Chapter 1

Theory of Quantum Light Sources
and Cavity-QED Emitters Based
on Semiconductor Quantum Dots

Christopher Gies, Matthias Florian, Alexander Steinhoff
and Frank Jahnke

Abstract The first chapter presents from a theoretical perspective fundamentals and
advances made in the field of quantum light sources and cavity-QED devices that are
based on self-organized semiconductor quantum dots (QDs) as active material. We
summarize key physical properties of QDs as embedded solid-state emitters and how
to account for their semiconductor properties, such as carrier scattering, dephasing,
and non-resonant coupling in microscopic theories. In combination with a quantiza-
tion of the electromagnetic field, these models allow for a quantitative description
of device properties and non-classical effects that render few-emitter microcavity
systems so useful for applications in the quantum-information technologies.

1.1 Introduction

Research on quantum-optical light sources is to a large extent driven by applica-
tions in the so-called new quantum technologies [1], such as quantum computing,
sensing, metrology, and cryptography, that rely on the preparation, use, and con-
trol of quantum-mechanical properties of matter or light. Photons are the smallest
units of energy of the quantized electromagnetic field and play a central role, as
they can be manipulated individually. At the same time they propagate at the speed
of light, enabling the transfer of information over large distances (“flying qubits”).
While laser physics has largely advanced to an applied and technological stage,
applications that make use of the quantum-mechanical properties of photons are one
fundamental research topic of this decade. The development of new devices demands
bright, efficient, and integrable quantum light sources that easily couple into optical
fibres. Neutral atoms and ions in traps, solid-state emitters such as quantum dots
and defects, molecules, and even nanomechanical systems are being investigated for
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their potential, and interfacing these different approaches in terms of wavelength and
bandwidth into “hybrid systems” is a key challenge of current research.

In this chapter, we present from a theoretical perspective fundamentals and
advances made in the field of quantum light sources and cavity-QED devices that are
based on self-organized semiconductor quantum dots (QDs) as active material. Semi-
conductor QDs are often regarded as artificial atoms due to the three-dimensional
confinement potential leading to discrete electronic states. At a closer look, how-
ever, even QDs with only few confined electronic levels possess a large number of
multi-exciton configurations due to many possibilities to accommodate excited car-
riers in these states. The Coulomb interaction separates many of these configurations
energetically, thereby creating a large manifold of transition energies. This and the
coupling of the QDs to their environment via phonons and excited carriers outside
the QD result in two important phenomena, namely dephasing, and the possibility to
enable the emission from a QD into a cavity mode even if its ground state transition
is detuned by several meV. Both phenomena are an integral part of QD physics and
distinguish their behavior from that of atoms. For the quantum-optical applications
considered in this chapter that mostly rely on few or even a single emitter, they play
an important role. In Chap. 2, nonresonant QD-cavity coupling is a central ingredient
of the theory on resonance fluorescence.

After giving a short overview of theoretical approaches to solid-state cavity-QED
and the characterization of light, this chapter contains four main topics. The wide
range of emission properties that can be realized from single or few QDs in micro-
cavities is discussed in Sect. 1.2. This includes cavity-QED lasing with few emit-
ters and lasing in the presence of strong coupling, single-photon emission from
few-QDs in a cavity, the direct generation of entangled photon pairs by cavity-
enhanced two-photon emission, and single-photon generation with long electrical
excitation pulses. In Sect. 1.3 we analyze in detail carrier scattering and dephasing
processes. Section 1.4 addresses different physical mechanisms of non-resonant QD-
cavity coupling. In Sect. 1.5 the role of radiative inter-emitter coupling giving rise to
superradiance in QD nanolasers is discussed. It is complementary but related to the
single-photon superradiance of Sect.5.3, and both effects can strongly enhance the
light-matter interaction in QD-based systems.

1.1.1 QDs Coupled to the Quantized Light Field

A central element of the theoretical description is the Jaynes—Cummings interaction
of the electronic QD excitations with the quantized electromagnetic field. In atom-like
systems, one typically considers a few-level model, where the electronic transitions
between two selected levels is resonantly coupled to the cavity field. In QDs, the light
field interacts with the multi-exciton states. These are formed from the discrete single
particle states (which are the result of the three-dimensional confinement potential)
and the many-body Coulomb configuration interaction.
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For a small number of discrete electronic transitions, which are coupled to the
Fock states of a single-mode cavity field, the Hilbert space of this system is small
enough that it is possible to describe the full quantum dynamics in terms of matrix
elements of the statistical operator p(¢), which follows the von Neumann-Lindblad
equation,

0 i
Epz—ﬁm,pugzxm). (1.1)

In H enters the Jaynes—Cummings Hamiltonian,

Hjyc = Zgi (b'o7 +0"b) , (1.2)

where b' and b are creation and annihilation operators for photons in the cavity
mode, (71.i are raising and lowering operators for the electronic excitations, and g; is
the corresponding light-matter coupling strength.

When the QD is weakly excited, it is usually sufficient to consider only optical
transitions between the ground state and the energetically lowest exciton state, or the
biexciton to exciton to ground-state cascade. In this case, the QD-basis consists of
a small set of multi-exciton states, and in the Hamiltonian H = Hy + Hc, the free
part Hy contains the multi-exciton energies while in H;¢ the operators aii describe
transitions between different multi-exciton configurations i. Such an approach has
been used, e.g., in [2-6].

At stronger pumping, several excited carriers can be present in the QD confine-
ment potential, and their Coulomb configuration interaction leads to a large number
of possible multi-exciton states. Furthermore, at higher excitation of the system,
typically additional excited carriers reside in the delocalized QD barrier states. This
environment leads to two important effects. The many-body Coulomb interaction
between the QD carriers and the excited charge carriers outside the QD results in
dephasing processes. Dephasing is also present due to the interaction of the QD car-
riers with phonons. Secondly, excited charge carriers outside the QD are responsible
for screening of the Coulomb interaction, thus changing the configuration interaction
of the QD carriers.

To describe such a situation, it is more suitable to use as basis states the many-
particle configurations formed from products (Slater determinants) of single-particle
states. Then the multi-exciton states follow from explicitly including the Coulomb
interaction Hc,,; in the Hamiltonian H = Hy + Hcou + Hyc of (1.1). In this case,
crii describe transitions between different product states. Screening of the Coulomb
interaction and the resulting dynamical changes of the multi-exciton configurations
can be treated via the time dependent solution of (1.1). When including the Hamil-
tonian for the full QD-carrier Coulomb interaction, the Jaynes—Cummings interaction
among multi-exciton states is obtained. The corresponding approach has been used
in [7-9] and is the basis for various investigations discussed in this contribution.
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The last term in (1.1) describes dissipation due to the coupling of the system of
QD excitations and cavity photons to their environments. Here, X labels all possible
transitions taking place in the system assisted by such interaction processes. Losses of
cavity photons, in this chapter denoted by the rate k', can be described via a coupling
of the cavity mode to a bath of external modes [10]. Similarly, the spontaneous
recombination of QD excitations into a quasi-continuum of lossy modes can be
considered [10]. More challenging is the inclusion of semiconductor models for QD-
carrier scattering and the resulting dephasing. How this can be realized and under
which assumptions the carrier-phonon interaction and the Coulomb interaction with
carriers in delocalized states can be cast into the form of Lindblad terms is the topic
of Sect. 1.3. Also, the non-resonant QD-cavity coupling via many-body interaction
can be described in this way, as discussed in Sect. 1.4.

1.1.2 Characterization of Light

In many experiments with semiconductor QDs in optical resonators it became cus-

tomary to characterize the cavity field in terms of correlation properties of photons.

Here one can distinguish between classical emission properties, like the intensity

(n) (zero-order correlations) or coherence properties of the emission (first-order cor-

relations). True quantum properties can be revealed in the intensity-autocorrelation

function (second-order correlations) and in higher-order correlation functions [11].
The normalized first-order correlation function,

0 P b+ )
g, T)_—(lﬂ(r)b(t)) , (1.3)

describes field-amplitude correlations as measured with a Michelson interferometer.
In a stationary situation, when g is independent of ¢, the coherence time of the
radiation is given by

*© 2
T, :/ dr g ()] (1.4)
—0oQ
and the emission spectrum follows from a Fourier transform of gV (z):

_ L OO —iwt (1)
S(w) = 271/ drte g (7). (1.5)

Information on statistical properties of the radiation are contained in the second-
order, or intensity autocorrelation function,

(T @) b (1t + 7) b(r + T) b(1))

(2) _
g T = BT ObO) (b7 + 1) bt + 1))

(1.6)
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In a stationary situation, g(z)(l’ = 0) can be used to identify thermal radiation, for
which g (0) = 2, indicating high likelihood of finding two photons at the same
time (photon bunching). This can be distinguished from coherent radiation obeying
Poisson statistics, where g® (0) = 1. This situation is realized in an ideal laser, where
the only noise arises from the randomness of spontaneous emission. For nonclassical
light the intensity correlation is g® (0) < 1 (photon antibunching).

If the system is driven by an excitation pulse, no stationary state exists, and the
correlation functions are explicitly z-dependent. It is straightforward to calculate
g (¢, T = 0) e.g. by evaluating the expectation value from the time-dependent den-
sity operator, see Sect. 1.5. Delay-time 7 dependent results can be obtained with
the help of the quantum regression theorem [12]. In a density-matrix approach, this
procedure is explained in detail in [13]. The spirit of the quantum-regression the-
orem can be transfered to hierarchies of equations that are obtained by cluster-, or
correlation-expansion methods [14—19] to obtain gV (¢, 7) [20, 21] and g ¥ (¢, 1)
[20]. The calculation of g® (t) under pulsed excitation conditions is more intricate
and requires averaging over a multitude of two-time calculations [22].

Finally, we point out the link between the second-order photon correlation function
and the photon-number probability distribution function (a.k.a. photon statistics) p,,
which refers to the diagonal elements of the photon density matrix after the electronic
degrees of freedom have been traced out. For equal-time operators, (1.6) can be
rewritten as
(1)) = (n(1))

: 1.7
(n(1)* (47

P, 1=0)=

where (n(t)) = (b (t)b(t)). As the photon operators act only on the photonic degrees
of freedom, in this representation it is straightforward to see that (n) and (n?) are the
first and second moments of the photon statistics, respectively. While a distribution
function can be accurately represented by all of its moments, the autocorrelation
function g® (¢, T = 0) therefore contains only partial information on the full photon
statistics. As such, an interpretation of g(z) (t, T = 0) requires at least some intuition
about the underlying distribution function, otherwise results can be misleading. We
give an example in Sect. 1.2.1.

1.2 Emission of Single and Few-QD Microcavity Systems

The discrete level structure and tunability of the electronic properties of semicon-
ductor QDs can be exploited to design deterministic quantum-light sources. A single
QD driven with short optical excitation pulses produces antibunched single photons
on demand [23], the demonstration [24] of which has played a great part to promote
solid-state systems into the quantum-information research field. The fabrication of
nanostructures, where a single QD is embedded in a microresonator, offers par-
ticular advantages for applications both in quantum-information technologies and
lasers. The confinement of the light field can be used to enhance the emission from
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Table 1.1 Different operational regimes of single or few QDs in optical cavities and the quantities
used to characterize the quantum-optical properties of the emission. The last point in the list refers
to [27]

Operational regime: Characterisation:

Lasing in weak coupling regime (1-many QDs) g?(0) = 1, {n) > 1, increase
medium to strong excitation in coherence time

Lasing in strong coupling regime (1 QD) g”)(0) = 1, footprints

of higher excited states in

high ratio of g/k, low to medium excitation emission spectrum

Sub- and superradiant emission (2-1000 QDs) super-thermal g?{0) > 2,

QD-QD coupling via light field faster spontaneous emission
Single-photon emission (1 QD) g?o)=0,

no cavity or low-Q, cavity, weak excitation Hong-Ou-Mandel
Cavity-enhanced single-photon emission (1-few QDs) error/purity 1 of single-

: . c s photon emission

right balance between cavity losses, strong excitation
Cavity-selected entangled-photon-pair emission (1 QD) concurrence, fidelity,

high-Q cavity tuned to two-photon resonance g”?(0) > gt > 0)
N-photon Fock-state emission (1 QD) time-ordered g

strong light-matter coupling, detuned excitation

transitions between QD many-particle configurations, promising higher repetition
rates for single-photon sources and smaller losses for high-efficiency lasers. At the
same time, the cavity acts as a spectral filter and introduces the Jaynes—Cummings
nonlinearity, enabling the use of effects like the photon blockade [25, 26]. The sur-
prisingly diverse range of regimes in which QD-microcavity systems can operate
may be fascinating and confusing at the same time. Table 1.1 is an attempt to provide
an overview.

1.2.1 Single Photons from a Single and Few QDs in a Cavity

A typical single-photon source is realized without a cavity, or with a weakly-reflecting
mirror to enhance the emission directionality. More recent technological advances
have enabled the fabrication of microresonators that contain exactly one QD emitter
in the field maximum of a single mode [28], allowing to use the benefits of cavity-
QED effects for the design of single-photon sources [29-31].

The emission properties of a single QD in a cavity can vary from single-photon
emission to lasing [7, 8, 32, 33]: In the low-Q cavity regime antibunched emission
(g?(0) = 0) of the single QD dominates. On the other hand, high-Q cavities with
photon losses on ps timescales enable the accumulation of photons such that the single
emitter can be driven close to or even into the regime of lasing, where coherent
emission results from a Poissonian cavity light field. In the left panel of Fig. 1.1
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Fig. 1.1 a Autocorrelation function g® (0) as a function of the photon output rate for N = 1, 2,
3 emitters. Each curve is obtained from a series of calculations where the cavity-Q is varied. From
left to right, k =10, 6.3,4,2.5, 1.6, 1,0.63, 0.4, 0.25, 0.16, 0.1, 0.063, 0.04, 0.025, 0.016, 0.01/ps,
open circles indicate k = 2.5/ps on each curve. High excitation is used to drive the system into
saturation. b Single-photon purity n versus g® (0). Starting from high 7, the same values for k are
used, open circles indicate k = 0.63/ps on each curve

we classify these two regimes as a function of the maximally attainable emission
rate r = k (n). Using strong incoherent excitation, each symbol on the black curve
represents a single-QD-microcavity system with a unique cavity loss rate «. To
the left side one approaches the limit of a free QD emitter (large ). To the right
side, the cavity losses become smaller than the spontaneous emission rate, so that
photons accumulate in the cavity and lead to coherent emission with g (0) = 1.
In between, there is a wide regime with cavity-enhanced single-photon emission,
where 0 < g@(0) < 0.5. In the solid-state community, this is a frequently used
criterion to identify the source of the emission to be a single emitter, since the
smallest possible g (0) value from a two-emitter system is that of a two-photon
Fock state yielding 0.5.

How do additional emitters influence this result? Non-resonant coupling of spec-
trally detuned QD transitions to the cavity mode distinguishes solid-state emitters
from atoms (cf. Sect. 1.4). Most current realizations of SQD nanostructures are not
free of residual emitters [32, 33]. When comparing to experiments, background
effects from detuned emitters can play an important role and significantly modify
the properties of a true single-emitter system. While it may seem intuitively clear that
a single-photon source can only be realized using a single-emitter, this is not entirely
true if the cavity acts as a filter for the statistical properties of photons originating
from several emitters, or if these emitters are correlated in an entangled state. In the
left panel of Fig. 1.1 results are also shown for two and three emitters in the cavity.
Surprisingly, non-classical emission is also possible, even if perfect antibunching in
terms of g®(0) values being as close as possible to zero is compromised in compar-
ison to the single-emitter case. We take a closer look at the interpretation of these
results, first reminding ourselves that according to (1.7), g® (0) contains information
from the photon statistics in an averaged form via the first and second moments of
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the probability distribution function p,. The performance of a single-photon source
is more accurately characterized in terms of the rate » (how long on average must one
wait for an emission event) and the error ™! to have an unusable packet with more
than one photon. This characterization can be realized if access to the full photon
statistics is available, such as from density-matrix calculations or photon-number
resolved measurements. We define the single-photon purity (inverse to the error) as

= D1
Zizz Di

that relates the probability of the emission of a single photon to that of the emission
of bundles of two or more photons [34, 35]. Single-photon purity is one of the criteria
listed in Chap. 3 Sect. 2, to which we refer for further information on single-photon
sources. In the right panel of Fig. 1.1 we show the attainable n and the corresponding
2@ (0) for the « values used in the left panel. While the error can only be arbitrarily
minimized in the single-emitter system, high n can also be obtained with two and
three emitters in the cavity. Most interestingly, the autocorrelation function is unable
to capture this behavior, as for the same purity of single-photon emission, g (0)
values can be very different. Moreover, the same high n may be achieved with
higher emission rates from two and three emitters [34]. The impact of additional
emitters in the cavity can apparently be less detrimental than one may expect from
£ (0) alone. In the future, it will be very interesting to further investigate emission
properties beyond the well-established autocorrelation measurements on the basis of
photon-number resolving detectors [36—40] or higher-order HBT setups [41].

(1.8)

1.2.2 Lasing in the Presence of Strong Coupling
in a Few-QD System

The miniaturization limit of solid-state cavity-QED is given by a single QD coupled to
a single mode of a microcavity. In order to achieve sufficient photon production from
only a single emitter, the light-matter coupling must be as high as one can achieve by
using emitters with large dipole moments and by placing them in the field maximum
of the confined mode. Coupling-strength values for current micropillar cavity systems
are close to 100 peV, which is sufficiently high to be in the strong coupling regime
even at increased excitation powers. While strong coupling is associated with weak
excitation and the appearance of the vacuum Rabi doublet in the emission spectrum,
lasing typically takes place in the weak coupling regime using strong excitation. It is
therefore an interesting thought that the lasing threshold is crossed while the transition
of a single QD is still in strong coupling with the mode. This was first discussed in
[42] for a photonic-crystal cavity containing only few QD emitters, although in the
past, neither was the influence of the background emitters quantified, nor the role
of excitation-induced dephasing, which is the main reason for the transition to weak
coupling at higher excitation, discussed.
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The criterion for strong coupling is commonly accepted as the existence of two
distinguishable peaks in the cavity emission spectrum, the so-called vacuum Rabi
doublet. In general, the spectrum can be written as the modulus square of the differ-
ence between two poles [43]

1 Ik
S(w) ~ - i (1.9)
w — w1 w — wn

In the presence of dephasing, such as originating from cavity losses, spontaneous
emission, or carrier relaxation processes following excitation, it is known [44, 45]
that strong coupling persists as long as 4g > |I" — k|, where g is the light-matter
coupling strength, « the cavity loss rate, and I" gives the total exciton dephasing,
before the Rabi doublet merges into a single line marking the transition to weak
coupling [10]. This well-known strong-coupling criterion must be reviewed, however,
when excitation is strong enough that states with higher total excitation in the Jaynes—
Cummings ladder become populated, such as when approaching the laser threshold.

A nanolaser can be seen as a driven dissipative system that is defined by the usual
Jaynes—Cummings Hamiltonian and Lindblad contributions for pump, relaxation,
and losses. An analytic expression for the cavity emission spectrum can only be
obtained by limiting the Hilbert space to a low-excitation subspace. Using the two-
level formalism for simplicity, in [10] the three lowest states, namely the ground
state in the zero-photon block |g, 0) and the states with one excitation |e, 0) and |g, 1)
(Fig. 1.2 depicts these states and their relation to the dressed-state Jaynes—Cummings
ladder), are used to derive the well-known expression for the cavity spectrum. While
this “three-state approximation” (3SA) sufficiently describes the strong-coupling
spectrum in the weak-excitation regime, higher states become realized under stronger
excitation as one begins to climb the Jaynes—Cummings ladder. In this case, we

bare-state Jaynes-Cummings
ladder dressed-state ladder

iVer

2
le, 2 I+.2)

-2)

P A

9 9,2

le, 1 +.1)

s 4y

le, 0) 5, 1%
l9,1)

0 19,0) [+, 0)

Fig. 1.2 TIllustration of the implications of the 3- and 4-state approximation (SA). In the 4SA, the
four lowest-energy states are explicitly considered including the state |e, 1) with a total excitation
number of N, = 2. In a dressed-state picture, this allows to represent the lowest two rungs of the
Jaynes—Cummings ladder and, thereby, to obtain the vacuum-Rabi doublet that results from the
two possible transitions from the first rung to the ground state. The 3SA is limited to states with a
maximum N, = 1. The Rabi-doublet is inaccurately described by the 3SA if the system pumped
towards the lasing threshold, as the first JC rung cannot be represented by the N,, = 1 states alone
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Fig. 1.3 Comparing different approximations to the cavity emission spectrum at low (a) and high
(b) excitation power. ¢ Real part of the poles that determine the peak positions in the 3SA and 4SA.
Two separate values indicate the peak splitting of the strong regime

show that considering the next higher excited state |c, 1) with a total excitation of 2
extends the validity of the approximation into the transition regime to lasing. In this
“four-state approximation” (4SA) the cavity emission spectrum can be written as a
closed analytic expression of the form of (1.9), where the roots that determine the
position of the peaks are changed by additional terms [46]. In Fig. 1.3 both levels
of approximation are compared to the full numerical solution. While the additional
higher excited state in the 4SA has little impact in the low-excitation regime (a),
its absence can be noted at high excitation (b): The conventional 3SA textbook
expression incorrectly predicts Rabi splitting, whereas the result obtained in the
4SA closely resembles the numerical result, which reveals that the transition to
weak coupling has taken place. The remaining difference between the 4SA and
the exact solution can be attributed to contributions from yet higher excited states.
In systems that are driven with higher excitation-power densities, the 4SA-analytic
formula for the cavity emission spectrum provides a new tool to evaluate experimental
measurements and to extract parameters, such as the light-matter coupling strength,
with greatly improved accuracy.

InFig. 1.3c the eigenvalues that determine the peak-positions in the emission spec-
trum are compared for 3SA and 4SA. One can infer that the transition to weak cou-
pling, indicated by the merging of the poles, takes places at much higher excitation-
induced dephasing (i.e. higher pumping) if the approximation is restricted to only the
three lowest states. This finding has severe implications for answering the question
if lasing and strong coupling can coexist.
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As discussed in Sect. 1.1.2, the photon autocorrelation function g® (0) approach-
ing unity is indicative for lasing, and so is a linewidth narrowing that begins to take
place at the laser transition [47]. In Fig. 1.4 we show numerical results for both quan-
tities together with the input-output curve. The calculation takes into account a single
QD that is in strong coupling with the mode (see the inset) and several “background
emitters” which only come into resonance at higher excitation. The underlying pic-
ture is that their exciton transition is detuned from the cavity mode, but transitions
between higher multi-exciton states that become realized at stronger excitation are
resonant. Non-resonant coupling via multi-exciton states is explained in Sect. 1.4.2
of this chapter. From the top to the bottom panel, we see a kink in the input-output
curve that originates from background contributions (dotted curve) to the emission
of the single QD (dashed curve). A mean intracavity photon number of 1 is reached
at P, = 0.02/ps. At this value, the coherence time shows a steep increase to mod-
erately low values reaching 40ps. The low coherence time reflects the significant
fraction of spontaneous emission also in the lasing regime due to the small overall
number of emitters. In contrast, in a many-emitter laser, spontaneous emission plays
practically no role above threshold, and the coherence time can be 1ns [21]. The
autocorrelation function exhibits antibunching (g® (0) < 1) of the strongly coupled
single emitter in the low excitation regime. Antibunching disappears with the onset of
contributions from the additional QDs, where spontaneous emission of their various
emission channels leads to a thermal component (g® (0) > 1). At high excitation,
coherent lasing with g®(0) = 1 is be reached.
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These results are representative for the behavior of a few-emitter QD-microcavity
system, which can operate in a variety of regimes depending on system parameters
and excitation strength thereby crossing between single-emitter behavior, LED emis-
sion, and lasing in different regimes of light-matter coupling. An understanding of
the intricate behavior requires to use a quantum-optical framework that takes into
account a variety of effects that are fundamentally relevant for solid-state emitters and
that are discussed in this chapter, such as non-resonant coupling, excitation-induced
dephasing, and multi-exciton transitions.

1.2.3 Cavity-Enhanced Emission of Entangled Photon Pairs

Pairs of entangled photons are essential to many building blocks for quantum tech-
nologies. This includes quantum repeater stations that are needed to extend quantum
communication networks beyond the limitations due to losses in optical fibres [48],
as well as quantum teleportation and key distribution via the E91 protocol [49].
Today’s applications mostly rely on parametric downconversion in non-linear crys-
tals to generate entangled photons. Semiconductor QDs possess particular properties
that make them promising candidates for integrated deterministic sources of entan-
gled photons. The following discussion refers to the energy scheme in the left panel
of Fig. 1.5. Prepared in the biexciton state, two decay channels are equally possible,
in which an electron-hole pair of either spin direction recombines and leaves behind
a remaining exciton with an electron and a hole of the opposite spin (Xz or Xy),
emitting a photon that is either horizontally or vertically polarized. From there a
second recombination is possible, resulting in the emission of another photon of the
same polarization as the first one. If both intermediate exciton states are energetically
indistinguishable, the “which-way” information is not revealed, and the result is the
entangled photon state (|H H) + |V V))/2, where |12) denotes the two-particle state
of the two-photon system.

(b)
Ep
H ¥
Eu .‘_. | N Eyv
H\ v
E(;

Weay = (En — E(;),-'“Z

Fig. 1.5 a With energy displayed along the vertical direction, the so-called ‘diamond’ scheme of
the biexciton-to-ground-state cascade of a semiconductor QD is schematically depicted. The inter-
mediate excitonic states are energetically separated by the fine-structure (fss) splitting. b Emission
of an entangled photon pair by cavity-enhancement of a direct two-photon emission process
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Unfortunately, due to growth-related anisotropies, both excitons are not indis-
tinguishable, but energetically separated by the fine-structure splitting (fss). The
possibility to distinguish the two recombination channels by their spectral foot-
print provides the “which-way” information that compromises entanglement. Many
attempts have been undertaken to minimize the fss, e.g. by applying external electri-
cal fields or doping [50], and we refer the reader to Chap. 7 for a detailed discussion.
We propose an elegant alternative approach that avoids the detrimental effect of the
fss altogether.

In [3] the direct two-photon emission process from the biexciton to the ground
state is employed, from which each photon carries half the energy of the biexciton.
As higher-order process that is of second order in the Hamiltonian, the two-photon
emission is as such highly unlikely and hardly relevant in previous discussions of
biexciton emission of entangled photon pairs. If, however, the emitter is embedded in
a cavity that is tuned exactly to the energy of the two-photon emission, the modified
photonic density of states enhances the two-photon emission and suppresses emission
through the cascade. This situation is depicted in the right panel of Fig.1.5. Both
processes compete with each other, and it depends sensitively on the parameters, in
particular on width (Q-factor) and position of the cavity mode, whether entanglement
can be preserved in the presence of fss.

For sufficiently high (but also typical) cavity-Q factors of about 20,000, we could
demonstrate nearly complete independence of the degree of entanglement on the fss
as shown in the left panel of Fig. 1.6. In the right panel, it is shown that in case of
perfect resonance between cavity and two-photon emission process, the delay-time
resolved autocorrelation function g® (t) exhibits bunching at T = 0, revealing that
both photons are indeed most likely emitted simultaneously. If the cavity is detuned
only slightly (0.25-0.5meV) from that resonance, the bunching peak moves away
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Fig. 1.6 a The degree of polarization entanglement (C = 1 representing a maximally entangled
state) remains nearly constant as function of fine-structure splitting, if a Q = 21400 cavity mode
is tuned exactly to the two-photon resonance of the biexciton transition. b The fingerprint of the
two-photon emission is a bunching-peak in the two-photon correlation function at zero time delay,
whereas emission through the biexction-exciton-ground state cascade exhibits bunching at a delayed
time. In resonance (solid curve), two-photon emission is enhanced by the cavity and is the dominant
process. For slight detuning (0.25 meV dashed, 0.5 meV dotted curve), emission through the cascade
becomes increasingly more likely, indicated by the peak moving away from t = 0
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from the origin T = 0, indicating that the two photons are emitted successively and
the emission mechanism shifts from the direct higher-order process to the cascade.

An experimental verification of the feasibility of the proposed generation of a
quantum-mechanical entangled state is yet to be provided. Both the direct creation of
the biexciton state by a direct two-photon absorption process [51], and the possibility
of the discussed two-photon emission process (although in the absence of a cavity)
[52] have recently been demonstrated.

1.2.4 Single Photons from an Electrical Source with Long
Pulses

As a final example for the generation of non-classical light we consider a single
emitter without the influence of a cavity. In the experimental realization [53], a
bottom DBR-mirror is used merely to enhance directionality of the emission.

The repetition rate of an on-demand single-photon source is limited by the recom-
bination time of the emitter. When using short (picosecond) excitation pulses with
sufficient temporal separation, each pulse triggers a single-photon emission event.
The duration of the excitation pulse must remain shorter than the average recombi-
nation time in order to avoid re-excitation following the same trigger, which would
result in the emission of successive photons. While short excitation pulses are easily
realized in all-optical setups, electrical excitation by current injection is the device-
relevant method of excitation and one key advantage of solid-state emitters over
atomic systems. Picosecond-short excitation pulses are, however, more difficult to
realize with electric pulse generators. Addressing this problem, we have proposed an
excitation scheme that makes use of the multi-exciton landscape of QD excitations
to realize strongly antibunched single-photon emission that is quite independent of
the excitation-pulse duration [53].

Instead of using weak excitation pulses, the pump pulses are chosen strong enough
to drive the system into saturation. Consequently, during the excitation the QD is
rapidly filled with carriers and the emission is dominated by the recombination of
higher multi-exciton configurations, which are spectrally detuned from the exciton-
to-ground-state transition. After the excitation pulse has ended, carriers recombine
until no carriers remain in the QD. The last decay in this cascade must result from
the neutral or charged exciton with only one remaining electron-hole pair at a unique
spectral position. It is the basic idea of the proposed scheme to trap the system in
higher multi-exciton configurations during the excitation and to use spectral filtering
to collect the single photon from the final exciton emission after the excitation pulse
has ended. The detuned emission during the excitation is not collected, and the
final exciton emission is independent of the duration of the excitation pulse. The
dynamical behavior of this interplay of different recombination channels is depicted
in Fig. 1.7 (theory in (a), experiment in (b)). As a central result, by using strong
excitation a high degree of antibunching with g < 0.1 can be maintained quite
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Fig. 1.7 a Time-dependence of the exciton realization probability following pulsed excitation of
different excitation powers. The realization of the exciton configuration is suppressed with increas-
ing pulse area of the excitation, as higher multi-exciton configurations form instead. After the pulse
has ended, the exciton is realized and then decays on the typical nanosecond timescale. b Time-
resolved measurements of the exciton (X) and biexciton (XX) emission intensity. In agreement
with the microscopic model, during excitation exciton emission is suppressed and emission from
the biexciton dominates. After the excitation pulse, the exciton transient reflects the theoretically
predicted behavior. The duration of the excitation pulse I"(¢) is indicated by the shaded region. Note
the different scales (fop: linear, bottom: logarithmic) when comparing the results. The left figure is
taken from [22], the right figure is adapted from [53]
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independently of the excitation-pulse duration, as shown in Fig. 1.8. Experimentally,
this has been verified for nanosecond pulse durations exceeding the recombination
time by more than 500% in excellent agreement with the theoretical results obtained
from a solution of the von-Neumann equation [22].
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1.3 Carrier Scattering and Dephasing

In solid-state physics, we usually deal with systems exhibiting a continuous density
of states, where the full quantum dynamics of excited carriers is practically not
accessible and theories have to be formulated in terms of averaged one- or two-particle
quantities. On the other hand, semiconductor quantum dots (QDs) are quasi-atomic
systems with a discrete spectrum of confined states, where the dynamics of the full
density operator can be calculated via a von Neumann equation, as discussed in the
introduction to this chapter. Unlike true atoms, QDs are not isolated but embedded
into a semiconductor crystal and have to be treated as open quantum systems in
interaction with their environment of lattice vibrations and charge carriers of the
barrier material as well as the photon modes of free space. The dissipative processes,
in particular carrier-carrier and carrier-phonon interaction, are typically described by
many-particle methods that can be formulated such that the coherent von Neumann
dynamics is supplemented by additional Lindblad terms, as we show below.

The density operator p(¢) of the QD system is expressed in a basis of many-particle
states. This leads to a full description of the QD excitations, in which the Coulomb
interaction of QD carriers can be directly included. As mentioned in the introduction,
there are basically two ways to construct the many-particle basis and formulate the
dynamics of the density operator. On the one hand, we can start from the single-
particle states that are provided by the QD confinement potential and build many-
particle configurations, or product states, by creating carriers in the single-particle
states in all possible combinations. A given configuration |{n;}) is then defined by
specifying which single-particle states are occupied (n; = 1) or empty (n; = 0). The
Coulomb configuration interaction can be included in the Hamiltonian of the von
Neumann equation, thereby considering the formation of multi-exciton states, which
are the fundamental QD excitations. Alternatively, we can take into account the
configuration interaction in advance and select an appropriate set of multi-exciton
states as a basis for the density operator, which is often done in quantum optics to
formulate compact models of QD emitters. In this section, we will follow the first
approach and stay with product states as the many-particle basis as discussed in [9].

The electronic many-particle basis can be augmented by photonic degrees of
freedom to capture the full quantum dynamics of QD emitters inside a cavity. In
this section, we focus on carrier scattering and dephasing by treating the electronic
part of the density operator p.;. We can describe the dynamics of p by the von
Neumann-Lindblad (vNL) equation [54-56]

9 i X f_t 1
E:oel = _E [Hs, pel] + ; 7 [2SXIOC]SX — SxSxPel — pelsxsx] . (1.10)

The commutator part represents the coherent time evolution of the density oper-
ator due to the system Hamiltonian Hg, which consists of a “free” part with the
QD confinement energies and the Coulomb interaction between the QD carriers. It
defines the eigenenergies of the QD many-electron system and takes into account
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all Coulomb renormalization effects caused by the interaction of QD carriers among
each other. By accounting for the interaction between the QD system and its semi-
conductor environment, which is formally described by a number of reservoirs, the
so-called Lindblad terms are obtained. They introduce dissipation into the time evo-
lution, causing the QD to relax to a thermal equilibrium which is defined by the
properties of the environment. This also includes interaction-induced dephasing of
coherences that may be generated in the QD for example by light-matter interaction.
The summation in (1.10) runs over all possible transitions between the eigenstates
of the QD, the transitions being described by operators sy. It is essential that both
the interaction of QD carriers with phonons and with charge carriers of the barrier
material can be formulated as Lindblad terms, where the transition rates yx can be
calculated microscopically. But even if we choose phenomenological values of yx
that are e.g. based on experimental results instead of a microscopic calculation, the
structure of the vNL equation guarantees physically sensible results.

Due to their direct relevance for various QD applications, in the past two decades
carrier-scattering processes in QD systems have been studied intensively both in
experiment [57-63] and theory [64-74]. A microscopic description of carrier scat-
tering requires the inclusion of carrier correlations that can be treated on different
levels. For QD systems, due to the finite state space of the electronic excitations,
approximate treatments of carrier correlations have been questioned and the impor-
tance of a configuration picture has been pointed out. [16] Consequences for QD
laser threshold current densities, [75] or QD gain recovery dynamics [76] have been
demonstrated. Moreover, a carrier-capture model consisting of several capture con-
figurations in the QD has been used to explain signatures of a phonon bottleneck in
time-resolved differential transmission measurements on InGaAs quantum dots [58].
In [77], the effect of full Coulomb configuration interaction on the carrier relaxation
in weakly confined QDs due to electron-acoustic phonon interaction has been dis-
cussed. The description in terms of a many-particle basis, which is naturally chosen
for quantum optical models of QD emitters, is complemented by the description of
carrier scattering on a single-particle level, which is often used throughout the lit-
erature. Again, it is questionable if a single-particle description of carrier scattering
may be used in QD systems with a small number of electronic states, as we illustrate
in the following.

When the vNL equation (1.10) is used, relaxation processes occur as transitions
between QD configurations, facilitating an exact treatment of the Pauli exclusion
principle between the QD carriers. In a single-particle description, for example in
terms of a Boltzmann equation, the central quantities are the occupation probabilities
fi of the single-particle states. These describe the population of a QD in the sense
of an ensemble average, which corresponds to each carrier reacting not to the actual
state of the collision partners in a scattering process, but to an independently averaged
“mean-field” distribution of carriers, see Fig. 1.9. As discussed in [9], this corresponds
to a mean-field-like treatment of Pauli blocking, which can lead to inaccurate results
in the description of carrier relaxation: If the QD is prepared in a state where only one
efficient relaxation channel is available, only one Lindblad term is present in (1.10),
exhibiting a purely exponential time evolution with a constant rate due to the linear
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Fig. 1.9 Schematic of carrier relaxation in the conduction band of a QD ensemble. a In two out of
five identical QDs, the lower confined state is populated, corresponding to a probability of f = 0.4,
so that the relaxation of a second carrier from the upper confined state is blocked. At the same time,
in the remaining three dots the relaxation is possible. In the Boltzmann description of the ensemble
(b) the relaxation rate is weakened by a factor (1 — f), which describes the average availability of
the final state, indicated by a single QD with a “ghost” carrier present in the lower state

character of the vNL equation. In contrast, the nonlinear Boltzmann equation yields a
power law behaviour, which is significantly slower than the exponential convergence
and which can not be assigned a constant rate. In the regime of high excitation, where
a large number of relaxation channels is available, carrier correlations are destroyed
on a short time scale and a mean-field description of scattering becomes feasible
again.

After these general considerations, we discuss the two relevant types of system-
reservoir coupling, namely carrier-carrier Coulomb scattering and carrier scattering
by phonons. First, the contact of the QD carriers with the carriers in delocalized states
leads to various Auger-like scattering processes. These are beyond the interaction
of QD carriers among each other, which is already taken care of in the system
Hamiltonian Hg. Carriers are captured or ejected from the QD and they scatter
between localized states due to the Coulomb interaction with delocalized carriers;
the latter provide the necessary energy for the transition processes. A detailed analysis
of these processes and the corresponding rates have been given in [9].

A second type of reservoir is provided by the phonons in the barrier material. In
polar semiconductors one of the strongest contribution to carrier scattering processes
is due to LO phonons, for which we assume a dispersionless spectrum w, = w; . The
interaction between QD system and phonon reservoir is described by the Hamiltonian

Hgg = ZM;'ja;faj(Dq + DT—q)’ (1.11)
i,j.q

with the Frohlich coupling matrix elements M,;‘j [78]. In (1.11) two scenarios can
be distinguished. First, when both indices i, j refer to QD states, electronic tran-
sitions |j) — [i) inside the QD assisted by the emission or absorption of phonons
are described, leading to carrier relaxation in the QD. The second case involves a
QD and a delocalized state and corresponds to carrier capture from or reemission
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into the reservoir, again assisted by phonons. For the first case, treating all possible
transitions X between configurations, which include the movement of a carrier from
|j) to |i), one obtains in Born-Markov approximation the transition rate in the form

2 .
Yx = ﬁz |M,l1’1|2{(1 + Npo) §(wx +wro) + Npo 8(wx —a)Lo)} . (1.12)
q

Ny o is the phonon population at the lattice temperature. The first term corresponds
to processes involving phonon emission, the second involving phonon absorption.
In (1.12) one encounters a problem that is specific to the LO-phonon driven carrier
kinetics in discrete electronic systems. The strict energy conservation expressed by
the §-functions is not generally met. In early theoretical considerations [79, 80],
this observation has lead to the prediction of a “phonon bottleneck”. However, only
in lowest-order perturbation theory (Fermi’s golden rule) does the scattering rate
vanish. Equation (1.12) corresponds to this level, which results from applying the
Born-Markov approximation. A better-suited non-perturbative description leads to
the polaron picture. The quasiparticle renormalization effects of the non-perturbative
treatment can be included in a generalized form of (1.12) via spectral functions
combining the configuration picture with the formalism of many-particle Green’s
functions, as described in detail in [56]. In contrast to the phonon bottleneck pre-
dicted from perturbation theory, non-vanishing scattering rates are obtained from
this approach. The Green’s function formalism allows for a self-consistent treatment
of carrier-carrier and carrier-phonon interaction, leading to a non-trivial co-action of
both mechanisms and modifying all transition rates entering the vNL equation.

In [56], we use the theory introduced above to analyze experimental results for
the carrier capture and relaxation dynamics in self-organized semiconductor QDs,
which are obtained by time-resolved differential transmission (TRDT) measure-
ments. Figure 1.10 contains examples of TRDT traces for the ground-state transition
at different temperatures and fixed excitation power. From the TRDT signals, rise
times can be extracted that reflect the efficiency of carrier capture and relaxation
processes under different experimental conditions. The data can be understood from
simulations of TRDT rise times under comparable conditions taking into account both
carrier-carrier and carrier-phonon interaction. The results are collected in Fig. 1.11.
In agreement with the experiment, we find a higher temperature sensitivity at lower
carrier densities, which points to a dominant role of the phonon scattering in this
regime. For low temperatures, the transition rate increases strongly with the carrier
density due to more efficient carrier-carrier scattering (Auger-like processes assisted
by delocalized carriers). The latter also causes larger broadening of the spectral
functions, which in turn accelerates carrier-phonon scattering as well. For elevated
temperatures, the density dependence is weak due to a dominating phonon contri-
bution. As shown in [56], renormalization effects are of critical importance for this
agreement, which can not be achieved by a perturbative treatment of system-reservoir
interaction.
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The many-particle interaction of the QD system with its environment induces not
only transitions between QD configurations, but also dephasing of coherences in
the QD that may be generated by resonant optical excitation. In the vNL equation
(1.10), this is reflected by a decay of transition amplitudes between many-particle
configurations. As widely discussed in the following chapters of this book, the amount
of dephasing is crucial for quantum optical and quantum information applications
of QD emitters, as it is directly connected to broadening of emission lines and to
the lifetime of coherences that are exploited for the generation of entanglement.
For example, dephasing affects the deterministic creation of photons by limiting
the fidelity of resonant excitation of single QD transitions which is discussed in
the chapters by Rengstl, Jetter and Michler and by Portalupi and Michler. This
problem also appears in the context of spin preparation by optical pulses, which is
the topic of the chapter by Sun and Waks. The limitation of indistinguishability of
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entangled photons due to dephasing is addressed in the chapters by Weihs, Huber
and Predojevi¢ and by Heindel, Rodt and Reitzenstein while Brash, Liu and Fox very
nicely express how strongly coherent control experiments in semiconductors rely
on a reduction of dephasing for example due to carrier-phonon and carrier-carrier
scattering.

In [5], the dephasing due to carrier-carrier and carrier-LO-phonon interaction in
semiconductor QDs has been quantified focussing on the regime of elevated exci-
tation density. Complementary to this is the low-density regime, where acoustic
phonons and especially at low temperature Coulomb-mediated out-scattering of
QD carriers lead to homogeneous broadening, see the contribution of P. Borri and
W. Langbein in [23]. The pure dephasing associated with acoustic phonons can be
comparable to scattering-induced dephasing when the carrier density is low. The
homogeneous exciton linewidth has been studied in great detail experimentally [61,
81, 82] and theoretically using the independent Boson model, where the electronic
system is described in a two-level approach [83—87]. Fewer experiments have inves-
tigated the dephasing of many-particle configurations [88—90].

1.4 Non-resonant QD-cavity Coupling

For weak excitation of self-assembled semiconductor QDs, the ground-state exciton
is dominating, while at elevated excitation levels a rich structure of closely lying
discrete optical transitions can be observed [63]. When QDs are placed in a high-Q
microcavity, the narrow-linewidth mode singles out particular transitions. In contrast
to atom-like isolated emitters, QDs exhibit an interesting peculiarity: Even for weak
excitation and QD emission lines significantly detuned from the cavity resonance,
photons can be emitted into the cavity mode. As a result of extensive experimental
and theoretical investigations, different mechanisms are discussed in the literature.
These involve phonon-assisted optical processes, non-resonant coupling mediated
by multi-exciton transitions, and Coulomb-assisted non-resonant coupling.

The effect is mostly discussed in the context of individual QDs coupled to optical
cavities. Beyond this, in cavity-QED lasers non-resonant QD-cavity coupling is also
expected to be responsible for a frequently observed background emission contri-
bution. In these cavity-QED lasers the number of resonant QD emitters is often too
small to reach stimulated emission, which is nonetheless observed in corresponding
experiments [8, 46, 91, 92].

1.4.1 Phonon-Assisted Non-resonant Coupling

The acoustic phonons have been connected [85, 86, 93] with a particular line shape
of the excitonic transition. The dominant contribution to the carrier-phonon coupling
is contained in the diagonal matrix elements with respect to the carrier-state index,
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which facilitates the application of the independent boson model [78]. The role
of LA-phonons in the off-resonant cavity feeding was demonstrated [94—-101]. It
was shown [2, 102—-104] that the appropriate frame work to describe the phonon-
assisted energy transfer between the exciton and the cavity is provided by the polaron
picture, in which the exciton generates an electric field to which the lattice ions react
by displacements of their oscillation centers. A polaron transform can be used to
connect the distorted lattice with the original one, and the QD-phonon interaction can
be formally eliminated from the Hamiltonian [78]. As aresult the Jaynes—Cummings
Hamiltonian

Hic=g(b'XB " +bX"B) (1.13)

then includes phonon operators

B =exp [%(Diq - Dq)i| (1.14)
q

besides the usual carrier (X = a;f a;) and photon ones. The relevant coupling con-
stant in the problem is the difference between those of the conduction and valance
band states, M, = M, — My"’. With the phonons acting as a thermal bath, a system-
reservoir treatment leads to Lindblad terms %} x and ., x+. In this case, the associ-
ated off-resonant cavity feeding rates as a function of detuning read

oo
Yoix(A) = 2g2 (B>2Re/ dr e H41(e?W — 1), (1.15)
0

with @ (¢) given by

M, [ . 4
LOESDYS ‘w—" [(N, + De ™" + Nyefr'] . (1.16)
q q

The rate of the reverse transition is related to the above one by the thermal factor
e #4, as prescribed by the Kubo-Martin-Schwinger condition. When expanding the
@ exponential in (1.15), all multi-phonon processes of emission and absorption that
generate a total energy of A can be seen to contribute. A more detailed discussion
of this polaron master equation approach is given in the chapter of Roy-Choudhury
and Hughes.

In Fig. 1.12 the phonon-assisted cavity-feeding rate is shown for typical InGaAs
QD parameters [4]. There is a pronounced asymmetry between positive and negative
detuning for low temperature. This is expected, since any thermal bath favors the
process which lowers the system energy, all the more so at low temperatures. For a
lattice temperature of 20 K efficient cavity feeding is obtained only up to detunings
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~2meV between the transition and the mode. Nevertheless, we find that phonon-
assisted recombination of QD excitations within this detuning range can lead to an
emission enhancement in a cavity QED laser that can make the difference between
thermal or coherent emission [4].

Many quantum optical application require state preparation with high fidelity.
Phonon-assisted processes can be utilized to efficiently prepare e.g. the biexciton or
exciton state by tuning the optical excitation on the corresponding phonon-sidebands
as discussed in the chapters of Portalupi and Michler as well as Roy-Choudhury and
Hughes.

1.4.2 Non-resonant Coupling Mediated by Multi-exciton
Transitions

A quantification of cavity feeding effects is typically hindered in systems with many
emitters. Here, various emission channels of different emitters overlap, masking
individual emission properties. The few-emitter limit on the other hand offers the
unique possibility to study non-resonant mode coupling in a highly controllable envi-
ronment. Photonic crystal (PhC) [105] cavities in particular provide strong optical
confinement with high Q factor and small mode volume [106], making them suitable
to explore the miniaturization limit of lasing where the gain medium consists only
of a few solid-state quantum emitters within a single mode cavity [91, 107].

Figure 1.13a shows the cavity-mode emission of a few (N ~ 4) QDs located in
a PhC nanocavity. The QD ground-state exciton to cavity detuning is much larger
than 2 meV. At first it may seem contradictory that lasing can be achieved in such a
system. However, the discrete QD lines in Fig. 1.13aevolve into a broadband emission
at elevated excitation intensities (highlighted by the gray shaded region). This is due
to non-resonant coupling facilitated by a multitude of closely spaced excited multi-
exciton states, some of which are overlapping with the cavity mode. More precisely,
when a QD can accommodate many single-particle bound states, the number of
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Fig. 1.13 a Experimental results for the emission spectrum from the cavity and increasing cw
excitation power density. The spectra are plotted on a logarithmic scale with an offset to each other

for clarity. The cavity mode is labeled E4y. The inset shows a linear spectrum of the system for

an excitation power density of PStD . b Integrated intensity of the cavity mode (green) and the QD

(blue) as a function of excitation power density. Black solid lines represent power-law fits to the
emission data. The solid red line depicts the intensity of the cavity mode emission calculated from
theory. To connect the theoretical pump rate with the experimental power density, the red curve
has been shifted along the power axis to ensure that the calculated exciton saturation coincides

with PS%D . ¢ Second oder correlation g (0) as function of the excitation power density. The colors

represent three different cavity mode energies. The solid green line has been obtained from the
microscopic model (color figure online)

carrier configurations becomes quite large, and their Coulomb interaction results in
many closely spaced multiexcitonic transitions. When a QD is excited with multiple
carriers, the subsequent relaxation dynamics of the carriers into a quasi-equilibrium
state usually involves transitions between multiple configurations, and due to the
Coulomb-configuration interaction, these configurations are associated with largely
varying multi-exciton energies, which are then passed through the relaxation process.
As soon as one of these configuration energies overlaps with the cavity mode, a
Purcell-enhanced photon emission [63, 108, 109] can take place at larger detunings
from the ground-state exciton. It is due to these transitions that lasing is possible
even if the discrete ground-state excitons of the four QDs visible in the lower spectra
in Fig. 1.13a are detuned from the mode by up to 17 meV.

The input-output characteristics at the cavity energy shows a slight superlinear
increase for excitation-power densities and appears simultaneously with the satura-
tion of the QD ground-state exciton, when multi-exciton states become increasingly
populated with significant probability, see Fig. 1.13b. For all detunings between emit-
ter transitions and mode, a clear transition from the spontaneous-emission regime
with g@(0) > 1 to coherent lasing with g®(0) = 1 is observed with increasing
excitation-power density, see Fig. 1.13c. Thus, in this example, the absolute energies
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of QD-transitions and cavity mode are of limited importance for the operation of the
nanolaser.

To study the interplay of QD many-particle states and the resulting coupling
to the cavity mode, we have solved the von Neumann-Lindblad equation for the
system of four QDs and the quantized field of the cavity. Due to the large state
space, calculations can only be performed for a subset of the QD many-particle
configurations. When one of the excited configurations is in resonance with the
cavity mode, we obtain results for the mean photon number similar to the experiment.
Moreover, it turns out that in order to simultaneously describe the experimental results
for intensity and g® (0), we need to assume that two of the excited configurations
are resonant with the cavity mode. When performing independent configuration-
interaction calculations for multi-exciton states, even for small QDs with a limited
number of single-particle states, we find a very large number of excited multi-exciton
states with largely varying configuration energies corresponding, e.g., to two or three
electron-hole pairs (3X and 2X). Hence we assume that from each of the transitions
within the manifold 3X* — 2X* and 2X* — 1X*, one is resonant with the cavity
mode. Here X* represents an excited exciton state.

The theoretical results for the mean photon number and photon autocorrelation
function are added as solid lines in Fig. 1.13b, c. Interestingly, in the low-excitation
regime values up to g®(0) = 2.7 are observed. From the theoretical model, we can
attribute this enhanced probability of two- and multiple-photon emission events to
two effects: One is the presence of competing resonant emission channels for each
QD emiitter, allowing for the simultaneous emission of photons into the mode. The
second results from strong radiative coupling between different emitters associated
with the effect of superradiance. This effect has been predicted in [110, 111] for QD
nanolasers under continuous-wave excitation, and experimental proof in a system
under pulsed excitation will be discussed in Sect. 1.5.

1.4.3 Coulomb-Assisted Non-resonant Coupling

In addition to the contributions from multi-exciton states, the role of the interaction
with the delocalized states was recognized [109] and Coulomb hybridization of QD
bound states with the delocalized states was demonstrated [112, 113]. In fact, carriers
in the delocalized states can act as a thermal bath, which is able to compensate for the
energy mismatch between a QD transition and the cavity resonance via Auger-like
processes. This is an alternative mechanism to the Coulomb configuration interaction
between carriers [109], as the Coulomb interaction involves other carriers outside of
the QD. Importantly, its effect in opening a kinetic channel is present even for QDs
hosting very few confined states, and holds even for a QD with single electron and
hole levels.

To describe this mechanism, we start from the Hamiltonian containing the Jaynes—
Cummings (JC) part for the interaction of the QD exciton with photons of the
cavity mode as well as the Coulomb part for the interaction between QD and
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delocalized states. Two different techniques can be used to formally eliminate either
(i) the exciton-photon or (ii) the Coulomb interaction part from the Hamiltonian.
Specifically, in (i) the Schrieffer-Wolff transformation [78, 102] can be used that
amounts to a perturbative diagonalization of the JC interaction part. The delocalized
states remain unchanged, and the Coulomb interaction is felt by the photon subsystem
due to the dressing of the QD states with the JC interaction.

A second approach considers a different scenario, in which the carrier-bath inter-
action is partly diagonalized and was used in Sect.1.4.1 for the treatment of the
phonon-assisted coupling. In [114] we extend the procedure to the case of the fermi-
onic bath of carriers in delocalized states. The model is not exactly soluble but can
be handled diagrammatically. The major difference to the first approach is that now
the bath adapts itself to the presence or absence of the exciton.

A qualitative discussion can already be obtained within the Schrieffer-Wolff
approach (SWA). Using this formalism, we obtain an effective JC interaction Hamil-
tonian

Hiy swa = —%W(bTX—l-bXT) (1.17)
that describes transitions between the QD exciton and the cavity photons, assisted by
the Coulomb interaction with carriers in delocalized states. We consider the fermionic
reservoir as being stationary and in thermal equilibrium and obtain Lindblad terms,
Ly x and &, x+, with rates given by

2
g 2
Vorx =275 Z Wil fe = i) 8(A+ e — &) (1.18)
2k K

Here, the occupancies f; are Fermi functions describing the carrier population of
electrons and holes (A = e, k) in the delocalized states. Similarly, y, x+ follows by
changing A to —A. InFig. 1.14 we show results for the Coulomb-assisted feeding rate
as a function of detuning. With increasing density n of carriers in delocalized states
additional scattering channels can compensate for the energetic mismatch A between
exciton and cavity, which leads to an increasing feeding rate. For comparison, we
show the spontaneous emission rate caused by the JC coupling alone for typical
QD-cavity parameter. At low carrier density, Coulomb assisted cavity feeding is
negligible in comparison to the spontaneous emission rate, which is in agreement
with previous experiments performed under low excitation condition [94, 97], in
which only phonon signatures were found. However, for sufficiently high carrier
densities (n > 10'°/cm?) Coulomb assisted processes prevail even at large detuning
and lead to a significant cavity feeding that is one order of magnitude stronger in
comparison to the JC coupling alone.

Finally, we find a significant reduction of the off-resonant cavity feeding, if the
wave functions for electrons and holes are similar (lines without dots). The reason is a
large degree of compensation between the electrostatic (Hartree) Coulomb integrals
contributing to (1.18). For identical electron and hole wave functions, the exciton



1 Theory of Quantum Light Sources and Cavity-QED Emitters ... 29

100 1o 109 fem?

2 fem®

107 f-s-10*/cm®, a7ja* =2
o 10W jemn?

10 H—e— 10" /cm?

e gpont. emission rate

Cavity feeding rate/g” in ps
=

10 - r
Tl P ,«:':’/ \“‘*::":“-:w,‘_‘ 1
U G T
V/ ’.-”
=20 - =10 6 10 20

Detuning A in meV

Fig. 1.14 Cavity-feeding rate for a non-resonant QD coupled to the continuum of delocalized
states at a temperature of 77K obtained by using the SWA. We vary the carrier density in the
delocalized states n from 103-10'2/cm? and consider electron and hole envelopes that are equal
(lines without dots) or differ by a factor of two (lines with dots). In all calculations we use InGaAs
parameters [9] and assume flat lens-shaped QDs. For comparison the spontaneous emission rate is
shown (dotted line) for typical parameters (« = 0.1/ps, I" = 0.01/ps, P = 0.1/ps). Note that the
rates are normalized to the square of the light-matter coupling strength

is not only globally but also locally neutral and there is no electrostatic interaction
between the exciton and the carriers in the delocalized states. Classically, the system
and the bath become uncoupled, only the exchange interaction is left. This points
to an intrinsic difference between interband cavity assisted feeding and intraband
scattering processes: In the latter case, electrons and holes can scatter independently,
while in the former case the emission of a photon requires the presence of an exciton,
i.e., a fully correlated electron-hole pair. As a consequence, any formalism describing
the off-resonant cavity feeding, which relies on an interaction of Coulombian origin,
like Auger interaction between the QD and carriers in delocalized states, or Frohlich
interaction of QD carriers with LO phonons, must obey a local neutrality condi-
tion: for locally neutral excitons and discarding the exchange terms the off-resonant
process should vanish exactly.

1.5 Superradiant Emitter Coupling of Quantum
Dots in Optical Resonators

In a conventional laser, the below-threshold spontaneous emission stems from inde-
pendent emitters while the above-threshold stimulated emission — within a classical
picture — results from a phase synchronization of the emitters with the radiation
field. In terms of a quantum mechanical picture, the de-excitation of the active mate-
rial, in semiconductors due to the recombination of electron-hole-pairs, is linked to
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photon generation in a way, that the expectation value (b'o;”) has a finite value.
Hereo,” = vj ¢; represents a microscopic polarization due to the de-excitation of the
emitter i. vj denotes a creation operator for a valence electron and ¢; an annihila-
tion operator for a conduction electron in the i-th QD. For independent emitters, the
total emission rate is simply the sum of contributions from independent emitters, and
quantum mechanical correlations are absent between the microscopic polarizations
of different emitters. This is the typical situation for the above-threshold emission
of conventional lasers. The phenomenon of radiative emitter coupling leads to the
existence of correlations of the form (o;rof) between the polarizations of different
emitters 7 and j. The emitter i looses an excitation at the cost of adding an excitation
in emitter j without changing the photon number in the system. Such a correlation
can be driven by the exchange of a photon between the emitters. It leads to the
phenomenon of superradiance, for which the emission rate of the ensemble can be
enhanced or inhibited in comparison to independent emitters. For the latter effect,
the term “subradiant emission regime” is also used.

Since the prediction of superradiance by Dicke in 1954, the effect has been exten-
sively studied in a variety of systems [115, 116] including semiconductor QDs [117,
118]. In most cases the demonstration of superradiance relies on macroscopic emis-
sion properties, where the time-resolved intensity or emission linewidth changes in
comparison to individual emitters. Most prominent is the transition from the expo-
nential decay of independent emitters to a superradiant pulse for correlated emitters
[115], even though most experiments resort to decay-time changes as function of the
emitter number. The recent interest in superradiance of superconducting qubits [119],
trapped atoms [120], and semiconductor magneto-plasmas [121] was motivated by
the prospects to study directly the correlated state of the active material.

In this chapter, we demonstrate the influence of radiative emitter coupling, which
leads to electronic correlations among different emitters, on the emission properties
of QDs in optical resonators. We find a clear influence on the time-resolved emission
(the occurrence of a superradiant pulse) as well as on the emission intensity. Espe-
cially at low excitation, dipole anti-correlations between pairs of emitters lead to
“excitation trapping” in the so-called subradiant regime. As a consequence, we iden-
tify modified characteristic properties of nanolasers that exhibit radiative coupling
effects, such as a non-constant 8 factor that reduces strongly in the low-excitation
regime. Furthermore, electronic correlations have a direct influence on the statistical
properties of the emitted photons. The effect of super-bunching has been predicted
in [122, 123] and was recently demonstrated in direct comparison between theory
and experiment in [6, 124].

In this section we consider cavity-QED lasers that operate with self-organized
semiconductor QDs within a resonator acting as gain material. The QDs are excited
by optical pumping and for the subsequent emission, the time-resolved and time-
integrated intensity are analyzed. To characterize the statistical properties of the
emission, the second-order photon correlation function g (t = 0) is used (cf.
Sect. 1.1.2). For the latter, a comparison of different emission regimes is presented in
Fig. 1.15. In particular, a value of g > 2 is indicative for radiative coupling (case
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Fig. 1.15 TIllustration of emission regimes. a Spontaneous recombination from independent emit-
ters leads to thermal radiation. b Using three-dimensional photon confinement in a cavity-quantum
electrodynamics laser, spontaneous emission is directed into a single resonator mode. For indepen-
dent emitters, below threshold the photon emission is uncorrelated, producing thermal or close to
thermal light. ¢ The exchange of photons introduces correlations between the electronic states of
different emitters. A relative phase information ¢ is spontaneously established, and the emission
from this entangled many-particle state leads to a superradiant pulse with giant photon bunching.
d Above threshold, stimulated emission dominates and leads to coherent radiation

c) between distant emitters [110, 122, 123]. In atomic systems, inhomogeneous
distributions of the emitter energies and light-matter couplings have a strong detri-
mental effect on the radiative emitter coupling. For self-organized semiconductor
QDs, the role of inhomogeneous broadening is substantially mitigated by the effect
of non-resonant QD-cavity coupling discussed in the previous paragraph. It involves
the ability to efficiently couple slightly detuned QDs to the cavity mode. Hence the
cavity serves a two-fold purpose. It provides a channel for efficient photon exchange
between emitters, which drives the inter-emitter correlations, and it enhances the
coupling of slightly off-resonant emitters.

For the theoretical description of such a system, two options are available. When
considering a small number of emitters, typically less than 10, a direct numerical
solution of the von Neumann-Lindblad equation can be used [4-6, 122, 123]. This
method has the advantage, that the full quantum dynamics of the coupled emitters and
cavity-field system can be described. As a result, the density matrix of this system is
available. It includes all existing quantum correlations and facilitates the calculation
of various correlation functions. The drawback is, that only a small number of emitters
can be included and each emitter is often only represented by a two-level system [122,
123, 125] or with few electronic configurations [4-6], since otherwise the Hilbert
space (and the resulting dimension of the density matrix) becomes too large for a
direct numerical solution. To describe larger systems, such as QD-ensemble lasers
consisting of hundreds of emitters, the equation-of-motion technique can be used. By
means of the cluster-expansion technique, a closed set of equations can be derived
to include quantum correlations up to a given order, see Sect. 1.1.1. In [110, 124],
a closed set of equations has been derived that contains inter-emitter correlations of
the type (o ;’al._), and the resulting changes in the cavity photon number (b'b) and

in the second-order photon correlation function g® (t = 0).
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Fig. 1.16 Time evolution of the intensity autocorrelation function g(z)(t =0, t) (top) and mean
photon number (bottom) after pulsed excitation of a nanolaser with various pump-pulse areas
P. Different curves correspond to below-threshold excitation (P = 0.05), the transition region
(P =0.1and0.15), and above-threshold excitation (P = 0.3 and 0.45). In the left part, superradiant
coupling between different quantum dots is included, while in the right part it is omitted

Figures 1.16 and 1.17 show results of such a theory for a QD nanolaser work-
ing with 200 QD emitters within an optical resonator (cavity photon decay rate
k =0.4ps~!, coupling rate between QDs and cavity mode g = 0.1 ps~', spontaneous
emission rate into other modes y,; = 0.005ps~!). In Fig. 1.16, the time evolution
of the mean photon number and second-order photon correlation function are com-
pared with (left part) and without (right part) superradiant coupling. In the presence of
superradiant coupling, even for weak pump rates a short output pulse is obtained with
a temporal width of about 20 ps, which is much shorter than the spontaneous lifetime
of individual emitters in the cavity (about 200ps). At the same time, g® (z = 0, 1)
is about 2 during the pulse maximum, indicating that the short pulse width is not
linked to stimulated emission. Values for g (z = 0, t) larger than 2 before and
in particular after the pulse maximum are signatures of radiative emitter coupling.
When omitting the radiative emitter coupling in the theory, g® (t = 0, ¢) remains 2
for weak pumping and the time-resolved emission shows a much slower exponential
decay with the typical Purcell-enhanced lifetime of individual emitters (see also the
left panel in Fig. 1.17). For stronger pump pulses, the system is driven above the
laser threshold and a stimulated emission pulse can be identified with g (r = 0, ¢)
reaching a value of 1 during the pulse maximum. In this regime, the difference in the
theoretical results with and without radiative emitter coupling becomes small, which
indicates that stimulated emission dominates the photon generation and suppresses
the role of inter-emitter correlations.

For the pulsed optical excitation discussed in the above examples, the time-
integrated output intensity versus pump pulse area is shown in the right part of
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Fig. 1.17 Calculated time evolution of the cavity mean photon number after pulsed optical exci-
tation for weak pumping (/eft) and time integrated output intensity versus pump-pulse area (right).
Results including superradiant coupling of the emitters (solid lines) are compared to those for inde-
pendent emitters (dashed lines). As indicated in the right panel, a stronger spontaneous emission
rate into non-lasing modes yy decreases the threshold modification due to superradiant coupling
but corroborates the robustness of the effect. The inset confirms the presence of the threshold kink
in the experiment despite a large S-factor as an indication of excitation trapping due to superradiant
emitter coupling

Fig.1.17. When comparing results with (solid lines) and without (dashed lines)

superradiant coupling, a dramatic reduction of the output intensity for weak and

intermediate pump rates is evident. In this regime, photons emitted into the cavity

mode from the QDs are reabsorbed by other QDs in a way that inter-QD polarizations
+

of the form (0" 0;") are driven. These inter-QD polarizations exist in addition to the

photon-assisted polarization (bo;”). The build-up of the former clearly reduces the
photon number in the cavity mode. On the other hand, above the laser threshold,
when stimulated emission is present, the role of radiative emitter coupling is small.
The combination of these two observations leads to a larger jump in the input-output
curve at the laser threshold [110, 124]. In the standard rate-equation laser theory, this
jump is solely determined by the 8 factor [126], which quantifies the fraction of the
total spontaneous emission that is directed into the laser mode. From a rate-equation
model it is found that § is solely determined by the relation of the rates associated
with emission into the laser mode y; and into non-lasing modes or other loss channels
Yl 1.6., B = Y1/ (71 + 1) [127]. Correspondingly, for cavity-QED lasers the 8 factor
is frequently estimated from the jump in the input-output curve. Our results demon-
strate that in the presence of radiative coupling this strongly underestimates the value
for 8. Furthermore, without superradiant coupling a larger y,,; leads to a larger kink
as the B factor increases. Our calculation including radiative coupling leads to a
smaller kink, as a larger y,; causes a reduction (damping) of inter-QD polarizations,
thereby reducing the associated excitation trapping (right panel of Fig. 1.17).
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Fig.1.18 (Red curve) pump-rate dependent S-factor obtained from the theoretical model with para-
meters applicable to experimentally studied system. (Black curve) calculation suppressing radiative
coupling effects between emitters that are responsible for sub- and superradiant effects. Comparing
both curves reveals that radiative coupling effects lead to a strong inhibition of spontaneous emis-
sion at low excitation (subradiance) and a slight enhancement of spontaneous emission above the
laser threshold (superradiance)

This behavior actually raises the question whether a constant B factor is suited to
characterize QD nanolasers that, due to the strong mode confinement, are likely to
facilitate the formation of inter-emitter correlations by the light field. In the following,
we suggest the idea of introducing a pump-rate dependent factor S(P) that accounts
for a reduction of the spontaneous emission rate due to excitation trapping, as well as
for the interplay of different multi-exciton configurations and apply it to the few-QD
nanolaser system discussed in the context of Fig. 1.13.

We first discuss the result for the pump-rate dependent §(P) factor without the
effects of radiative coupling, shown by the black curve in Fig. 1.18. The asymptotic
values at low (B(P) > 90%) and high excitation (8(P) =~ 50%) reflect the conven-
tional constant 8 factor associated with the multi-exciton transitions that dominate
at low and high excitation. In between, a transition is seen as the system switches
between multi-excitonic emission channels from different manifolds, cf. Sect. 1.4.2.
To provide insight into the role of the radiative coupling in our system, the red curve
shows the pump-rate dependent B(P) factor calculated including correlations due to
radiative coupling. In the low-excitation regime, where the super-thermal bunching
is observed in g(z) (0) (Fig. 1.13c), inter-emitter coupling leads to a strong inhibition
of the spontaneous emission rate resulting in 8(P) = 50% instead of 90%. Thereby
B(P) reflects the photon-trapping effect discussed above.

In summary, radiative emitter coupling can influence classical emission properties
like the intensity and its temporal evolution, but also the statistical properties of the
light emission. The effects of inter-emitter coupling is most prominent in the sponta-
neous emission regime, but can also play arole in few-emitter lasers, where stimulated
emission is weak. Accounting for radiative coupling effects in cavity-QED lasers can
strongly modify the device characteristics and be of paramount importance for the
correct identification of system parameters, opening up new research directions in
cavity-QED nanolasers.
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1.6 Summary and Outlook

Advances in the quantum information technologies have created a demand for fast,
efficient, and integrable sources of non-classical light. Solid-state emitters are a
promising platform, and quantum-dot systems have reached a technological maturity
that permits a high level of control over their emission properties, beginning by
tailoring the emission wavelength via material and growth design, but also altering
spontaneous emission itself by using cavity-QED effects in microcavities. As aresult,
nearly many imaginable states of the light field can be realized with single or few-QD
systems, from single-photon Fock-states to intense highly-bunched super-thermal
light.

Theoretical models play an important role in the design of new devices, the def-
inition of achievable specifications, and the exploration of new applications not yet
thought of. Unlike atomic systems, QDs are not isolated but are embedded semicon-
ductor systems. Theoretical modelling must combine quantum-optics with semicon-
ductor physics. This chapter has given an overview over the constituents of such a
theory and possible methods using examples from different applications.

The sophistication of technological possibilities will lead to even more advanced
realizations of solid-state cavity-QED systems in the future. New materials such
as two-dimensional semiconductors based on transition-metal dichalcogenides hold
great promise for exploring excitonic effects up to room temperature. Individual cav-
ities can already be combined to cavity arrays, so-called Jaynes—Cummings lattices,
in which many-body systems such as the Bose-Hubbard model become realized.
The potential of such systems for the quantum-information technologies is largely
unexplored.
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