
Chapter 1
Introduction

1.1 A Brief Synopsis

Parametric statistics is concerned with families

p : M → P(Ω) (1.1)

of probability measures on some sample space Ω . That is, for each ξ in the parame-
ter space M , we have a probability measure p(·; ξ) on Ω . And typically, one wishes
to estimate the parameter ξ based on random samples drawn from some unknown
probability distribution on Ω , so as to identify a particular p(·; ξ0) that best fits that
sampling distribution. Information geometry provides geometric tools to analyze
such families. In particular, a basic question is how sensitively p(x; ξ) depends on
the sample x. It turns out that this sensitivity can be quantified by a Riemannian
metric, the Fisher metric originally introduced by Rao. Therefore, it is natural to
bring in tools from differential geometry. That metric on the parameter space M

is obtained by pulling back some universal structure from P(Ω) via (1.1). When
Ω is infinite, which is not an untypical situation in statistics, however, P(Ω) is
infinite-dimensional, and therefore functional analytical problems arise. One of the
main features of this book consists in a general, and as we think, most satisfactory,
approach to these issues.

From a geometric perspective, it is natural to look at invariances. On the one
hand, we can consider mappings

κ : Ω → Ω ′ (1.2)

into some other space Ω ′. Such a κ is called a statistic. In some cases, Ω ′ might even
be finite even if Ω itself is infinite. For instance, Ω ′ could simply be the index set
of some finite partition of Ω , and κ(x) then would simply tell us in which member
of that partition the point x is found. In other cases, κ might stand for a specific
observable on Ω . A natural question then concerns the possible loss of information
about the parameter ξ ∈ M from the family (1.1) when we only observe κ(x) instead
of x itself. The statistic κ is called sufficient for the family (1.1) when no information
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2 1 Introduction

is lost at all. It turns out that the information loss can be quantified by the difference
of the Fisher metrics of the originally family p and the induced family κ∗p. We shall
also show that the information loss can be quantified by tensors of higher order. In
fact, one of the results that we shall prove in this book is that the Fisher metric is
uniquely characterized (up to a constant factor, of course) by being invariant under
all sufficient statistics.

Another invariance concerns reparametrizations of the parameter space M . Of
course, as a Riemannian metric, the Fisher metric transforms appropriately under
such reparametrizations. However, there are particular families p with particular
parametrizations. These naturally play an important role. In order to see how they
arise, we need to look at the structure of the space P(Ω) of probability measures
more carefully (see Fig. 1.1). Every probability measure is a measure tout court, that
is, there is an embedding

ı : P(Ω) → S(Ω) (1.3)

into the space S(Ω) of all finite signed measures on Ω . As a technical point, for a
probability measure, that is, an element of P(Ω), we require it to be nonnegative,
but for a general (finite) measure, an element of S(Ω), we do not impose this restric-
tion. The latter space is a linear space. p ∈ P(Ω) then is simply characterized by∫
Ω

dp(x) = 1, and so, P(Ω) becomes a convex subset (because of the nonnegativ-
ity constraint) of an affine subspace (characterized by the condition

∫
Ω

dμ(x) = 1)
of the linear space S(Ω). On the other hand, there is also a projection

π : M(Ω) → P(Ω) (1.4)

of the space of nonnegative measures by assigning to each m ∈ M(Ω) the relative
measure of subsets. For any measurable subsets A,B⊆Ω with m(B) > 0, π(m)

looks at the quotients m(A)
m(B)

, that is, the relative measures of those subsets. That is,
a probability measure is now considered as an equivalence class of measures up
to a scaling factor. Of course, as such, a probability measure and such an equiva-
lence class is not quite the same, and therefore the target of π in (1.4) is not really
P(Ω), but P(Ω) can be easily identified with π(M(Ω)) (modulo certain technical
points that we suppress in this synopsis), by simply normalizing a measure by m(Ω)

(assuming that the latter is finite). From the perspective of such relative measures,
π(M(Ω)), that is by what we have just said, P(Ω), can be seen as the positive
part of a projective space of the linear space S(Ω), that is, as the positive orthant or
sector of the unit sphere in S(Ω). When Ω is finite, the linear space S(Ω) is finite-
dimensional, and therefore, it can be naturally equipped with a Euclidean metric.
This metric then also induces a metric on the unit sphere, or in the terminology de-
veloped here, the projection map π from (1.4) then induces a metric on P(Ω). This
is the Fisher metric, a fundamental object of our study. When Ω is infinite, then the
space S(Ω) is infinite-dimensional, but it does not carry the structure of a Hilbert
space. Nevertheless, by considering variations of class L2(Ω,μ), we still obtain
an L2-scalar product, and that will again be the Fisher metric. (The space within
which we vary our measure—L1,L∞ or L2—will be an important technical issue
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for our functional analytical considerations. In fact, L1 will be the natural choice,
as it behaves naturally under a change of base measure.)

It turns out that the structure induced on P(Ω) by (1.4) in a certain sense is dual
to the affine structure induced on this space by the embedding (1.3). In fact, this
dual structure is affine itself, and it can be described in terms of an exponential map.
In order to better understand this, let us discuss the two possible ways in which
a measure can be normalized to become a probability measure. We start with a
probability measure μ and want to move to another probability measure ν. We can
write additively

ν = μ + (ν − μ) (1.5)

and connect ν with μ by the straight line

μ + t (ν − μ), with t ∈ [0,1]. (1.6)

When we consider an arbitrary variation

μ + tξ, (1.7)

when we want to stay within the class of probability measures, we need to subtract
ξ0 := ξ(Ω), that is, consider the measure ξ − ξ0 defined by (ξ − ξ0)(A) := ξ(A) −
ξ(Ω). Thus, we get the variation

μ + t (ξ − ξ0). (1.8)

Here, we see the problem that even if μ is nonnegative, as it should be as a probabil-
ity measure, and if μ+ tξ is nonnegative as well for t ∈ [0,1], μ+ t (ξ −ξ0) need not
always be nonnegative. Expressing this geometrically, the geodesic μ + t (ξ − ξ0)

(which is meaningful for all t ∈ R) with respect to the affine structure on the sim-
plex may leave the simplex of probability measures. Thus, this affine structure is not
complete. Alternatively, we can consider a multiplicative variation and write

ν = exp

(
dν

dμ

)

μ (1.9)

where dν
dμ

is the Radon–Nikodym derivative of ν w.r.t. μ. A general variation would
then be of the form

exp(tf )μ, with t ∈ [0,1], (1.10)

where we require that the function expf be in L1(Ω,μ). Here, we choose the ex-
ponential for two reasons. First, this ensures that the measure exp(tf )μ is nonneg-
ative if μ is. Thus, we do not run into the problem of noncompleteness as for the
additive variation. Secondly, we can consider a linear space of functions f here.
There is an important technical problem, though. exp(t1f ) ∈ L1 does not imply
that exp(t2f ) ∈ L1 for t2 > t1; we shall return to this problem. For the moment,
it can be circumvented by requiring that f ∈ L∞(Ω,μ) because that implies that
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Fig. 1.1 Natural inclusion
and projection

exp(tf ) ∈ L∞ as well for all t . Again, for a general function f , we need to impose
a normalization in order to stay in the class of probability distributions. This leads
to the variation

exp(tf )

Z(t)
μ with Z(t) :=

∫

Ω

exp(tf ) dμ. (1.11)

This multiplicative normalization is, of course, in line with our view of the prob-
ability measures as equivalence classes of measures up to a factor. Moreover, we
can consider the family (1.11) as a geodesic for an affine structure, as we shall now
explain. First, although the normalization factor Z(t) depends on the measure μ,
this does not matter as we are considering elements of a projective space which
does not see a global factor. Secondly, when we have two probability measures
μ,μ1 with μ1 = φμ for some positive function φ with φ ∈ L1(Ω,μ) and hence
φ−1 ∈ L1(Ω,μ1), then the variations exp(tf )μ of μ correspond to the variations
exp(tf )

φ
μ1 of μ1. At the level of the linear spaces, the correspondence would be be-

tween f and f − logφ (we might wish to require here that φ,φ−1 ∈ L∞ according
to the previous discussion, but let us ignore this technical point for the moment).
The important point here is that we can identify the variations at μ and μ1 here in
a manner that does not depend on the individual f , because the shift by logφ is the
same for all f . Moreover, when we have μ2 = ψμ1, then μ2 = ψφμ, and the shift
is by log(ψφ) = logψ + logφ. But this is precisely what an affine structure amounts
to. Thus, we have identified the second affine structure on the space of probability
measures. It possesses a natural exponential map f �→ expf , is naturally adapted
to our description of probability measures as equivalence classes of measures, and
is complete in contrast to the first affine structure. As we shall explore in more de-
tail in the geometric part of this book, these two structures are naturally dual to each
other. They are related by a Legendre transform that generalizes the duality between
entropy and free energy that is at the heart of statistical mechanics.
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This pair of dual affine structures was discovered by Amari and Chentsov, and
the tensor describing it is therefore called the Amari–Chentsov tensor. The Amari–
Chentsov tensor encodes the difference between the two affine connections, and
they can be recovered from the Fisher metric and this tensor. Like the Fisher met-
ric, the Amari–Chentsov tensor is invariant under sufficient statistics, and uniquely
characterized by this fact, as we shall also show in this book. Spaces with such a
pair of dual affine structures turn out to have a richer geometry than simple affine
spaces. In particular, such affine structures can be derived from potential functions.
In particularly important special cases, these potential functions are the entropy and
the free energy as known from statistical mechanics.

Thus, there is a natural connection between information geometry and statistical
mechanics. Of course, there is also a natural connection between statistical mechan-
ics and information theory, through the analogy between Boltzmann–Gibbs entropy
and Shannon information. In many interesting cases within statistical mechanics,
the interaction of physical elements can be described in terms of a graph or, more
generally, in terms of a hypergraph. This leads to families of Boltzmann–Gibbs dis-
tributions that are known as hierarchical or graphical models.

In fact, information geometry also directly leads to geometric descriptions of in-
formation theoretical concepts, and this is another topic that we shall systematically
explore in this book. In particular, we shall treat conditional and relative entropies
from a geometric perspective, analyze exponential families, including interaction
spaces and hierarchical and graphical models, and describe applications like repli-
cator equations in mathematical biology and population game theory. Since many
of those geometric properties and applications show themselves already in the case
where the sample space Ω is finite and hence the spaces of measures on it are finite-
dimensional, we shall start with a chapter on that case.

We consider families of measures p(ξ) on a sample space Ω parametrized by
ξ from our parameter space M . For different ξ , the resulting measures might be
quite different. In particular, they may have rather different null sets. Nevertheless,
in many cases, for instance, if M is a finite-dimensional manifold, we may write
such a family as

p(ξ) = p(·; ξ)μ0, (1.12)

for some base measure μ0 that does not depend on ξ . p : Ω × M → R is the den-
sity function of p w.r.t. μ0, and we then need that p(·; ξ) ∈ L1(Ω,μ0) for all ξ .
This looks convenient, after all such a μ0 is an auxiliary object, and it is a general
mathematical principle that structures should not depend on such auxiliary objects.
Implementing this principle systematically will, in fact, give us the crucial lever-
age needed to develop the general theory. Let us be more precise. As already ob-
served above, when we have another probability measure μ1 with μ1 = φμ0 for
some positive function φ with φ ∈ L1(Ω,μ0) and hence φ−1 ∈ L1(Ω,μ1), then
ψ ∈ L1(Ω,μ1) precisely if ψφ ∈ L1(Ω,μ0). Thus, the L1-spaces naturally corre-
spond to each other, and it does not matter which base measure we choose, as long
as the different base measures are related by L1-functions.
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Second, the differential of p in some direction V is then given by

dξ p(V ) = ∂V p(·; ξ)μ0 ∈ L1(Ω,μ0), (1.13)

assuming that this quantity exists. According to what we have just said, however,
what we should consider is not ∂V p(·; ξ)μ0, which measures the change of measure
w.r.t. the background measure μ0, but rather the rate of change of p(ξ) relative to the
measure p(ξ) itself, that is, the Radon–Nikodym derivative of dξ p(V ) w.r.t. p(ξ),
that is, the logarithmic derivative

∂V logp(·; ξ) = d{dξ p(V )}
dp(ξ)

. (1.14)

(Note that this is not a second derivative, as the outer d stands for the Radon–
Nikodym derivative, that is, essentially a quotient of measures. The slightly con-
fusing notation ultimately results from writing integration with respect to p(ξ) as∫

dp(ξ).)
This then leads to the Fisher metric

gξ (V ,W) =
∫

Ω

∂V logp(·; ξ) ∂W logp(·; ξ) dp(ξ). (1.15)

One may worry here about what happens when the density p is not positive almost
everywhere. In order to see that this is not really a problem, we introduce the formal
square roots

√
p(ξ) := √

p(·; ξ)
√

μ0, (1.16)

and use the formal computation

dξ
√

p(V ) = 1

2
∂V logp(·; ξ)

√
p(ξ) (1.17)

to rewrite (1.15) as

gξ (V ,W) = 4
∫

Ω

d
(
dξ

√
p(V ) · dξ

√
p(W)

)
. (1.18)

Also, in a sense to be made precise, an L1-condition on p(ξ) becomes an L2-
condition on

√
p(ξ) in (1.16), and an L2-condition is precisely what we need in

(1.18) for the derivatives. According to (1.17), this means that we should now im-
pose an L2-condition on ∂V logp(·; ξ). Again, all this is naturally compatible with
a change of base measure.

1.2 An Informal Description

Let us now informally describe some of the main points of information geometry
as treated in this book, and thereby perhaps already give away some of our secrets.
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“Informally” here is meant seriously, indeed. That is, we shall suppress certain tech-
nical points that will, of course, be clarified in the main text.

1.2.1 The Fisher Metric and the Amari–Chentsov Structure
for Finite Sample Spaces

Let first I = {1, . . . , n}, n ∈ N = {1,2, . . . }, be a finite sample space, and consider
the set of nonnegative measures M(I ) = {(m1, . . . ,mn) : mi ≥ 0,

∑
j mj > 0} on it.

A probability measure is then either a tuple (p1, . . . , pn) ∈ M(I ) with
∑

j pj = 1,
or a measure up to scaling. The latter means that we do not consider the measure
mi of an i ∈ I , or more generally, of a subset of I , but rather only quotients mi

mj

whenever mj > 0. In other words, we look at relative instead of absolute mea-
sures. Clearly, M(I ) can be identified with the positive sector Rn+ of Rn. The first
perspective would then identify the set of probability measures with the simplex
Σn−1 = {(y1, . . . , yn) : yi ≥ 0,

∑
j yj = 1}, whereas the latter would rather iden-

tify it with the positive part of the projective space P
n−1, that is, with the posi-

tive orthant or sector of the unit sphere Sn−1 in R
n, Sn−1+ = {(q1, . . . , qn) : qi ≥ 0,

∑
j (q

j )2 = 1}. Of course, Σn−1 and Sn−1+ are homeomorphic, but otherwise, their

geometry is different. We shall utilize both of them. Foremost, the sphere Sn−1

carries its natural metric induced from the Euclidean metric on R
n. Therefore, we

obtain a Riemannian metric on the set of probability measures. This is the Fisher
metric. Next, let us take a measure μ0 = (m1, . . . ,mn) with mi > 0 for all i. We
call a measure φμ0 = (φ1m1, . . . , φnmn) compatible with μ0 if φi > 0 for all i.
Let us call the space of these measures M+(I,μ0). Of course, this space does
not really depend on μ0; the only relevant aspect is that all entries of μ0 be pos-
itive. Nevertheless, it will be instructive to look at the dependence on μ0 more
carefully. M+(I,μ0) forms a group under pointwise multiplication. Equally im-
portantly, we get an affine structure. Considering Σn−1, this is obvious, as the sim-
plex is a convex subset of an (n − 1)-dimensional affine subspace of Rn. Perhaps
somewhat more surprisingly, there is another affine structure which we shall now
describe. Let μ1 = φ1μ0 ∈ M+(I,μ0) and μ2 = φ2μ1 ∈ M+(I,μ1). Thus, we
also have μ2 = φ2φ1μ0 ∈ M+(I,μ0). In particular, whenever μ = φμ0 is compat-
ible with μ0, we have a canonical identification of M+(I,μ) with M+(I,μ0) via
multiplication by φ. Of course, these spaces are not linear, due to the positivity con-
straints. We can, however, consider the linear space T ∗

μ0
∼= R

n of (f1, . . . , fn) with
fi ∈ R. This space is bijective to M+(I,μ0) via φi = efi . This is an exponential
map, as familiar from Riemannian geometry or Lie group theory. (As will be ex-
plained in Chap. 2, this space can be naturally considered as the cotangent space
of the space of measures at the point μ0. For the purposes of this introduction, the
difference between tangent and cotangent spaces is not so important, however, and
in any case, as soon as we have a metric, there is a natural identification between
tangent and cotangent spaces.) Now, there is a natural identification between T ∗

μ
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and T ∗
μ0

; in fact, if μ = φμ0, this is achieved by the correspondence gi = fi − logφi ,
because then egμ = ef μ0. Since this identification is independent of f and g, and
furthermore is compatible with the above product structure, we have a natural cor-
respondence between the (co)tangent spaces at different points of M+, that is, an
affine structure. We thus have not one, but two affine structures. These two struc-
tures are indeed different, but there is a natural duality between them. This is the
Amari–Chentsov structure which we shall describe in Sect. 1.1.

1.2.2 Infinite Sample Spaces and Functional Analysis

So far, the sample space has been finite. Let us now consider a general sample space,
that is, some set Ω together with a σ -algebra, so that we can consider the space of
measures on Ω . We shall assume for the rest of this discussion that Ω is infinite, as
we have already described the finite case, and we want to see which aspects natu-
rally extend. Again, in this introduction, we restrict ourselves to the positive mea-
sures. Probability measures then can again either be considered as measures μ with
μ(Ω) = 1, or as relative measures, that is, considering only quotients μ(A)

μ(B)
whenever

μ(B) > 0. In the first case, we would deal with an infinite dimensional simplex, in
the second one with the positive orthant or sector of an infinite-dimensional sphere.
Now, given again some base measure μ0, the space of compatible measures would
be M+(Ω,μ0) = {φμ0 : φ ∈ L1(Ω,μ0),φ > 0 almost everywhere}. Some part of
the preceding naturally generalizes. In particular, when μ1 = φ1μ0 ∈ M+(Ω,μ0)

and μ2 = φ2μ1 ∈ M+(Ω,μ1), then μ2 = φ2φ1μ0 ∈ M+(Ω,μ0). And this is pre-
cisely the property that we shall need. However, we no longer have a multiplica-
tive structure, because if φ,ψ ∈ L1(Ω,μ0), then their product φψ need not be
in L1(Ω,μ0) itself. Moreover, the exponential map f �→ ef (defined in a point-
wise manner, i.e., ef (x) = ef (x)) is no longer defined for all f . In fact, the natural
linear space would be L2(Ω,μ0), but if f ∈ L2(Ω,μ0), then ef need not be in
L1(Ω,μ0). But nevertheless, wherever defined, we have the above affine corre-
spondence. So, at least formally, we again have two affine structures, one from the
infinite-dimensional simplex, and the other as just described. Also, from the posi-
tive sector of the infinite dimensional sphere, we again get (an infinite-dimensional
version of) a Riemannian metric. Now, developing the functional analysis required
to make this really work is one of the major achievements of this book, see Chap. 3.
Our approach is different from and more general than the earlier ones of Amari–
Nagaoka [16] and Pistone–Sempi [216].

For our treatment, another simple observation will be important. There is a natu-
ral duality between functions f and measures φμ,

(f,φμ) =
∫

Ω

f φ dμ, (1.19)

whenever f and φ satisfy appropriate integrability conditions. From the perspective
of the duality between functions and measures, we might require that φ be in L1
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and f be in L∞. We can turn (1.19) into a symmetric pairing by rewriting it as

〈
f (μ)1/2, φ(μ)1/2〉 =

∫

Ω

f (dμ)1/2φ(dμ)1/2. (1.20)

Since this is symmetric, we would now require that both factors be in L2. The ob-
jects involved in (1.20), that is, those that transform like (dμ)1/2, that is, with the
square root of the Jacobian of a coordinate transformation, are called half-densities.
In particular, the group of diffeomorphisms of Ω (assuming that Ω carries a differ-
entiable structure) operates by isometries on the space of half-densities of class L2.
Therefore, this is a good space to work with. In fact, for the Amari–Chentsov struc-
ture, we also have to consider (1/3)-densities, that is, objects that transform like a
cubic root of a measure.

In order to make this precise, in our approach, we define the Banach spaces of
formal r th powers of (signed) measures, denoted by Sr (Ω), where 0 < r ≤ 1. For
instance, S1(Ω) = S(Ω) is the Banach space of finite signed measures on Ω with
the total variation as the Banach norm. The space S1/2(Ω) is the space of signed
half-densities which is a Hilbert space in a natural way (the concept of a half-density
will be discussed in more detail after (1.20)). Just as we may regard the set of prob-
ability measures and (positive) finite measures as subsets P(Ω)⊆M(Ω)⊆S(Ω),
there are analogous inclusions Pr (Ω)⊆Mr (Ω)⊆Sr (Ω) of r th powers of prob-
ability measures (finite measures, respectively). In particular, we also get a rig-
orous definition of the (formal) tangent bundle TPr (Ω) and TMr (Ω), where
TμMr (Ω) = Lk(Ω,μ) for k = 1/r ≥ 1, so this is precisely the tangent space which
was relevant in our previous discussion.

We also define the signed kth power π̃ k : Sr (Ω) → S(Ω) for k := 1/r ≥ 1
which is a differentiable homeomorphism between these sets and can hence be re-
garded as a coordinate map on S(Ω) changing the differentiable structure. It maps
Pr (Ω) to P(Ω) and Mr (Ω) to M(Ω), respectively. A similar approach was used
by Amari [8] who introduced the concept of α-representations, expressing a statisti-
cal model in different coordinates by taking powers of the model. The advantage of
our approach is that the definition of the parametrization π̃ k is universally defined
on Sr (Ω) and does not depend on a particular parametrized measure model.

Given a statistical model (M,Ω,p), we interpret it as a differentiable map from
M to P(Ω)⊆S(Ω). Then the notion of k-integrability of the model from [25] can
be interpreted in this setting as the condition that for r = 1/k, the r th power pr map-
ping M to Pr (Ω)⊆Sr (Ω) is continuously differentiable. Note that in the definition
of the model (M,Ω,p), we do not assume the existence of a measure dominating
all measures p(ξ), nor do we assume that all measures p(ξ) have the same null sets.
With this, our approach is indeed more general than the notions of differentiable
families of measures defined, e.g., in [9, 16, 25, 216, 219].

For each n, we can define a canonical n-tensor on Sr (Ω) for 0 < r ≤ 1/n, which
can be pulled back to M via pr . In the cases n = 2 and n = 3, this produces the
Fisher metric and the Amari–Chentsov tensor of the model, respectively. We shall
show in Chap. 5 that the canonical n-tensors are invariant under sufficient statis-
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tics and, moreover, the set of tensors invariant under sufficient statistics are alge-
braically generated by the canonical n-tensors. This is a generalization of the results
of Chentsov and Campbell to the case of tensors of arbitrary degree and arbitrary
measure spaces Ω .

Let us also mention here that when Ω is a manifold and the model p(ξ) consists
of smooth densities, the Fisher metric can already be characterized by invariance
under diffeomorphisms, as has been shown by Bauer, Bruveris and Michor [44].
Thus, in the more restricted smooth setting, a weaker invariance property already
suffices to determine the Fisher metric. For the purposes of this book, in particular
the mathematical foundation of parametric statistics, however, the general measure
theoretical setting that we have developed is essential.

There is another measure theoretical structure which was earlier introduced by
Pistone–Sempi [216]; we shall discuss that structure in detail in Sect. 3.3. In fact, to
appreciate the latter, the following observation is a key. Whenever ef ∈ L1(Ω,μ0),
then for t < 1, etf = (ef )t ∈ Lp(Ω,μ0) for p = 1/t > 1. Thus, the set of f with
ef ∈ L1 is not only starshaped w.r.t. the origin, but whenever we scale by a factor
t < 1, the integrability even improves. This, however, substantially differs from our
approach. In fact, in the Pistone–Sempi structure the topology used (e-convergence)
is very strong and, as we shall see, it decomposes the space M+(Ω;μ0) of measures
compatible with μ0 into connected components, each of which is an open convex set
in a Banach space. Thus, M+(Ω;μ0) becomes a Banach manifold with an affine
structure under the e-topology. In contrast, the topology that we use on Pr (Ω) is
essentially the Lk-topology on Lk(Ω,μ) for k = 1/r , which is much weaker. This
implies that, on the one hand, Pr (Ω) is not a Banach manifold but merely a closed
subset of the Banach space Sr (Ω), so it carries far less structure than M+(Ω;μ0)

with the Pistone–Sempi topology. On the other hand, our structure is applicable
to many statistical models which are not continuous in the e-topology of Pistone–
Sempi.

1.2.3 Parametric Statistics

We now return to the setting of parametric statistics, because that is a key applica-
tion of our theory. In parametric statistics, one considers only parametrized families
of measures on the sample space Ω , rather than the space P(Ω) of all probability
measures on Ω . These families are typically finite-dimensional (although our ap-
proach can also naturally handle infinite-dimensional families). We consider such a
family as a mapping p : M → P(Ω) from the parameter space M into P(Ω), and
p needs to satisfy appropriate continuity and differentiability properties related to
the L1-topology on P(Ω). In fact, some of the most difficult technical points of our
book are concerned with getting these properties right, so that the abstract Fisher
and Amari–Chentsov structures on P(Ω) can be pulled back to such an M via p.
This makes these structures functorial in a natural way.

The task or purpose of parametric statistics then is to identify an element of such
a family M that best describes the statistics obtained from sampling Ω . A map that
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converts the samples from Ω into estimates for a parameter ξ ∈ M is called an
estimator. The Fisher metric quantifies the sensitivity of the dependence of the pa-
rameter ξ on the samples in Ω , and this leads to the Cramér–Rao inequality which
constrains any estimator. Moreover, instead of sampling from Ω , we could consider
a map κ : Ω → Ω ′ to some possibly much smaller space. In general, sampling from
a smaller space loses some information about the parameter ξ , and consequently, the
Fisher metric decreases. In fact, we shall show such a monotonicity result under very
general assumptions. In informal terms, such a map κ is called a sufficient statistic
for a family p : M → P(Ω) if sampling from Ω ′ is as good for identifying the pa-
rameter ξ as sampling from Ω itself. In that case, the parameter sensitivity should
be the same in either case, and according to the interpretation of the Fisher met-
ric just given, it should be invariant under sufficient statistics. A remarkable result
of Chentsov says that, conversely, the Fisher metric and the Amari–Chentsov ten-
sor are uniquely determined by their invariance under sufficient statistics. Chentsov
proved this result in the finite case only. Building upon our work in [25], we present
a proof of this unique characterization of the Fisher and Amari–Chentsov structure
in the general situation of an arbitrary sample space Ω . This is one of the main
results derived in this book. In fact, we shall prove a very general result that classi-
fies all tensors that are invariant under congruent Markov kernels. These statistical
aspects of information geometry are taken up in Chap. 5 for the general case of an
arbitrary Ω , with reference to the case of a finite Ω already treated in Chap. 2. We
shall now describe this in some more detail.

Let κ : Ω → Ω ′ be a statistic (see (1.2)). Such a κ then induces a map κ∗ on
signed measures via

κ∗μ(A) := μ
{
ω ∈ Ω : κ(ω) ∈ A

} = μ
(
κ−1A

)
,

and thus a statistical model (M,Ω,p) on Ω gets transformed into one on Ω ′,
(M,Ω ′,p′). In general, it will be more difficult to recover the parameter ξ ∈ M

from κ�p(·; ξ) by observations on ω′ ∈ Ω ′ than from the original p(·; ξ) through
observations of x ∈ Ω , because κ might map several ω into the same ω′. In fact, if
we put

g
′
kl(ξ) =

∫
p′(ω′; ξ)∂ logp′(ω′; ξ)

∂ξk

∂ logp′(ω′; ξ)

∂ξ l
dμ′(ω′) (1.21)

then

(gkl) ≥ (
g
′
kl

)
(1.22)

in the sense of tensors, that is, the difference is a nonnegative definite tensor. When
no information is lost, the statistic is called sufficient, and we have equality in (1.22).
(There are various characterizations of sufficient statistics, and we shall show their
equivalence under our general conditions. Informally, a statistic is sufficient for the
parameter ξ if having observed ω′, no further information about ξ can be obtained
from knowing which of the possible ω with κ(ω) = ω′ had occurred.)
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More generally, we consider a Markov kernel, that is

K : Ω → P
(
Ω ′). (1.23)

For instance, we can consider conditional probability distributions p(ω′|ω) for
ω′ ∈ Ω ′. Of course, a statistic κ induces the Markov kernel Kκ where

Kκ(ω) = δκ(ω), (1.24)

the Dirac measure at κ(ω). A Markov kernel K induces the Markov morphism

K∗ : S(Ω) −→ S
(
Ω ′), K∗μ

(
A′) :=

∫

Ω

K
(
ω;A′) dμ(ω), (1.25)

that is, we simply integrate the kernel with respect to a measure on Ω to get a
measure on Ω ′. In particular, a statistic κ then induces the Markov morphism Kκ∗ . It
turns out that it is expedient to consider invariance properties with respect to Markov
morphisms. While this will be technically important, in this Introduction, we shall
simply consider statistics.

When κ : Ω → Ω ′ is a statistic, a Markov kernel L : Ω ′ → P(Ω), i.e., going in
the opposite direction now, is called κ-congruent if

κ�

(
L

(
ω′)) = δω′

for all ω′ ∈ Ω ′. (1.26)

In order to assess the information loss caused by going from Ω to P(Ω ′) via a
Markov kernel, there are two aspects

1. Several ω ∈ Ω might get mapped to the same ω′ ∈ Ω ′. This clearly represents a
loss of information, because then we can no longer recover ω from observing ω′.
And if this distinction between the different ω causing the same ω′ is relevant
for estimating the parameter ξ , then lumping several ω into the same ω′ loses
information about ξ .

2. An ω ∈ Ω gets diluted, that is, we have a distribution p(·|ω) in place of a single
value. By itself, this does not need to cause a loss of information. For instance,
for different values of ω, the corresponding distributions could have disjoint sup-
ports.

In fact, any Markov kernel can be decomposed into a statistic and a congruent
Markov kernel. That is, there is a Markov kernel Kcong : Ω → P(Ω̂) which is con-
gruent w.r.t. some statistic κ1 : Ω̂ → Ω , and a statistic κ2 : Ω̂ → Ω ′ such that

K = κ2∗Kcong. (1.27)

Moreover, we have the general monotonicity theorem

Theorem 1.1 Let (M,Ω,p) be a statistical model on Ω as before, let K : Ω →
P(Ω ′) be a Markov kernel, inducing the family p′(·; ξ) = K∗(p(·; ξ)). Moreover,
let gM and g′

M denote the corresponding Fisher metrics. Then

gM(V,V ) ≥ g
′
M(V,V ) for all V ∈ TξM and ξ ∈ M. (1.28)
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If K = Kκ is the Markov kernel induced by a statistic κ as in (1.24), and if
(M,Ω,p) has a positive regular density function, equality here holds for all ξ and
all V if and only if the statistic κ is sufficient.

When K = Kκ , the difference gM(V,V ) − g′
M(V,V ) can then be taken as the

information loss caused by the statistic κ .
Conversely, as already mentioned several times, we have

Theorem 1.2 The Fisher metric is the unique metric, and the Amari–Chentsov
tensor is the only 3-tensor (up to a constant scaling factor) that are invariant under
sufficient statistics.

The Fisher metric also enters into the Cramér–Rao inequality of statistics. The
task of parametric statistics is to find an element in the parameter space Ξ that
is most appropriate for describing the observations made in Ω . In this sense, one
defines an estimator as a map

ξ̂ : Ω → Ξ

that associates to every observed datum x in Ω a probability distribution from the
class Ξ . As Ξ can also be considered as a family of product measures on ΩN

(N ∈ N), we can also associate to every tuple (x1, . . . , xN) of observations an ele-
ment of Ξ . The most important example is the maximum likelihood estimator that
selects that element of Ξ which assigns the highest weight to the observation x

among all elements in Ξ .
Let ϑ : Ξ →R

d be coordinates on Ξ . We can then write the family Ξ as p(·;ϑ)

in terms of those coordinates ϑ . For simplicity, we assume that d = 1, that is, we
have only a single scalar parameter. The general case can be easily reduced to this
one.

We define the bias of an estimator ξ̂ as

b
ξ̂
(ϑ) := Eϑ ξ̂ − ϑ, (1.29)

where Eϑ stands for the expectation w.r.t. p(·;ϑ). The Cramér–Rao inequality then
says

Theorem 1.3 Any estimator ξ̂ satisfies

Eϑ

(
(ξ̂ − ϑ)2) ≥

(1 + b′
ξ̂
(ϑ))2

g(ϑ)
+ b

ξ̂
(ϑ)2, (1.30)

where ′ stands for a derivative w.r.t. ϑ .
In particular, when the estimator is unbiased, that is, b

ξ̂
= 0, we have

Eϑ

((
ξ̂ − Eϑ(ξ̂ )

)2) = Eϑ

(
(ξ̂ − ϑ)2) ≥ 1

g(ϑ)
, (1.31)

that is, the variance of ξ̂ is bounded from below by the inverse of the Fisher metric.
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Here, g(ϑ) is an abbreviation for g(ϑ)( ∂
∂ϑ

, ∂
∂ϑ

).
Thus, we see that the Fisher metric g(ϑ) measures how sensitively the probability

density p(ω;ϑ) depends on the parameter ϑ . When this is small, that is, when vary-
ing ϑ does not change p(ω;ϑ) much, then it is difficult to estimate the parameter ϑ

from the data, and the variance of an estimator consequently has to be large.
All these statistical results will be shown in the general framework developed in

Chap. 3, that is, in much greater generality than previously known.

1.2.4 Exponential and Mixture Families from the Perspective
of Differential Geometry

Before those statistical applications, however, in Chap. 4, we return to the differ-
ential geometric aspects already introduced in Chap. 2. Recall that there are two
different affine structures on our spaces of probability measures, one coming from
the simplex, the other from the exponential maps. Consequently, for each of these
structures, we have a notion of a linear family. For the first structure, these are the
so-called mixture families

p(x;η) = c(x) +
d∑

i=1

gi(x)ηi,

depending on functions gi and c (which has to be adjusted to make p(·;η) into a
probability measure), where η1, . . . , ηn are the parameters. For the second structure,
we have the exponential families

p(x;ϑ) = exp
(
γ (x) + fi(x)ϑi − ψ(ϑ)

)
, (1.32)

depending on functions fi (observables in a statistical mechanics interpretation)
with parameters ϑi and

ψ(ϑ) = log
∫

exp
(
γ (x) + fi(x)ϑi

)
dx (1.33)

being the normalization required to make p(·;ϑ) a probability distribution. In fact,
in statistical mechanics, ψ is known as the free energy. Of course, we can try to
write one and the same family in either the η or the ϑ parameters. Of course, the
relationship between them will be nonlinear. Remarkably, when working with the ϑ

parameters, we can obtain the Fisher metric from

gij = ∂i∂jψ(ϑ),

and the Amari–Chentsov tensor from

Tijk = ∂i∂j ∂kψ(ϑ),
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where ∂i is the derivative w.r.t. ϑi . In particular, ψ(ϑ) is a strictly convex function
because its second derivatives are given by the Fisher metric, hence are positive
definite. It is important to point out at this stage that convexity here is meant in
the sense of affine geometry, and not in the sense of Riemannian geometry. Con-
vexity here simply means that the matrix of ordinary second derivatives is positive
semidefinite, and this property is invariant under affine coordinate transformations
only. In Riemannian geometry, one would rather require that the matrix of second
covariant derivatives be positive semidefinite, and this property is invariant under
arbitrary coordinate transformations because the transformation rules for covariant
derivatives involve a metric dependent term that compensates the possible nonlin-
earities of coordinate transformations. Thus, even though the second derivatives of
our function yield the metric tensor, the convexity involved here is an affine notion.
(This is somewhat similar to Kähler geometry where a Kähler metric is a Hermitian
metric that is locally given by the complex Hessian of some potential function. Here,
the allowed transformations are the holomorphic ones, as opposed again to general
coordinate transformations. In fact, it turns out that those affine structures that we
are considering here, that is, those that are locally derived from some strictly convex
potential function, can be seen as real analogues of Kähler structures.) In any case,
since we are dealing with a convex function, we can therefore pass to its Legendre
transform ϕ. This also induces a change of parameters, and remarkably, this is pre-
cisely the transition from the ϑ to the η parameters. With respect to the latter, ϕ is
nothing but the negative of the entropy of the probability distribution p, that is,

ϕ =
∫

p(x;ϑ) logp(x;ϑ)dx. (1.34)

This naturally yields the relations for the inverse metric tensor

gij = ∂i∂jϕ(η), (1.35)

where now ∂i is a derivative w.r.t. ηi . Moreover, we have the duality relations

ηi = ∂iψ(ϑ), ϑi = ∂iϕ(η).

These things will be explained and explored within the formalism of differential
geometry.

1.2.5 Information Geometry and Information Theory

The entropy occurring in (1.34) is also known as the Shannon information, and
it is the basic quantity of information theory. This naturally leads to the question
of the relations between the Fisher information, the basic quantity of information
geometry, and the Shannon information. The Fisher information is an infinitesimal
quantity, whereas the Shannon information is a global quantity. One such relation
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is given in (1.35): The inverse of the Fisher metric is obtained from the second
derivatives of the Shannon information. But there is more. Given two probability
distributions, we have their Kullback–Leibler divergence

DKL(q‖p) :=
∫

(
logq(x) − logp(x)

)
q(x) dx. (1.36)

Here, we shall take as our base measure simply dx.
This quantity is nonnegative (DKL(q‖p) ≥ 0, with equality only for p = q), but

not symmetric in q and p (DKL(q‖p) �= DKL(p‖q) in general), and so, we cannot
take it as the square of a distance function. It turns out that the Fisher metric can
be obtained by taking second derivatives of DKL(q‖p) w.r.t. p at q = p, whereas
taking second derivatives there in the dual coordinates w.r.t. q yields the inverse of
the Fisher metric. In fact, this non-symmetry makes the relation between Shannon
entropy and information geometry more subtle and more interesting, as we shall
now briefly explain.

Henceforth, for simplicity, we shall put γ (x) = 0 in (1.32), as γ will play no
essential role for the moment. As in (1.32), we assume that some functions (observ-
ables) fi , i = 1, . . . , n, are given, and that w.r.t. q , they have certain expectation
values,

Eq(fi) = f̄i , i = 1, . . . , n. (1.37)

For any 0 ≤ m ≤ n, we then look for the probability distribution p(m) that has the
same expectation values for the functions fj , j = 1, . . . ,m,

Ep(m)(fj ) = f̄j , j = 1, . . . ,m, (1.38)

and that maximizes the entropy

H
(
p(m)

) = −
∫

logp(m)(x)p(m)(x) dx (1.39)

among all distributions satisfying (1.38). An easy calculation shows that such a p(m)

is necessarily of the form (1.32) on the support of p(m), that is,

p(m)(x) = exp

(
m∑

j=1

fj (x)ϑj − ψ(ϑ)

)

=: p(m)(x;ϑ) (1.40)

for suitable coefficients ϑj which are determined by the requirement (1.38). This
means that among all distributions with the same expectation values (1.38), the
exponential distribution (1.40) has the largest entropy. For this p(m)(x;ϑ), the
Kullback–Leibler distance from q becomes

DKL
(
q
∥
∥p(m)

) = −H(q) + H
(
p(m)

)
. (1.41)
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Since, as noted, p(m) maximizes the entropy among all distributions with the same
expectation values for the fj , j = 1, . . . ,m, as q , the Kullback–Leibler divergence
in (1.41) is nonnegative, as it should be. Moreover, among all exponential distribu-
tions p(x; θ), we have

DKL
(
q
∥
∥p(m)(·;ϑ)

) = inf
θ

DKL
(
q
∥
∥p(m)(·; θ)

)
(1.42)

when the coefficients ϑj are chosen to satisfy (1.38), as we are assuming. That is,
among all such exponential distributions that with the same expectation values as q

for the functions fj , j = 1, . . . ,m, minimizes the Kullback–Leibler divergence. We
may consider this as the projection of the distribution q onto the family of expo-
nential distributions p(m)(x; θ) = exp(

∑m
j=1 fj (x)θj − ψ(θ)). Since, however, the

Kullback–Leibler divergence is not symmetric, this is not obtained by the geodesic
projection w.r.t. the Fisher metric; rather, two affine flat connections enter which are
dual w.r.t. the Fisher metric. These affine flat connections come from the two affine
flat structures described above.

The procedure can be iterated w.r.t. m, by projecting p(m)(·;ϑ) onto the exponen-
tial family of distributions p(m−1)(·; θ). As defined above in (1.38), these families
are obtained by fixing the expectation values of more and more observables. For
m = 0, we simply obtain the uniform distribution p0, and we have

DKL
(
q
∥
∥p(k)

) = DKL
(
q
∥
∥p(n)

) + DKL
(
p(n)

∥
∥p(n−1)

) + · · · + DKL
(
p(k+1)

∥
∥p(k)

)

(1.43)
for k = 0, . . . , n, as will be shown in Sect. 4.3. This decomposition will be system-
atically explored in Sect. 6.1.

Other applications of information geometry presented in Chap. 6 will include
Monte Carlo methods, infinite-dimensional Gibbs families, and evolutionary dy-
namics. The latter concerns the dynamics of biological populations subjected to the
effects of selection, mutation, and random sampling. Those structures can be natu-
rally interpreted in terms of information geometric concepts.

1.3 Historical Remarks

In 1945, in his fundamental paper [219] (see also [220]), Rao used Fisher infor-
mation to define a Riemannian metric on a space of probability distributions and,
equipped with this tool, to derive the Cramér–Rao inequality. Differential geom-
etry was not well-known at that time, and only 30 years later, in [89], Efron ex-
tended Rao’s ideas to the higher-order asymptotic theory of statistical inference.1

He defined smooth subfamilies of larger exponential families and their statistical

1In [11, p. 67] Amari uncovered a less known work of Harold Hotelling on the Fisher information
metric submitted to the American Mathematical Society Meeting in 1929. We refer the reader to
[11] for details.
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curvature, which, in the language of Riemannian geometry, is the second funda-
mental form of the subfamilies regarded as Riemannian submanifolds in the Rie-
mannian manifold of the underlying exponential family provided with the Fisher
metric. (In [16, p. 23] statistical curvature is also called embedding curvature or e-
curvature and totally geodesic submanifolds are called autoparallel submanifolds.)
Efron named those smooth subfamilies “curved exponential families.” In 1946–
1948, the geophysicist and Bayesian statistician Jeffreys introduced what we today
call the Kullback–Leibler divergence, and discovered that for two distributions that
are infinitely close we can write their Kullback–Leibler divergence as a quadratic
form whose coefficients are given by the elements of the Fisher information matrix
[131, 132]. He interpreted this quadratic form as the length element of a Riemannian
manifold, with the Fisher information playing the role of the Riemannian metric.
From this geometrization of the statistical model, he derived his prior distributions
as the measures naturally induced by the Riemannian metric.

In 1955, in his lectures at the H. Poincaré Institute, Kolmogorov discussed the
problem of the existence of natural differentiable structures on ensembles of prob-
ability distribution. Following a suggestion by Morozova, see [188], Chentsov de-
fined an affine flat connection (the e-connection) on the set P+(Ω,μ) [60]. Further,
analyzing the “naturality” condition for differentiable structures, Chentsov invented
the category of mathematical statistics [61]. This category was introduced indepen-
dently and almost at the same time by Morse and Sacksteder [189], using foun-
dational ideas of Wald [252] and Blackwell [49] in the statistical decision theory
and under the influence of the categorical approach in algebraic topology that was
very fashionable at that time. The morphisms in the Chentsov category of mathe-
matical statistics are Markov morphisms and geometric notions on probability dis-
tribution ensembles are required to be invariant under Markov morphisms [65]. In
his influential book [65] Chentsov considered only geometry on probability distri-
bution spaces P+(Ω,μ) for finite sample spaces Ω , referring to technical difficul-
ties of treating infinite-dimensional differentiable manifolds. The only exceptions
are curved exponential families—subfamilies of the canonical exponential families
defined by the e-connection in [60]. Using the categorical approach, in particular
Markov morphisms and a related notion of congruent embedding, see Definition 5.1,
Chentsov discovered the Amari–Chentsov connections and proved the uniqueness
of the Amari–Chentsov structure by their invariance under sufficient statistics [65].

Independently, inspired by the Efron paper and Dawid’s discussion on it [89],
Amari defined in [6, 7] the notion of α-connections and showed its usefulness in the
asymptotic theory of statistical estimation. In particular, using geometric methods,
Amari achieved Fisher’s life-long dream of showing that the maximal likelihood
estimator is optimal [7, 8, 16], see also Sect. 5.2 below. Shortly after this, Amari and
Nagaoka introduced the notion of dual connections, developed the general theory of
dually flat spaces, and applied it to the geometry of α-connections [194].

These events prepared the birth of information geometry, whose name appeared
for the first time (in English) in [15], which was known before also as the differen-
tial geometrical theory of statistics. (Certain aspects of information geometry, e.g.,
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results due to Morozova and Chentsov concerning invariants of pairs of probabil-
ity distributions, belong to Markovian categorial geometry [63, 188], which is not
necessarily a part of differential geometry. Thus the name “information geometry” is
more suitable, and it also sounds more attractive.) The field of information geometry
developed in particular thanks to the work of Amari and his school. Further devel-
opments of information geometry were mainly focused on divergence functions and
their generalizations, and devoted to applications in statistical inference and infor-
mation theory, especially in higher-order asymptotic theory of statistical inference.
Here we would like to mention the papers by Csiszár [72–74] on divergence func-
tions, especially f -divergences and their invariant properties, and by Eguchi on the
dualistic geometry of general divergences (contrast functions) [91–93], and the pa-
pers on the geometry of manifolds with dually flat connections [13, 34, 59, 236].
We recommend [11, 56] for a survey and bibliography on divergence geometry
and [9, 11, 16, 148, 188] for a survey of applications of information geometry in
the early period. Later applications of information geometry include neural net-
works, machine learning, evolutionary biology, etc. [11, 16]; see also Chap. 6 in our
book. Regarding Markovian categorial geometry, in addition to the aforementioned
papers by Chentsov and Morozova–Chentsov, we also would like to mention the
paper by Campbell [57] on an extension of the Chentsov theorem for finite sam-
ple spaces, which will be significantly generalized in Chaps. 2 and 5. The papers
[186, 187] (see also [188, §6]) by Morozova and Chentsov on the geometry of α-
connections, in particular, giving an explicit description of totally geodesic subman-
ifolds of the manifold M+(I ) provided with an α-connection, belong to the inter-
section of Markovian categorial geometry and divergence geometry. We note that
the dualistic geometries considered in the early period of information geometry, in
particular the geometry of curved exponential families, are not necessarily related to
finite sample spaces but they are supposed to be finite-dimensional [39, 41, 62, 90].
Amari [9], Lauritzen [160], Murray–Rice [192] have proposed general concepts of
finite-dimensional statistical models. Among further advancements in information
geometry are Lauritzen’s introduction of the notion of statistical manifolds and Lê’s
immersion theorem, which we shall discuss in Chap. 4. The infinite-dimensional
information geometry and, in particular, infinite-dimensional families of probability
distributions were first considered in Pistone–Sempi’s work [216] in 1995, see also
our discussion in Chap. 3, and later in subsequent papers by Pistone and coauthors;
see, e.g., [106], and recently in [25], which combines the approach of Markovian
categorial geometry with functional analytical techniques. As an application we
have proved a version of the Chentsov theorem which will be generalized further
in this book. We would also like to mention [164] for another view on Chentsov’s
theorem and its generalizations.

Finally, we note that information geometry has been generalized for quantum
systems, but the related circle of questions lies outside the scope of our book, and
we refer the interested reader to excellent reviews in [16, 188, 214].
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1.4 Organization of this Book

Let us summarize the organization of our book. After this introduction, in Chap. 2,
we shall explain the basic constructions in the finite-dimensional case, that is, when
the underlying space Ω on which we study probability distributions has only finitely
many elements. This chapter also provides the natural context for a formal treatment
of interaction spaces and of hierarchical models, emphasizing the important special
class of graphical models. The space of probability distributions on such a finite
space as treated in this chapter is finite-dimensional. In the next Chap. 3, we consider
a general space Ω . Consequently, we shall have to deal with infinite-dimensional
spaces of probability measures, and technical complications emerge. We are able,
however, to develop a functional analytic framework within which these compli-
cations can be overcome. We shall introduce and develop the important notion of
parametrized measure models and define suitable integrability properties, in order
to obtain the analogue of the structures considered in Chap. 2. These structures will
not depend on the choice of a base measure because we shall set up the framework in
such a way that all objects transform appropriately under a change of base measure.
We shall also discuss the structure of Pistone and Sempi. The following Chap. 4
will develop the differential geometry of statistical models. This includes dualis-
tic structures, consisting of a Riemannian metric and two connections that are dual
to each other with respect to that metric. When these connections are torsion-free,
such a structure can more compactly be described as a statistical model, given by
a metric, that is, a symmetric positive definite 2-tensor, and a symmetric 3-tensor.
These are abstract versions of the Fisher metric and the Amari–Chentsov tensor.
Alternatively, it can be described through a divergence. Any statistical model can
be isostatistically immersed into a standard model defined by an Amari–Chentsov
structure, and this then provides the link between the abstract differential geometry
of Chap. 4 and the general functional analysis of Chap. 3. When these connections
are even flat, the structure can be locally obtained from potential functions, that is,
convex functions whose second derivatives yield the metric and whose third deriva-
tives yield the 3-tensor. Here, convexity is considered as an affinely invariant notion,
and consequently, we need to discuss the underlying affine structure. This also gives
rise to a dual structure via the Legendre transform of the convex function. That
is, we shall find a pair of dual affine structures, and this is the geometry discov-
ered by Amari and Chentsov. Chapter 5 will turn to the statistical aspects. We shall
present one of the main results of information geometry, that the Fisher metric and
the Amari–Chentsov tensor are characterized by their invariance under sufficient
statistics. Our treatment of sufficient statistics here is more general than what can
be found in statistics texts. Also, we shall discuss estimators and derive a general
version of the Cramér–Rao inequality within our framework. In the last chapter, we
shall connect our treatment of information geometry with various applications and
other fields. Building upon the treatment of interaction spaces and of hierarchical
models in Chap. 2, we shall describe information theoretical complexity measures
and applications of information geometry to Markov chains. This yields an approach
to the analysis of systems of interacting units. Moreover, we shall discuss how infor-
mation geometry provides a natural setting for the basic structures of mathematical
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biology, like mathematical population genetics, referring for a more detailed pre-
sentation to [124], however. We shall also briefly sketch a formal relationship of
information geometry with functional integrals, the Gibbs families of statistical me-
chanics. In fact, these connections with statistical physics already shine through in
Sect. 4.3. Here, however, we only offer an informal way of thinking without techni-
cal rigor. We hope that this will be helpful for a better appreciation of the meaning
of various concepts that we have treated elsewhere in this book. In an appendix, we
provide a systematic, but brief, overview of the basic concepts and results from mea-
sure theory, Riemannian geometry and Banach manifolds on which we shall freely
draw in the main text.

The standard reference for the development based on differential geometry is
Amari’s book [8] (see also the more recent treatment [16], and also [192]). In fact,
from statistical mechanics, Balian et al. [38] arrived at similar constructions. The
development of information geometry without the requirement of a differentiable
structure is based on Csiszár’s work [75] and has been extended in [76] and [188]. In
identifying unique mathematical structures of information geometry, invariance as-
sumptions due to Chentsov [65] turn out to be fundamental. A systematic approach
to the theory has been developed in [25]. The geometric background material can
be found in [137].

When we speak about geometry in this book, we mean differential geometry. In
fact, however, differential geometry is not the only branch of geometry that is useful
for statistics. Algebraic geometry is also important, and the corresponding approach
is called algebraic statistics. Algebraic statistics treats statistical models for discrete
data whose probabilities are solution sets of polynomial equations of the param-
eters. It uses tools of computational commutative algebra to determine maximum
likelihood estimators. Algebraic statistics also works with mixture and exponential
families; they are called linear and toric models, respectively. While information ge-
ometry is concerned with the explicit representation of models through parametriza-
tions, algebraic statistics highlights the fact that implicit representations (through
polynomial equations) provide additional important information about models. It
utilizes tools from algebraic geometry in order study the interplay between explicit
and implicit representations of models. It turns out that this study is particularly
important for understanding closures of models. In this regard, we will present im-
plicit descriptions of exponential families and their closures in Sect. 2.8.2. In the
context of graphical models and their closures [103], this leads to a generalization
of the Hammersley–Clifford theorem. We shall prove the original version of this
theorem in Sect. 2.9.3, following Lauritzen’s presentation [161]. In this book, we
do not address further aspects of algebraic statistics and refer to the monographs
[84, 107, 209, 215] and the seminal work of Diaconis and Sturmfels [82].

When we speak about information, we mean classical information theory à la
Shannon. Nowadays, there also exists the active field of quantum information the-
ory. The geometric aspects of quantum information theory are explained in the
monograph [45].

We do not assume that the reader possesses a background in statistics. We rather
want to show how statistical concepts can be developed in a manner that is both
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rigorous and general with tools from information theory, differential geometry, and
functional analysis.

On the Notation and Some Conventions

We have two kinds of spaces, a measure space Ω on which our measures live,
and a parameter space M that parametrizes a family of measures. The elements
of Ω will be denoted by either x or ω. Depending on the circumstances, Ω may
carry some further structure, like a topology or a differentiable structure. When the
measure space is finite, we denote it by I instead, and its elements by i, to conform
to standard conventions. In the finite case, these elements i will usually be written
as indices.

The parameters in M will usually be denoted by ξ . When we have particular
parametrized families of measures, we use other Greek minuscules, more precisely
ϑ for the parameters of exponential families, and η for those of mixture families.
An estimator for the parameter ξ is written as ξ̂ , as usual in the statistics literature.

We use the letter μ, ν, or m to indicate a general finite measure, and p to stand
for a probability measure. Calligraphic letters will stand for spaces of measures, and
so, M(Ω) and P(Ω) will denote spaces of general or probability measures on Ω .
Since our (probability) measures will live on Ω , but depend on a parameter ξ ∈ M ,
we write p(x; ξ) to indicate these dependencies. When the element of Ω plays no
role, we may also simply write p(ξ). Thus, in the context of ξ -dependence, p(ξ) is
a general finite measure, not necessarily a probability measure.

We shall often need to use some base measure on Ω , which will be denoted by μ

or μ0. The integration of an integrable (w.r.t. μ) function f , that is, f ∈ L1(Ω,μ),
will be written as

∫
f (x)dμ(x); thus, when we carry out an integration, we shall

write dμ in place of μ. Also, the pairing between a function f ∈ L∞(Ω,μ) and
a measure φμ with φ ∈ L1(Ω,μ) will be written as (f,φ) = ∫

f (x)φ(x)dμ(x)

whereas an L2-product will be denoted by 〈h, k〉 = ∫
h(x)k(x)dμ(x).

In the finite case, we shall use somewhat different conventions. Of course, we
shall then use sums in place of integrals. Here, Σn−1 = {(p1, . . . , pn) : pi ≥ 0,∑

j pj = 1} is the unit simplex of probability measures on a space I of n elements.

As will become clear in our main text, instead of Σn−1, it is often more natural to
consider the positive sector of the sphere; for a somewhat annoying technical reason,
it is better to take the sphere of radius 2 instead of the unit sphere. Therefore, we
shall work with Sn−1

2,+ = {(q1, . . . , qn) : qi ≥ 0,
∑

j (q
j )2 = 4}. Σn−1 and Sn−1

2,+ are
homeomorphic, of course, but often, the latter is better suited for our purposes than
the former.

Ep will mean the expectation value w.r.t. the (probability) measure p.
We shall often use the normal or Gaussian distribution on R

d with center or mean
x and covariance matrix Λ = (λij ),

N (y;x,Λ) = 1
√

2πd |Λ| exp

(

−λij (xi − yi)(xj − yj )

2

)

, (1.44)
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putting |Λ| := det(λij ) and denoting the inverse of Λ by Λ−1 = (λij ), and where
the standard summation convention is used (see Appendix B). We shall also simply
write N (x,Λ) for N (·;x,Λ).

Our key geometric objects are the Fisher metric and the Amari–Chentsov tensor.
Therefore, they are denoted by single letters, g for the Fisher metric, and T for the
Amari–Chentsov tensor. Consequently, for instance, other metrics will be denoted
differently, by g or by other letters, like h.

We shall always write log for the logarithm, and in fact, this will always mean
the natural logarithm, that is, with basis e.
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