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Abstract. Internet DDoS attacks are prevalent but hard to defend
against, partially due to the volatility of the attacking methods and pat-
terns used by attackers. Understanding the latest of DDoS attacks can
provide new insights for effective defense. But most of existing under-
standings are based on indirect traffic measures (e.g., backscatters) or
traffic seen locally (e.g., in an ISP or from a botnet). In this study,
we present an in-depth study based on 50,704 different Internet DDoS
attacks directly observed in a seven-month period. These attacks were
launched by 674 botnets from 23 different botnet families with a total
of 9026 victim IPs belonging to 1074 organizations in 186 countries. In
this study, we conduct some initial analysis mainly from the perspectives
of these attacks’ targets and sources. Our analysis reveals several inter-
esting findings about today’s Internet DDoS attacks. Some highlights
include: (1) while 40% of the targets were attacked only once, 20% of
the targets were attacked more than 100 times (2) most of the attacks
are not massive in terms of number of participating nodes but they often
last long, (3) most of these attacks are not widely distributed, but rather
being highly regionalized. These findings add to the existing literature
on the understanding of today’s Internet DDoS attacks, and offer new
insights for designing effective defense schemes at different levels.

Keywords: DDoS attack characteristics · Attack distribution and
affinity

1 Introduction

That nature of Distributed Denial of Services (DDoS) attacks on the Internet has
evolved in the last ten years due to their increasing complexity. Today’s attacks
are more prevalent due to the rise of botnets, large pools of infected machines
that are well incentivized to pursue persistent criminal activities. Based on a
recent report [1], an average DDoS attack is not detected until 4.5 h after its
commencement and mitigation efforts do not start until 4.9 h after that. Further-
more, the operational impact, size, and consequences of DDoS attacks on large
services on the Internet are widely reported. Recently, 3,000 open domain name
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service (DNS) resolvers were capable of generating 300 Gbps DDoS traffic [11],
and taking down Spamhaus, a popular spam tracking service. More recently, an
amplification attack utilizing 4,529 network time protocol (NTP) servers was
capable of generating a 325–400 Gbps of persistent attack traffic [31].

Efforts have been made continuously from both academia and industry to
understand the DDoS attacks and defend against them. With ever-improving
defenses, the attack strategies are constantly changing. Understanding the latest
attack strategies is a key to successful defenses. The most recent literature on the
problem is outdated, and utilizes measurements and analyses on DDoS attacks
by means of inference from indirect traffic, such as backscatters, or from traffic
collected locally, such as in a single Internet service provider (ISP) network or
a university, or by infiltration into a botnet. While of a very high interest, a
timely and large scale view of today’s Internet DDoS attacks is missing from the
literature.

We present a timely measurement study of recent DDoS attacks launched by
botnets. Our measurement is based on directly observed attack artifacts through
anchor points deployed at a large number of major ISPs in a seven-month period.
The attack workloads are collected by the monitoring and attribution unit in a
commercial DDoS mitigation company located in the United States with global
operational footprint. In this seven-month period, a total of 50,704 different
DDoS attacks were observed, which were launched by 674 different botnets com-
ing from 23 different botnet families. These attacks targeted 9026 different IPs
that belong to 1074 organizations in 186 countries.

Our detailed analyses reveal several interesting observations about today’s
Internet botnet DDoS attacks. While details are provided in the paper, some
highlights include: (1) while 40% of the targets were attacked only once, 20%
of the targets were attacked more than 100 times This clearly highlights the
inefficiency of defenses deployed by targets; (2) most of the attacks are not
massive in terms of number of participating nodes but they often last long. This
attacking strategy makes attacks stealthier and more difficult to detect; (3) most
of these attacks are not widely distributed, but rather being highly regionalized.
This may motivate some more effective DDoS defense development.

While there have been various studies on this topic [5,36,37] that admittedly
compete with our study in the size of the utilized data, and the nature of the
findings, we believe that our study is distinguished from the prior studies in two
aspects. First, our study revisits the topic with a timely dataset obtained from
operational mitigation and defense efforts. To our knowledge, the most recent
operational look at the problem is based on a dataset that is at least five years
older than ours [36], and many are based on datasets that are even more than
ten years old [5,37]. Second, as the trends of attacks evolve over time, the new
dataset and findings obtained upon analyzing it offer new and unique insights
that can be utilized for designing effective and customized defenses.

The rest of the paper is organized as follows. In Sect. 2, we describe out
dataset including the overall data statistics and the data fields we utilized to do
our analysis. In Sect. 3, we present some basic characterizations of DDoS attacks.
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We discuss related work in Sect. 4 and conclude with a concise summary of our
analyses and their implications in Sect. 5.

2 Data Collection

Our dataset is provided by the monitoring and attribution unit in a very large
DDoS detection and mitigation company that is located in the United States,
with partnerships of monitoring with a large number of ISPs for the sole pur-
pose of attack detection and mitigation. The unit constantly monitors attack
traffic to aid the mitigation efforts of its clients, using both active and passive
measurement techniques [6,34,35]. For active measurements and attribution,
malware families used in launching the various attacks are reverse engineered,
and labeled to a known malware family using best practices [21]. A honeypot is
then created to emulate the operation of the reverse-engineered malware sample
and to enumerate all bots across the globe participating in the particular botnet.
As each botnet evolves over time, new generations are marked by their unique
hashes. The enumerated list of bots is then vetted on the participants in the
active attacks.

Traces of traffic associated with various DDoS campaigns are then collected at
various anchor points located at the aforementioned ISPs across the globe: North
and South America, Asia, Europe, and Africa. The traces are then analyzed
remotely to attribute and characterize attacks on various targets of interest.
The collection of traffic is guided by two general principles: (1) that the source
of the traffic is an infected host participating in a DDoS campaign, and (2) the
destination of the traffic is a targeted client, as concluded from eavesdropping on
C&C of the campaign using a live sample, or where the end-host is a customer
of the said DDoS mitigation company.

2.1 High-Level Characteristics

The analysis is high level in nature to cope with the high volume of ingest
traffic at peak attack times– on average there were 243 simultaneous verified
DDoS attacks launched by the different botnets studied in this work. High level
statistics associated with the various botnets and DDoS attacks are recorded
every one hour. The workload we obtained ranges from August 28, 2012 to
March 24, 2013, a total of 209 days (about seven months of valid and marked
attack logs). In the log, a DDoS attack is labeled with a unique DDoS identifier,
corresponding to an attack by given DDoS malware family on a given target.
Other attributes and statistics of the dataset are shown in Table 1. We cannot
reveal the capability of the capturing facility because attackers would learn such
information, which is also critical to the business of the data source.

An interesting feature in Table 1 is the attack category, which refers to the
nature of the DDoS attack by classifying it into different types based on the
protocol utilized for launching it, including HTTP, TCP, UDP, Undetermined,
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Table 1. Information of workload entries

Field Description

ddos id A global unique identifier for the specified DDoS attack

botnet id Unique identification of each botnet

category Description of the nature of the attack

target ip IP address of the victim host

timestamp The time when the attack started

end time The time when the attack ended

botnet ip The IP address of botnets involved in the attacks

asn Autonomous system number

cc Country in which the target resides (ISO3166-1 alpha-2)

city City and/or state in which the target resides

latitude Latitude of target

longitude Longitude of target

ICMP, Unknown, and SYN. Different from Unknown, Undetermine means that
the attack type could not be determined based on the available information.

Among the fields listed in Table 1, the longitude and latitude of each IP
address are obtained using a highly-accurate industrial geo-mapping service dur-
ing trace collection. The mapping of the IP addresses happens in real time,
making it resistive to IP dynamics. Beside the longitude and latitude, we also
generate the individual city and organization of each IP address involved in an
attack using a highly-accurate commercial grade geo-mapping dataset by Digital
Envoy (Digital Element services [2]). We use such information for geographical
analysis as presented in later sections.

Table 2 sums up some statistics of our dataset, including information from
both the attacker and the target sides. Target statistics are illuminating. Over a

Table 2. Summary of the workload information

Summary of attackers Summary of victims

Description Count Description Count

# of bot ips 310950 # of target ip 9026

# of cities 2897 # of cities 616

# of countries 186 # of countries 84

# of organizations 3498 # of organizations 1074

# of asn 3973 # of asn 1260

# of ddos id 50704

# of botnet id 674

# of traffic types 7
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Fig. 1. Geographical distribution (The density is the log of the number of victims in
each country).

period of 28 weeks, 50,704 different DDoS attacks were observed. These attacks
are launched by 674 different botnets. These attacks targeted victims located in
84 different countries, 616 cities, involving 1074 organizations, residing in 1260
different ASes.

Based on the geographical information, Fig. 1 shows the popularity of DDoS
targets at the country level. The color density indicates the number of attacks
on each country. Clearly, and as widely believed, the US and Russia are the two
most popular targets.

2.2 Discussions of the Dataset

Various related works are focused on radiation and port scanning [4,5,19,24,36]
concerned with a single network (e.g., Tier-1 ISP [19] and sinkhole traffic [4,36]),
rather than DDoS attacks characterizations in a similar context to ours, thus
preventing us from making a fair comparison with our data size and methodology
for data collection. However, some of the recent studies show the relevance of our
dataset in size. In comparison with [19], our study characterizes more than 50,000
verified attacks over 7 months observation period (compared to 31,612 alarms
over a 4 weeks period in [19]). Note the fundamental difference between attacks
and alarms, since a large number of triggered alarms in anomaly detection could
be false alarms, while attacks are verified.

Nonetheless, the limitation of our dataset is that it does not cover all ISPs on
the Internet, suggesting various forms of bias and incompleteness. We note that,
however, our data collection also incorporates at-destination data collection,
thus all statistics of interest and relevance are gathered in the process. We note
that our data collection method is not subject to the shortcoming of locality
bias highlighted in [5]: all malware families used for launching attacks that we
study are well-understood and reversed engineered, and traffic sources utilized
for launching the attacks are enumerated by active participation. To that end,
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we believe that our data collection is representative to the characterized events,
and that the length of the observation period is sufficient to draw conclusions
on today’s DDoS attacks.

3 Attack Analysis

In this section, we present our analysis results across various DDoS attacks
observed in our dataset. Through the analysis, we aim to understand the new
trends of these attacks. We focus our analysis on the attack targets and sources
in this study. We notice that not all of the 23 botnets logged in our dataset
are active, and only 10 of them exhibit patterns and trends; we focus our study
on those 10 active botnets. Namely, we study the DDoS attacks by the follow-
ing families: Aldibot, BlackEnergy, Colddeath, Darkshell, DDoSer, DirtJumper,
Nitol, Optima, Pandora, and YZF.

3.1 Botnet and Target Affinity

To take down a victim’s site (target), DDoS attacks could be launched continu-
ously. To avoid being detected, some attacks could be split into multiple stages,
and individual staged attacks could be launched periodically. Therefore, we first
study how many attacks a victim received in our dataset. Along this line, we can
identify those long-term targets and short-term targets for some DDoS malware
families.

Figure 2 shows the popularity of targets distributions for all active families
representing in Cumulative Distribution Function (CDF). There are 9026 unique
targets in total. This figure shows that while 40% of the targets were attacked
only once, 20% of the targets are attacked more than 106 times. The most

Fig. 2. Target popularity: the number of attacks a victim received over the period of
28 weeks.
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popular target was attacked 940 times over the same period. After looking up
the most popular target IP address, we found that this IP address belongs to the
domain of HostGator, which is a Houston-based web hosting service, indicating
that the real target could be an organization hosted by this service.

Table 3 summarizes some statistics of these targets by each botnet family.
The second row shows the number of targets that were attacked multiple times
by each family, the third row shows the number of unique targets attacked by
each family, and the last row shows the percentage of repeatedly attacked tar-
gets by each family. This table shows that YZF and Ddoser often focus their
attacks on some selected targets while the targets of Aldibot and Blackenergy
are more distributed. This may indicate different attack patterns that Aldibot
and Blackenergy focus on short-term targets while YZF and Ddoser may focus
on long-term targets. Note that the short and long term patterns highlighted
here also outline the different economical aspects of the attacks: while long-term
persistent attacks highlight higher incentives of an adversary whereas short-term
attacks may highlight a “hitman-like” strategy for service abruption.

Table 3. Number of targets attacked multiple times by each botnet family

Family Aldibot Blackenergy Colddeath Darkshell Ddoser Dirtjumper Nitol Optima Pandora YZF

#targets w/

multiple

attacks

12 105 127 486 89 3587 99 53 737 72

#unique

targets

48 355 265 1029 131 5823 213 131 1775 72

% 25% 30% 48% 47% 68% 62% 46% 40% 42% 100%

Table 4. Target interest duration (h)

Family Aldibot Blackenergy Colddeath Darkshell Ddoser Dirtjumper Nitol Optima Pandora YZF

Period (h) 144 303 63 82 12.9 406 70.6 295 362 22

Table 4 further shows the average target interest duration of each family.
From previous observations, we know that some of the targets will be attacked
multiple times periodically. But this period may not last very long since we
know that most DDoS attacks are money-driven. The table indicates that the
average target interest also varies significantly across different families, ranging
from half a day to half a month. The longest period we found is 200 days, of
an attack by Dirtjumper (note that Table 4 only shows the average). It almost
spans the whole observation period. The target is a Russian web hosting service
company, which is known for hosting various malicious websites, indicating that
the consistent attack on it is perhaps a form of retaliation to take those sites
down.
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Insights and Takeaways: The attack target analysis reveals that while about
40% of the targets were attacked only once, more than half of the targets were
attacked more than once. This clearly indicates (1) such DDoS attacks are most
likely driven by profit since most retaliatory and political attacks are temporary,
and (2) the current defense mechanisms in practice fail to respond to such attacks
promptly for efficient protections. On the other hand, each botnet family always
has some long-term targets, which hints us to develop specific botnet based
defenses. In the long run, the effective and practical defense may be to detect
and defend various botnets based on their characteristics, rather than detect and
defend DDoS since there is no clear pattern along time (last subsection) or on
target selection.

3.2 Attack Size and Distribution

Beside the attack distribution, another factor for assessing attacks’ strength is
the attack magnitude, which refers to how much DDoS traffic was seen towards
a target. However, we did not log the raw packets carrying DDoS traffic—for
contractual reasons. Rather, we use the number of unique IP addresses used for
launching the attack as an estimator of its magnitude. As suggested in [19], to
evade being detected quickly, IP spoofing in DDoS attacks is not very common.
Thus, we use the number of unique IPs involved in an attack to estimate one
aspect of the corresponding attack magnitude.
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Fig. 3. Attack magnitude of each family

3.2.1 Attack Size – Contrary to the Recent Reports, Most Attacks
Are Not Massive

Figure 3 shows the magnitude distributions of the DDoS attack launched by
each family. Note that the x-axis is in log scale. Several interesting observations
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can be found in this figure. First, most of the attacks are not massive in terms
of magnitude. As shown in the figure, except some attacks by Dirtjumper and
Blackenergy, attacks launched by other botnets typically involve less than 1000
unique IPs. Some botnets, such as Aldibot and YZF, launched a lot of small
magnitude DDoS attacks and there are less than 40 unique IPs involved. How-
ever, massive DDoS attacks could involve several thousand or tens of thousands
unique IPs. For example, the figure shows that the number of unique IPs involved
in attacks of Dirtjumper and Blackenergy could be massive, with the maximum
number of unique IPs used in a single Blackenergy attack being 2,365 and 37,584
for Dirtjumper, respectively.

Taking into consideration the magnitude and the duration of attacks, we aim
to infer strategies utilized by botnets. We aggregate the 80% non-massive (small)
attacks to calculate the average attack duration and compare it with that of the
other 20% attacks—results are shown in Table 5. This table only includes the
families that actually launched massive DDoS attacks. We found that 80% of
the attacks lasted less than 13882 s in our analysis. But from this table, we can
see that, except for family Dirtjumper, the 80% non-massive DDoS attacks last
longer than 13882 s. This shows that most small attacks are not short-duration
attacks.

For those families that didn’t launch massive attacks, this is still true: attacks
launched by YZF involved at most 6 bots; while the average duration of the
attacks is 34053 s. The above analysis indicates that most current DDoS attacks
utilize a small number of bots with longer duration instead of launching massive
DDoS attacks.

Table 5. Attack duration of small and massive attacks

Family Small attacks Massive attacks

Blackenergy 5945 7430

Colddeath 16702 38831

Dirtjumper 10222 33568

Optima 31713 27410

Pandora 19121 46428

Figure 3 also indicates that the magnitude of attacks varies across different
families, as well as within the same family. As shown in the figure, the attack
magnitude of Aldibot and Nitol only slightly changed in 28 weeks, while Black-
energy changed attack magnitude dramatically for different attacks. Notice that
on the left corner, there are two families, which are Nitol and Ddoser. The mag-
nitude of their attacks is constantly small.
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3.2.2 Attack Distribution – Most DDoS Attacks Are Not Widely
Distributed, but Rather Being Regionalized

The attacker’s IP enables us to study their distribution as well. According to
our data, it is obvious that each botnet family has its own geolocation pref-
erences. Among the four most active families, Optima is mostly in Vietnam,
India, Indonesia and Egypt; Dirtjumper is mostly in India, Brazil, Botswana and
Pakistan; Blackenergy is mostly in Vietnam, Singapore, Thailand and United
States; Pandora is mostly in Pakistan, India, Thailand and Indonesia. Gener-
ally, the geolocation preference could reflect the current global distribution of
botnets. Most of them reside in the countries that lack proper protections like
Southeast Asia area [30].

Among all the families, Dirtjumper covers the largest number of countries:
164. A comparable coverage is Optima’s: 153. Even though these families have
very broad country coverages, the average number of country coverage for each
attack is small, as shown in Table 6. From this table, we see that only Pandora
has a very large average number; other families only launched attacks from a
few countries. Figure 4 shows the CDF of country coverage of each single DDoS
attack for each family. This figure conforms to the result in Table 6.

Table 6. Average number of country coverage for each botnet family

Family Aldibot Blackenergy Colddeath Darkshell Ddoser Dirtjumper Nitol Optima Pandora YZF

Country
coverage

4 3 2 1 1 3 1 9 2 1
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Fig. 4. CDF of country coverage for each family

Insights and Takeaways: The attack size and distribution analysis indicates
the change of the attack strategies (resources exhaustion vs. bandwidth attrition),
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making it challenging to detect such attacks. On the other hand, the highly region-
alized nature of most attacks can motivate some new defense strategies: disinfec-
tion, if infected hosts are in reach, or early stage filtering at the nearby ISPs con-
necting those hosts to the Internet [26].

4 Related Work

DDoS attacks have been intensively investigated and numerous countermeasures
have been proposed to defend against them. As many DDoS attacks are launched
by botnets, a popular approach is to disrupt the C&C channel of the botnet that
launches DDoS attacks. However, most of current take-down methodologies are
ad-hoc and their effectiveness are limited by the depth of knowledge about the
specific botnet family involved in the attack. Nadji et al. [23] proposed a take-
down analysis and recommendation system. As a proactive solution to DDoS
attacks, several filtering schemes [12,17,25,38,39] are proposed to prevent flood-
ing packets from reaching target victims. Chen et al. [7] proposed a defense
that can detect DDoS attacks over multiple network domains. Overlay-based
protection systems [15,28] and statistical approaches [9,13,16,18] offer another
attractive alternative. Walfish et al. [33] advocated DDoS defense by offense,
where attacked servers encourages all clients to send higher traffic volumes to
attackers.

Historically, most defense systems such as Cisco IDSM-2 [8] and LADS [27]
are deployed at the destination since it suffers most of the impact. Mirkovic
et al. [20] proposed D-WARD, a DDoS defense system deployed at source-end
networks that autonomously detects and stops attacks originating from these
networks. Another detection mechanism [3] is proposed to be deployed at the
source to help ISP network to detect attacks. Both studies can benefit from our
source characterization to enable their operation. Huang et al. [10] addressed
the lack of motivations for organizations to adopt cooperative solutions to defeat
DDoS attacks by fixing the incentive chain. Our analysis of the shared fate, and
diversity of targets, is a plausible incentive for enabling collaborative defense.

The continuous improvement on detection and defense has caused attackers
to be adaptive as well. Thus, it is essential to understand the latest changes
of DDoS attacks. In 2006, Mao et al. [19] presented their findings from mea-
surement study of DDoS attacks relying on both direct measurements of flow-
level information and more traditional indirect measurements using backscatter
analysis, while Moore et al. [22] presented a backscatter analysis for quantita-
tively estimating DoS activity in the Internet based on a three-week dataset.
Due to the growth of network address translation and firewall techniques, much
of the Internet was precluded from the study by the traditional network mea-
surement techniques. Thus, in the early days, work [5] proposed an opportunistic
measurement approach that leverages sources of spurious traffic, such as worms
and DDoS backscatter, to unveil unseen portion of Internet. The monitoring of
packets destined for unused Internet addresses, termed as ”background radia-
tion”, proved to be another useful technique to measure Internet phenomenon.
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In 2004, Pang et al. [24] conducted an initial study of broad characteristics of
Internet background radiation by measuring traffic from four large unused sub-
nets. In 2010, a more recent study [36] revisited the same topic and characterized
the current state of background radiation specifically highlighting those which
exhibit significant differences. Our work serves as a revisit to those studies with
new insights. Bailey et al. [4] designed and implemented the Internet Motion
Sensors (IMS), a globally scoped Internet monitoring system to detect Inter-
net threats, which includes a distributed blackhole network with a lightweight
responder and a novel payload signature and caching mechanism. Xu et al. [37]
presented a general methodology to build behavior profiles of Internet backbone
traffic in terms of communication patterns of end-hosts and services.

In [32], a honey farm system architecture was proposed to improve honeypot
scalability by up to six orders of magnitude while still offering quantitatively
similar fidelity. Another Internet monitoring system, which primarily targets at
early detection of worms, was presented in [40], using a non-threshold based
“trend detection” methodology to detect presence of worms by using Kalman
filter and worm propagation models.

Finally, theoretical attacks using botnets for “taking down the Internet” are
studied in Crossfire [14], CXPST [26], and Coremelt [29]. The size, distribution,
and coordination of attacks studied in this work highlight the feasibility of those
theoretical attacks.

5 Conclusion

DDoS attacks are the most popular large scale attacks frequently launched on
the Internet. While most of the existing studies have mainly focused on designing
various defense schemes, the measurement and analysis of large scale Internet
DDoS attacks are not very common, mainly due to the data un-availability,
although understanding the DDoS attacks patterns is the key to defend against
them. In this study, with the access to the dataset on such a large scale, we are
able to collectively characterize today’s Internet DDoS attacks from different
perspectives. Our investigation of these DDoS attacks reveals several interesting
findings about today’s botnet based DDoS attacks. These results provide new
insights for understanding and defending modern DDoS attack at different levels.
While this study focuses on the DDoS attack characterization, in the future,
we plan to leverage these findings to design more effective defense schemes. A
direction is to combine the geolocation affinity information based on the botnet
behavior pattern.
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