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Abstract  Intragenic copy number variations (CNVs) in the human genome are  
significant contributors to the inherited genetic disorders. Currently the most estab-
lished methods to detect CNVs are array comparative genomic hybridization 
(aCGH) and MPLA. With the fast adaption of next generation sequencing (NGS) in 
the clinical sequencing, increasing interest has been attributed to the detection of 
CNV from NGS data. In this chapter, we describe an easy-to-implement strategy to 
detect and visualize exonic CNVs from captured NGS data, as well as the confirmation. 
We also discuss the specificity and sensitivity of this strategy.
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1  �Introduction

Intragenic copy number variations (CNVs) in the human genome are significant 
contributors to the inherited genetic disorders [10, 14]. It has been reported that 
approximately 12% of the human genome has CNV [11]. The pathogenicity of 
CNVs is variable, and the role of some pathogenic CNVs is still unknown. 
Intragenic CNVs involving genes matching the clinical phenotype are most likely 
pathogenic due to the change in gene dosage (whole gene deletion/duplication) or 
the disruption of the gene (out-of-frame exonic deletion/duplication). In clinical 
settings, if only a heterozygous pathogenic variant is identified in the candidate 
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gene for an autosomal recessive disorder by sequencing, and the phenotype is 
consistent with the disease gene, search for the second mutant allele shifts to the 
identification of intragenic deletions or duplications.

Exon targeted array comparative genomic hybridization (aCGH) is currently the 
most commonly used approach for the detection of exonic CNVs [17, 18]. Since 
backbone probes throughout the genome are included in the exon targeted array, 
resolutions are ranging from a few hundred bases to kilobases (Kb), to megabases 
(Mb), and even the entire chromosome [17, 18]. Multiplex ligation-dependent probe 
amplification (MLPA) is another commonly used method for CNV detection. 
However, specially designed probes for individual exons are required, thus, it is dif-
ficult to use MLPA for large scale CNV analysis. Various methodologies for CNV 
detection may not be readily available to some clinical laboratories or the assays 
developed by individual laboratories may not include a complete set of genes or 
exons of interest for technical or commercial reasons.

In recent years, next generation sequencing (NGS) technologies have been widely 
used in the clinical practice of molecular diagnosis of human genetic diseases  
[5, 15, 16, 23]. Since 85% of all known mutations are located in the coding regions 
and the intron/exon junctions [4], capture-based target gene enrichment followed by 
NGS analysis has been a cost effective way to identify point mutations and small 
indels that are less than 20 bp in the target genes. NGS with consistently deep cover-
age of individual target exons can potentially provide an opportunity for concurrent 
detection of copy number changes and point mutations in patients with inherited 
disorders.

2  �Strategies for NGS Based CNV Detection

NGS based CNV detection strategies can be divided into four categories based 
on sequence reads and coverage depth: (1) Paired-end mapping [2, 7, 8];  
(2) Split-read [20]; (3) Depth of coverage [1, 3, 12, 19, 21]; and (4) Assembly 
based [9, 13, 22].

2.1  �Paired-End Mapping Method

Paired-end mapping (PEM) methods require paired-end reads. The distance of 
paired-end reads is predetermined. If the distance of a pair of mapped reads is sig-
nificantly larger than the distribution of the predetermined distance, a possible 
insertion may be identified. If shorter, a possible deletion can be identified. Some 
programs have been developed using paired-end mapping method, such as PEMer, 
BreakDancer, and Variation Hunber [2, 7, 8].
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2.2  �Split-Read

Split-read method also need paired-end reads. Unlike paired-end mapping method, 
in which the break points are not in the reads, the split-read method need one per-
fectly matched read and one read contains the breakpoint so that this read cannot be 
perfectly mapped to the reference genomic sequence. This unmatched read is then 
split into several fragments, and the first and the last fragments are mapped to the 
reference genomic sequence. The unmatched reads are split into several short frag-
ments too short to be mapped to the genomic reference sequence. This split-read 
method usually requires long reads. Pindel is a split-read based program [20].

2.3  �Depth of Coverage Based

The depth of coverage information is embedded in all NGS data, thus, depth of 
coverage based methods have become the main method for CNV detection. NGS 
results from both paired-end and single-end reads can be used for coverage depth 
based methods. Many programs have been developed using the depth of coverage 
information, such as SegSeq, CNVseq, Rdxplorer, CNVnator, and ExomeCNV  
[1, 3, 12, 19, 21]. The fundamental hypothesis of the depth of coverage based 
method is that the coverage is related to the copy number.

2.4  �Assembly Based

In paired-end mapping, split-read, and depth of coverage methods, the reads need to 
bemapped to a reference genomic sequence. In contrast, the assembly-based method 
does not need a reference genome to map the reads. Instead, the reads are assembled 
without a reference genomic sequence. The assembled sequence is then compared 
to the genome sequence. The difference usually contains the structural variation 
information, including CNV.  Velvet, ABySS and SOAPdenovo are all assembly 
based method [9, 13, 22].

Each of these strategies has its own strength and weakness, and maybe adopted 
for different purposes. The paired-end mapping based methods and the split-read 
methods can indicate the location of the CNV so it is easier to find the breakpoint. 
However, they cannot determine the exact copy number. These two methods also 
require paired-end reads. The depth of coverage (DOC) based method does not need 
additional specific algorithm because DOC information is already embedded in all 
NGS data. This is an important advantageous point because in clinical settings, the 
major NGS approach is captured based, either target panel or whole exome sequenc-
ing (WES). Thus, DOC strategy is readily applicable. The assembly based method 
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is different from the other three in that it does not need reference genome sequence 
for mapping. However, it does need long reads with continuous coverage, thus, both 
the data collection and processing are time and cost consuming. The method is the 
least commonly used.

3  �Procedures to Detect CNVs Based on Depth of Coverage

3.1  �Reference Samples

Most DOC based CNV detection methods share the similar principle that is to 
compare the average coverage depth of a test sample to DOC of a reference. DOC 
of a reference is usually the mean or medium DOC of a group of samples that are 
analyzed in the same batch. An ideal reference is with the lowest coefficients of 
variations in the coverage depth. A few factors may contribute to variations. One is 
that there are intrinsic CNVs in the reference samples. These CNVs could be pres-
ent in any samples depending on their allele frequencies. These are most likely 
benign. The others are rare, clinically significant CNVs that may be associated 
with disease phenotypes. We can select reference samples that do not contain 
CNVs in the genes of interest. These samples may be available publicly or in the 
individual laboratories that have validated the reference samples by a second 
method, such as aCGH. Still, variations in coverage depth maybe due to batch 
effects, including sample quality, sample processing, sample or exon specific dif-
ferences, as well as instrumentation, technical, and other experimental variations. 
These types of variations are usually characterized and minimized during valida-
tion steps, although they cannot be completely removed. The reference DOC file 
can be generated by averaging DOC from a group of samples that do not contain 
CNVs in regions of interests. Since pathogenic CNVs are rare, to further minimize 
variations from batch effects, in routine practice, NGS results of at least 20 sam-
ples performed under the same conditions as the testing samples are grouped to 
generate the reference file.

3.2  �DOC Based CNV Detection Using Exon as Sliding Window

Unlike whole genome sequencing, in which sequence data are continuous, the 
fundamental elements of capture based NGS are exons. Capture probes are 
designed for individual exons as regions of interests. NGS reads are grouped by 
exons and are not continuous due to the interruption of introns that are not 
captured and sequenced. Therefore, it is most reasonable to use exon as the 
sliding window.
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3.3  �Normalization of the Depth of Sequence Read to the Total 
Amount of DNA Loaded to Sequencing Machine

The amount of DNA template loaded to the sequencing machine naturally determines 
the total sequence reads generated, thus, it also affects the depth of coverage of indi-
vidual exons. Although the loading amount of DNA template is carefully controlled 
for each sample, variation among different samples is inevitable. For CNV detection, 
accurate quantification of the number of sequence read is critical because the read 
depth is what CNV detection based upon. The DOC in the NGS data is not only deter-
mined by the copy number, but also by the amount of total target DNA loaded unto 
the flow cell and sequenced. Thus, before the DOC of testing sample and reference 
sample is compared, the total coverage of each individual sample is normalized for 
equal loading of total DNA template, which is determined by the total mapped reads.

3.4  �Generation of Reference File

The reference file of DOC of exons is essentially the average DOC of a group of 
selected samples performed in the same NGS batch. There are two important values 
in the reference file that is used for exon based CNV detection algorithm. One is the 
mean value (μ) of the first normalized DOC of an exon, which is later used for the 
testing sample normalization/comparison. The other is the standard deviation (σ) of 
this mean value, from which the coefficient of variation (CV) is obtained. CV is an 
indicator of the quality of the reference file.

3.5  �Normalization of DOC of the Testing Sample (Second 
Normalization)

Unlike reference samples, in order to detect CNVs, the DOC of the testing sample is 
normalized twice. First, it is similar to reference samples, the DOC of each exon in the 
testing sample is normalized against the total mapped reads. The normalized DOC of 
an exon is then normalized again to the mean DOC (μ) of the corresponding exon. The 
mean DOC (μ) is the average DOC of a specific individual exon in the reference file.

3.6  �Detection and Visualization of CNVs

Ideally, the final normalized DOC of an exon with normal copy number is 1 or 
around 1. The secondary normalized DOC is 0.5 for exons with heterozygous dele-
tion, and 0 for homozygous deletion. Duplication with a total of 3copies, the 
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normalized DOC is 1.5. However due to the technical variation and various genomic 
properties, the final normalized DOC is in a range. Different exons have different 
variations. We developed a combo CNV detection and visual checking algorithm, 
which includes automatic CNV detection from the statistical aspect, and a visual-
ization method for visual checking. To balance the sensitivity and specificity and 
avoid false negatives, we have these settings: (1) if the normalized value is less than 
1–1.5CV, it is scored as a deletion; (2) if the normalized value is greater than 
1 + 1.5CV, it is scored as duplication; (3) if the normalized value is in between, then, 
it is considered normal. An example of heterozygous deletion of E2-E10 of PHKB 
is shown in Fig. 1, in which each exon captured and sequenced is normalized and 
CNV is scored as described above. In this figure, column Norm/Ref is the final nor-
malized DOC. Column CV is the coefficient of variation of the reference. The val-
ues in the CNV Call column are automatic CNV calls based on the Norm/Ref value 
and the CV value.

We have also generated a custom UCSC track file from the normalized DOC 
and the genomic coordinates. This file can be uploaded to UCSC genome 
browser to visualize the results. One advantage of the customized track file is 
that multiple samples can be visually simultaneously and compared. An example 
is shown in Fig. 2, in which four custom tracks in the figure represent the final 
normalized DOC of PHKB exons of four different samples, including one posi-
tive sample in the blue box, which has PHKB E2-E10 heterozygous deletion. 
Each vertical bar represents an exon. The height of the bar is the copy number of 
this exon. Exons in the red box are exons with only one copy (heterozygous 
deletion).

Index Gene CDS
Average 
Reads Normalized Reference Norm/Ref copies

Standard 
Deviation CV CNV Call

948 PHKB 1 185.19 1.67E-05 1.46E-05 1.1474937 2.294987 2.91E-06 0.199643 -
949 PHKB 1b 1024.4 9.25E-05 0.0001054 0.8779857 1.755971 1.21E-05 0.115065 -
950 PHKB 2 589.23 5.32E-05 0.0001076 0.4947187 1.040827 1.86E-05 0.172962 del
951 PHKB 3 533.32 4.82E-05 0.000107 0.450048 0.946845 1.71E-05 0.159316 del
952 PHKB 4 640.32 5.78E-05 0.0001245 0.4644381 0.977121 1.83E-05 0.1471 del
953 PHKB 5 488.39 4.41E-05 9.67E-05 0.4564205 0.960252 1.78E-05 0.184325 del
954 PHKB 6 520.8 4.70E-05 8.73E-05 0.5387064 1.133372 1.90E-05 0.217116 del
955 PHKB 7 231.45 2.09E-05 5.31E-05 0.3934672 0.827807 1.10E-05 0.206516 del
956 PHKB 8 566.67 5.12E-05 0.0001069 0.4786702 1.007063 2.34E-05 0.218864 del
957 PHKB 9 455.19 4.11E-05 9.07E-05 0.4535737 0.954263 1.66E-05 0.1836 del
958 PHKB 10 565.74 5.11E-05 0.0001095 0.466699 0.981877 1.77E-05 0.161279 del
959 PHKB 11 782.62 7.07E-05 6.94E-05 1.0190121 2.038024 1.60E-05 0.229942 -
960 PHKB 12 845.94 7.64E-05 8.03E-05 0.9520423 1.904085 1.83E-05 0.228602 -
961 PHKB 13 1113.9 0.0001006 0.0001156 0.8705247 1.741049 1.72E-05 0.148717 -
962 PHKB 14 1179.4 0.0001065 0.0001188 0.8965683 1.793137 1.58E-05 0.133099 -
963 PHKB 15 829.32 7.49E-05 7.53E-05 0.9951613 1.990323 1.00E-05 0.132983 -

… … … … … … … … … … …

Fig. 1  Example of DOC normalization and CNV call from NGS data. Norm/Ref is the final nor-
malized coverage. CV is the coefficient of variation of the reference. The values in the CNV Call 
column are the automatic CNV calls based on the Norm/Ref value and the CV value
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4  �Confirmation of CNV

CNVs detected by DOC from NGS data can be confirmed by a second method, such 
as MPLA, aCGH or long range PCR (LR-PCR). High density aCGH is often used 
because it has the ability to reveal the boundary of the CNVs, if the breakpoints are 
not in the targeted exons. MLPA and LR-PCR are fast and cost effective ways to 
confirm exonic small CNVs and concurrent CNVs. Figure 3 is an example of the 
aCGH confirmation of a heterozygous deletion of E2-E10 of PHKB identified by 
using coverage based NGS data.

5  �Sensitivity and Specificity

The sensitivity and specificity of NGS coverage based CNV detection was 
described previously [6]. In this paper, 12 validation samples were performed both 
NGS and aCGH, and the CNV detection results were compared. The total number 
of exons included in the comparison is 25,608. The sensitivity for the detection of 
deletion is 100% (9/9), but only 66.7% (2/3) for duplication. The specificity for the 

Fig. 2  Example of visualization of CNV call using UCSC genome browser with custom track. 
Four samples including one positive sample circled in blue and three negative samples are dis-
played together, along with the UCSC genes track which shows the genes and exons information. 
Nine exons with heterozygous deletions circled in red have half of the bar height of other normal 
exons
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detection of deletion and duplication is 99.92% and 99.86%, respectively. NGS 
coverage based CNV analysis is able to detect all deletions confirmed by aCGH at 
the single exon level without any false negative. The false positive rate of NGS 
based method is much higher for duplications (94.7%) than deletions (68.9%). The 
positive predicative value of duplication detection is only 5.3% (2/38). Even though 
all copy number losses detected by aCGH have been detected by NGS based analy-
sis, the positive predicative rate is only 31% (9/29). This implies that all deletions 
detected by NGS based method require further confirmation with a second method, 
if the approach is to be used for clinical diagnostic purpose. In contrast, the nega-
tive predicative values for both deletions and duplications are 100%. This would 
suggest that a testing sample can be considered negative if the NGS based CNV 
analysis is negative.

6  �Challenges and Issues

The most decisive step in the captured based NGS is the hybridization during the 
library preparation, which is affected by technical conditions and DNA properties. 
One outstanding factor is the GC content of the DNA. High GC content DNA is 
usually captured not as consistently as DNA with normal GC content. Some algo-
rithms have been developed to correct the effect of GC content. However, our expe-
rience indicates that DNA with high GC content is more sensitive to subtle changes 
in experimental conditions during the hybridization step than DNA with normal GC 

Fig. 3  aCGH confirmation of heterozygous deletion of PHKB E2-E10. Probes in green shows 1 
copy of E2 to E10. Since there are probes in the intron region, aCGH usually can provide more 
information on the boundary of the deletion

Y. Feng et al.



21

content. So far, no good algorithms are able to take this intoaccount effectively. 
Exons with high GC content often show high coefficient of variations (CV). 
Fortunately, overall only less than 2% of all exons have high CV that CNVs cannot 
be determined reliably.

Another issue is the effect of homologous regions and pseudogenes on capture 
and sequencing coverage depth. Due to the presence of off-target high homologous 
sequences, the NGS data alignment software (aligner) sometimes cannot differenti-
ate them to map sequences correctly. Therefore, the DOC may be distorted.

7  �Future

Currently, the NGS based CNV detection algorithms have made great progress in 
the clinical utility in the diagnosis of inherited Mendelian diseases, in which the 
copy number of DNA is an integer, for example, 0, 1, 2 or 3. However, clinical 
utility of NGS has beengradually expanded to the detection of somatic muta-
tions, in which the fraction of pathogenic variants is not present at 0%, 50% or 
100%, as that is generally true for Mendelian mutations. It will be challenging 
and meaningful to investigate the performance of CNV detection in this 
situation.

Availability  A script for the detection of CNVs used in this chapter was developed 
in Ruby and is available at https://sourceforge.net/projects/cnvanalysis.
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