Intel-
ligence, vol. 3103, ed. K. Deb, R. Poli, W. Banzhaf, H.-G. Beyer, E. Burke, P. Darwen, D.
Dasgupta, D. Floreano, J. Foster, M. Harman, O. Holland, P.L. Lanzi, L. Spector, A.G.B.
Tettamanzi, D. Thierens, and A. Tyrrell, 381–382. Berlin: Springer.

4. Bagchi, P., and S. Pal. 2011. Controlling crossover probability in case of a genetic algo-
rithm. In Information Technology and Mobile Communication (AIM 2011), Communications
in Computer and Information Science, vol. 147, ed. V.V. Das, G. Thomas, and F.L. Gaol,
287–290. Berlin: Springer.

5. Bennett, C.H., and D.P. DiVincenzo. 2000. Quantum information and computation. Nature
404: 247–255.

6. Birattari, M., P. Pellegrini, andM. Dorigo. 2007. On the invariance of ant colony optimization.
IEEE Transactions on Evolutionary Computation 11 (6): 732–742.

28 2 Fundamentals of Evolutionary Computation

7. Biswas, A., S. Dasgupta, S. Das, and A. Abraham. 2006. A synergy of differential evolution
and bacterial foraging algorithm for global optimization. Neural Network World 17 (6): 607–
626.

8. Blum, C. 2005. Ant colony optimization introduction and recent trends. Physics of Life
Reviews 2: 353–373.

9. Blum, C., andM. Dorigo. 2004. The hyper-cube framework for ant colony optimization. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34 (2): 1161–1172.

10. Blum, C., and A. Roli. 2008. Hybrid metaheuristics: an introduction. In Hybrid Metaheuris-
tics: An Emerging Approach to Optimization, Studies in Computational Intelligence, vol. 114,
ed. C. Blum, M.J.B. Aguilera, A. Roli, and M. Sampels, 1–30. Berlin: Springer.

11. Blum, C., J. Puchinger, G.R. Raidl, and A. Roli. 2011. Hybrid metaheuristics in combinatorial
optimization: a survey. Applied Soft Computing 11 (6): 4135–4151.

12. Boussa, I., J. Lepagnot, and P. Siarry. 2013. A survey on optimization metaheuristics. Infor-
mation Sciences 237: 82–17.

13. Boozarjomehry, R.B., andM.Masoori. 2007.Whichmethod is better for the kineticmodeling:
decimal encoded or binary genetic algorithm?Chemical Engineering Journal 130 (1): 29–37.

14. Box, G.E.P. 1957. Evolutionary operation: a method for increasing industrial productivity.
Journal of the Royal Statistical Society. Series C (Applied Statistics) 6 (2): 81–101.

15. Braune, R., S. Wagner, and M. Affenzeller. 2005. On the analysis of crossover schemes for
genetic algorithms applied to the job shop scheduling problem. In Proceedings of 9th World
Multi-Conference on Systemics, Cybernetics and Informatics, vol. 6, 236–241.

16. Bremermann, H.J. 1962. Optimization through evolution and recombination. In Self-
Organizing Systems, ed. M.C. Yovits, G.T. Jacobi, and G.D. Goldstein. Washington DC:
Spartan.

17. Brest, J., S. Greiner, B. Boskovic, M. Mernik, and V. Zumer. 2006. Self-adapting control
parameters in differential evolution: a comparative study on numerical benchmark problems.
IEEE Transactions on Evolutionary Computation 10 (6): 646–657.

18. Burian, R. 1996. Underappreciated pathways toward molecular genetics as illustrated by Jean
Brachet’s cytochemical embryology. In The Philosophy and History of Molecular Biology:
New Perspectives, ed. S. Sarkar, 67–85. Netherlands: Kluwer Academic Publishers.

19. Carvelli, L., and G. Sebastiani. 2011. Some issues of ACO algorithm convergence. In Ant
Colony Optimization: Methods and Applications, ed. A. Ostfeld, 39–52. Croatia: InTech
Press.

20. Černý, V. 1985. Thermodynamical approach to the traveling salesman problem: an efficient
simulation algorithm. Journal of Optimization Theory and Applications 45 (1): 41–51.

21. Cheng, J., G. Zhang, and F. Neri. 2013. Enhancing distributed differential evolution with
multicultural migration for global numerical optimization. Information Sciences 247: 72–93.

22. Cheng, J., G.G. Yen, and G. Zhang. 2015. A many-objective evolutionary algorithm with
enhanced mating and environmental selections. IEEE Transactions on Evolutionary Compu-
tation 19 (4): 592–605.

23. Cheng, J., G. Zhang, F. Caraffini, and F. Neri. 2015. Multicriteria adaptive differential evo-
lution for global numerical optimization. Integrated Computer-Aided Engineering 22 (2):
103–117.

24. Clerc, M. 2006. Stagnation analysis in particle swarm optimization or what happens when
nothing happens, Technical Report CSM-460, Department of Computer Science, University
of Essex.

25. Clerc, M., and J. Kennedy. 2002. The Particle swarm-explosion, stability, and convergence in
a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6 (1):
58–73.

26. Darwin, C. 1859. On the origin of species by means of natural selection, or the preservation
of favoured races in the struggle for life. London: Murray.

27. Das, S., and P.N. Suganthan. 2011. Differential evolution: a survey of the state-of-the-art.
IEEE Transactions on Evolutionary Computation 15 (1): 4–31.

References 29

28. Dorigo, M., and C. Blum. 2005. Ant colony optimization theory: a survey. Theoretical Com-
puter Science 344: 243–278.

29. Dorigo, M., and L.M. Gambardella. 1997. Ant Colony System: a cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary Compu-
tation 1 (1): 53–66.

30. Dorigo, M., and T. Stutzle. 2004. Ant Colony Optimization. Scituate: Bradford Company.
31. Dorigo, M., M. Birattari, and T. Stützle. 2006. Ant colony optimization: artificial ants as a

computational intelligence technique. IEEE Computational Intelligence Magazine 1: 28–39.
32. Dorigo, M., G. Caro, and L.M. Gambardella. 1999. Ant algorithms for distributed discrete

optimization. Artificial Life 5 (2): 137–172.
33. Dorigo, M., V. Maniezzo, and A. Colorni. 1991. Positive feedback as a search strategy, Tech-

nical Report 01–016, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy.
34. Dorigo, M., V. Maniezzo, and A. Colorni. 1996. Ant System: optimization by a colony of

cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernet-
ics 26 (1): 29–41.

35. Dorronsoro, B., and P. Bouvry. 2011. Improving classical and decentralized differential evo-
lution with new mutation operator and population topologies. IEEE Transactions on Evolu-
tionary Computation 15 (1): 67–98.

36. Eiben, A.E., and J. Smith. 2003. Introduction to Evolutionary Computing. Berlin: Springer.
37. Eusuff,M.M., andK.E. Lansey. 2003.Optimization ofwater distribution network design using

the shuffled frog leaping algorithm. Journal of Water Resources Planning and Management
129 (2): 210–225.

38. Falco, I.D., A.D. Cioppa, D. Maisto, U. Scafuri, and E. Tarantino. 2012. Improving classical
and decentralized differential evolution. Information Sciences 207: 50–65.

39. Fan, H.Y., and J. Lampinen. 2003. A trigonometric mutation operator to differential evolution.
Journal of Global Optimization 27 (1): 105–129.

40. Fogel, L., A. Owens, and M.Walsh. 1966. Artificial intelligence through simulated evolution.
Chichester: Wiley.

41. Fraser, A.S. 1957. Simulation of genetic systems by automatic digital computers. Australian
Journal of Biological Sciences 10 (4): 484–491.

42. Friedberg, R.M. 1958. A learning machine: Part I. IBM Journal of Research and Development
2 (1): 2–13.

43. Friedberg, R.M., B. Dunham, and J. North. 1959. A learning machine: Part II. IBM Journal
of Research and Development 3 (3): 282–287.

44. Galaviz-Casas, J. 1998. Selection analysis in genetic algorithms. In Progress in Artificial
Intelligence (IBERAMIA98), LectureNotes inArtificial Intelligence, vol. 1484, ed.H.Coelho,
283–292. Berlin: Springer.

45. Gämperle, R., S.D. Müller, and P. Koumoutsakos. 2002. A parameter study for differential
evolution. InProceedings of the Advances in Intelligent Systems, Fuzzy Systems, Evolutionary
Computation, 293–298.

46. Glassner, A. 2001. Quantum computing, Part 2. IEEE Computer Graphics and Applications
21 (6): 86–95.

47. Glassner, A. 2001. Quantum computing, Part 3. IEEE Computer Graphics and Applications
21 (6): 72–82.

48. Glover, F. 1989. Tabu search-part I. INFORMS Journal on Computing 1 (3): 190–206.
49. Goldberg, D.E. 1989. Genetic algorithms in search, optimization and machine learning.

Boston: Addison-Wesley Longman Publishing Co. Inc.
50. Grover, L.K. 1999. Quantum computation. In Proceedings of the 12th International Confer-

ence on VLSI Design, 548–553.
51. Gutjahr,W. 2000.Agraph-based ant systemand its convergence.FutureGenerationComputer

Systems 16 (9): 873–888.
52. Gutjahr, W. 2008. First steps to the runtime complexity analysis of ant colony optimization.

Computers and Operations Research 35 (9): 2711–2727.

30 2 Fundamentals of Evolutionary Computation

53. Han, K.H., and J.H. Kim. 2000. Genetic quantum algorithm and its application to combinato-
rial optimization problem. In Proceedings of IEEE Congress on Evolutionary Computation,
1354–1360.

54. Han, K.H., and J.H. Kim. 2002. Quantum-inspired evolutionary algorithm for a class of
combinatorial optimization. IEEE Transactions on Evolutionary Computation 6 (6): 580–
593.

55. Herrera, F., M. Lozano, and A.M. Sanchez. 2003. A taxonomy for the crossover operator for
real-coded genetic algorithms: An experimental study. International Journal of Intelligent
Systems 18 (3): 309–338.

56. Hey, T. 1999. Quantum computing: an introduction. Computing and Control Engineering
Journal 10 (3): 105–112.

57. Hinterding, R. 1999. Representation, constraint satisfaction and the knapsack problem. In
Proceedings of IEEE Congress on Evolutionary Computation, 1286–1292.

58. Holland, J.H. 1975. Adaptation in natural and artificial systems. Ann Arbor: University of
Michigan Press.

59. Iba, H., and N. Noman. 2011. New frontier in evolutionary algorithms: theory and applica-
tions. London: Imperial College Press.

60. Jin, Y. 2005. A comprehensive survey of fitness approximation in evolutionary computation.
Soft Computing 9: 3–12.

61. Karaboga, D. 2005. An idea based on honey bee swarm for numerical optimization, Technical
Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department.

62. Katayama, K., H. Hirabayashi, and H. Narihisa. 2003. Analysis of crossovers and selections
in a coarse-grained parallel genetic algorithm. Mathematical and Computer Modelling 38
(11–13): 1275–1282.

63. Kaya,M. 2011. The effects of two new crossover operators on genetic algorithm performance.
Applied Soft Computing 11 (1): 881–890.

64. Kennedy, J. 1999. Smallworlds andmega-minds: effects of neighborhood topology on particle
swarm performance. In Proceedings of the IEEE International Conference on Evolutionary
Computation, 1931–1938.

65. Kennedy, J., and R. Eberhart. 1996. Particle swarm optimization. In Proceedings of IEEE
International Conference on Neural Networks, 69–73.

66. Kennedy, J., and R.C. Eberhart. 2001. Swarm Intelligence. San Francisco: Morgan Kaufmann
Publishers Inc.

67. Kennedy, J., and R. Mendes. 2002. Population structure and particle swarm performance. In
Proceedings of IEEE International Conference on Evolutionary Computation, 1671–1676.

68. Kicinger, R., T. Arciszewski, and K. De Jong. 2005. Evolutionary computation and structural
design: a survey of the state-of-the-art. Computers and Structures 83 (23–24): 1943–1978.

69. Kin, S. 1965. Computer solutions of the traveling salesman problem. Bell System Technical
Journal 44 (10): 2245–2269.

70. Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi. 1983. Optimization by simulated annealing.
Science 220 (4598): 671–680.

71. Koza, J.R. 1992.Genetic programming: on the programming of computers bymeans of natural
selection. Cambridge: MIT Press.

72. Koza, J.R. 1994. Genetic programming II: automatic discovery of reusable programs. Cam-
bridge: MIT Press.

73. Langdon, W.B., and R. Poli. 2002. Foundations of genetic programming. Berlin: Springer.
74. Larrañaga, P., and J.A. Lozano (eds.). 2002. Estimation of distribution algorithms: a new tool

for evolutionary computation. Boston: Kluwer Academic Publishers.
75. Li, L., H. Peng, J. Kurths, Y. Yang, and H.J. Schellnhuber. 2014. Chaos-order transition in

foraging behavior of ants. Proceedings of the National Academy of Sciences of the United
States of America 111 (23): 8392–8397.

76. Li, L.X., Z.J. Shao, and J.X.Qian. 2002.An optimizingmethod based on autonomous animate:
fish swarm algorithm. In Proceeding of System Engineering Theory and Practice, 32–38.

References 31

77. Liang, J.J., A.K. Qin, P.N. Suganthan, and S. Baskar. 2006. Comprehensive learning particle
swarm optimizer for global optimization of multimodal functions. IEEE Transactions on
Evolutionary Computation 10 (3): 281–285.

78. Mallipeddi, R., P.N. Suganthan, Q.K. Pan, and M.F. Tasgetiren. 2011. Differential evolution
algorithm with ensemble of parameters and mutation strategies. Applied Soft Computing 11
(2): 1679–1696.

79. Martin, J.L.F.V., and M.S. Sanchez. 2002. Does crossover probability depend on fitness and
hamming differences in genetic algorithms? In Artificial Neural Networks (ICANN 2002),
LectureNotes inComputer Science, vol. 2415, ed. J.R.Dorronsoro, 389–394.Berlin: Springer.

80. Mendes, R., J. Kennedy, and J. Neves. 2004. The fully informed particle swarm: simpler,
maybe better. IEEE Transactions on Evolutionary Computation 8 (3): 204–210.

81. Milton, J., P. Kennedy, and H. Mitchell. 2005. The effect of mutation on the accumulation of
information in a genetic algorithm. In AI 2005: Advances in Artificial Intelligence, Lecture
Notes in Artificial Intelligence, vol. 3809, ed. S. Zhang, and R. Jarvis, 360–368. Berlin:
Springer.

82. Mitchell, M., and C.E. Taylor. 1999. Evolutionary computation: an overview. Annual Review
of Ecology and Systematics 30: 593–616.

83. Moore, M., and A. Narayanan. 1995. Quantum-inspired computing, Department of Computer
Science, University Exeter, Exeter, U.K.

84. Narayanan, A., and M. Moore. 1996. Quantum-inspired genetic algorithms. In Proceedings
of IEEE International Conference on Evolutionary Computation, 61–66.

85. Neri, F., and V. Tirronen. 2008. On memetic differential evolution frameworks: a study of
advantages and limitations in hybridization. In Proceedings of the IEEE Congress on Evolu-
tionary Computation, 2135–2142.

86. Neri, F., and V. Tirronen. 2010. Recent advances in differential evolution: a survey and exper-
imental analysis. Artificial Intelligence Review 33 (1): 61–106.

87. Neshat, M., G. Sepidnam, M. Sargolzaei, and A.N. Toosi. 2014. Artificial fish swarm algo-
rithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications.
Artificial Intelligence Review 42 (4): 965–997.

88. Nielsen, A.M., and I.L. Chuang. 2000. Quantum computation and quantum information.
Cambridge: Cambridge University Press.

89. Okabe, T. 2007. Theoretical analysis of selection operator in genetic algorithms. In Proceed-
ings of the IEEE Congress on Evolutionary Computation, 4676–4683.

90. Olsson, A. 2011. Particle swarm optimization: theory, techniques and applications, engineer-
ing tools, techniques and tables. Nova Science Publishers, Incorporated.

91. Omran, M.G.H., A.P. Engelbrecht, and A. Salman. 2009. Bare bones differential evolution.
European Journal of Operational Research 196 (1): 128–139.

92. Osaba, E., R. Carballedo, F. Diaz, E. Onieva, I. de la Iglesia, and A. Perallos. 2014. Crossover
versus mutation: a comparative analysis of the evolutionary strategy of genetic algorithms
applied to combinatorial optimization problems. The Scientific World Journal 2014. Article
ID 154676, 22 p.

93. Passino,K.M. 2002.Biomimicry of bacterial foraging for distributed optimization and control.
IEEE Control Systems Magazine 22 (3): 52–67.

94. Pelikan, M., D.E. Goldberg, and F.G. Lobo. 2002. A survey of optimization by building and
using probabilistic models. Computational Optimization and Applications 21 (1): 5–20.

95. Pilato, C., D. Loiacono, F. Ferrandi, P.L. Lanzi, and D. Sciuto. 2008. High-level synthesis
with multi-objective genetic algorithm: a comparative encoding analysis. In Proceedings of
the IEEE Congress on Evolutionary Computation, 3334–3341.

96. Poli, R., J. Kennedy, andT. Blackwell. 2007. Particle swarmoptimization-an overview. Swarm
Intelligence 1 (1): 33–57.

97. Price, K. 1994. Genetic annealing. Dr. Dobb’s Journal 127–132.
98. Price, K., R.M. Storn, and J.A. Lampinen. 2005. Differential evolution: a practical approach

to global optimization (Natural Computing Series). New York: Springer.

32 2 Fundamentals of Evolutionary Computation

99. Qin, A.K., V.L. Huang, and P.N. Suganthan. 2009. Differential evolution algorithm with
strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary
Computation 13 (2): 398–417.

100. Rao, R.V., V.J. Savsani, and D.P. Vakharia. 2011. Teaching learning-based optimization: a
novel method for constrained mechanical design optimization problems. Computer Aided
Design 43 (3): 303–315.

101. Ratnaweera, A., S.K. Halgamuge, and H.C. Watson. 2004. Self-organizing hierarchical parti-
cle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evo-
lutionary Computation 8 (3): 240–255.

102. Rechenberg, I. 1973. Evolutionsstrategie: optimierung technischer systemenach prinzipien
der biologischen evolution. Stuttgart: Frommann-Holzboog.

103. Reynolds, R.G. 1994. An Introduction to cultural algorithms. Proceedings of the 3rd Annual
Conference on Evolutionary Programming, 131–139. World Scientific Publishing.

104. Ronald, S. 1997. Robust encodings in genetic algorithms: a survey of encoding issues. In
Proceedings of the IEEE International Conference on Evolutionary Computation, 43–48.

105. Rönkkönen, J., S.Kukkonen, andK.V.Price. 2005.Real-parameter optimizationwith differen-
tial evolution. In Proceedings of the IEEE Congress on Evolutionary Computation, 506–513.

106. H. Schwefel, H. 1975. Evolutionsstrategie und numerische optimierung. Ph.D. dissertation,
Technische Berlin, Germany.

107. Schwefel, H. (ed.). 1995. Evolution and optimum seeking. New York: A Wiley-Interscience
publication.

108. Shi, Y., and R.C. Eberhart. 1998. A modified particle swarm optimizer. In Proceedings of the
IEEE International Conference on Evolutionary Computation, 69–73.

109. Shi, Y., and R.C. Eberhart. 1999. Empirical study of particle swarm optimization. In Proceed-
ings of the IEEE International Conference on Evolutionary Computation, 101–106.

110. Simon,D. 2008. Biogeography-based optimization. IEEETransactions onEvolutionaryCom-
putation 12 (6): 702–713.

111. Simon, D. 2013.Evolutionary optimization algorithms: biologically-inspired and population-
based approaches to computer intelligence. New York: Wiley.

112. Storn, R., K. Price. 1995. Differential evolution-a simple and efficient adaptive scheme for
global optimization over continuous spaces, Technical Report TR-95-012, Berkeley, CA.

113. Storn, R., and K. Price. 1997. Differential evolution-a simple and efficient heuristic for global
numerical optimization. Journal of Global Optimization 11 (4): 341–359.

114. Stützle, T., and H.H. Hoos. 2000. MAX-MIN ant system. Future Generation Computer Sys-
tems 16 (8): 889–914.

115. Volná, E. 2013. Introduction to soft computing. Bookboon.com.
116. Wang,X., G. Zhang, J. Zhao,H. Rong, F. Ipate, andR. Lefticaru. 2015.Amodifiedmembrane-

inspired algorithm based on particle swarm optimization for mobile robot path planning.
International Journal of Computers, Communications and Control 10 (5): 732–745.

117. Watts, D.J., and S.H. Strogatz. 1998. Collective dynamics of ‘small-world’ networks. Nature
393: 440–442.

118. Yang, X.S. 2008. Nature-inspired metaheuristic algorithms. Frome: Luniver Press.
119. Zhang, G. 2011. Quantum-inspired evolutionary algorithms: a survey and empirical study.

Journal of Heuristics 17: 303–351.
120. Zhang, J., and A. Sanderson. 2009. JADE: adaptive differential evolution with optional exter-

nal archive. IEEE Transactions on Evolutionary Computation 13 (5): 945–958.
121. Zhang, G., J. Cheng, and M. Gheorghe. 2011. A membrane-inspired approximate algorithm

for traveling salesman problems. Romanian Journal of Information Science and Technology
14 (1): 3–19.

122. Zhang, G., M. Gheorghe, L. Pan, and M.J. Pérez-Jiménez. 2014. Evolutionary membrane
computing: a comprehensive survey and new results. Information Sciences 279: 528–551.

123. Zhang, G., F. Zhou, X. Huang, J. Cheng, M. Gheorghe, F. Ipate, and R. Lefticaru. 2012. A
novel membrane algorithm based on particle swarm optimization for solving broadcasting
problems. Journal of Universal Computer Science 18 (13): 1821–1841.

http://www.springer.com/978-3-319-55987-2

	2 Fundamentals of Evolutionary Computation
	2.1 Introduction
	2.2 Genetic Algorithms
	2.3 Quantum-Inspired Evolutionary Algorithms
	2.4 Ant Colony Optimization
	2.5 Particle Swarm Optimization
	2.6 Differential Evolution
	2.7 Conclusions
	References

