Chapter 2
From a Mathematical Situation
to a Problem

Francisco Bellot-Rosado

Abstract The approach to problems creation starting from a mathematical
situation is developed, with several examples of such situations and prob-
lems arising from this, with solutions (if the problem is not open).

Keywords Geometrical situation - Mathematical problem

2.1 Introduction

The teaching of mathematics on the basis of problem solving is a periodi-
cally repeated subject in ICMEs, as TG or WG. Within this general frame,
we will consider in this chapter an approach to problems creation that we
will call “From a mathematical situation to a problem”.

In Mathematical Competitions, the journal of the WFNMC, the question
of the creation of problems has been studied many times; in particular,
between 1986 and 1999, more than 20 papers on this subject were been
published. The paper by Engel (1987) The creation of mathematical
Olympiad Problems, starts with the following sentence:
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It is far more difficult to create problem than to solve it. There are very
few routine methods of problem creation. As far as I know no Polya
among problem creators who wrote a book with the title “How to
create it”.

When analyzing some examples of workshops about Learning based in
problems, we notice that, although the term “situation-problem” may be
used, the teacher actually presents a closed statement to the students. That is,
the teacher is helping the students to find a way to gather the details of the
solution of a problem from which the full statement is, sooner or later,
given. It’s clear that during the discussion, students can discover some
alternative statements which can became new problems, and this, no doubt,
improves the enrichment of the mathematical-didactical discussion which
must follow. In this sense, the treatment of the question given in the book
“Pour un enseignement problematisé des Mathématiques au Lycée” (2
vols.), APMEP, in French, no date of publication, a collective work of the
group “Problématiques Lycée”, is interesting.

To begin, we can take a look at an example included in the workshop
Aprendizaje basado en problemas (Learning based on problem-solving), by
Prof. Rolando Séenz, from Ecuador. This example was presented in 2006 in
Salinas (Ecuador), during the Iberoamerican Symposium (with emphasis in
problem solving), a didactical activity prior to the Iberoamerican Mathe-
matical Olympiad.

Example 1.1 ABCD is a square. We take points M, N, O and P, respectively
in AB, BC, CD and DA, in a such manner that AM = BN = CO = DP.
Determine the point M such that the quadrilateral MNOP have maximal
area.

Maybe if the last sentence was changed to something like this: Consider
the quadrilateral MNOP, some other statements, equally interesting, would
emerge during the discussion. We invite the readers to try it by themselves.

Many times, the reading of a paper about problem creation will provide
some very interesting problems, but there are rarely many explanations on
how they were created, that is, what was the process which gave birth to the
problem.

We can now take a look at some characteristics which a good problem
should have. Gardiner (1992, p. 59) wrote this:

(a) The ingredients (of the problem) should be simple and familiar, but the
problem should not be of any standard type.

(b) No method of solution should be immediately obvious, but a careful
survey of the given information should suggest one or two promising
points of attack.
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(c) And exploratory phase should then reveal how (or whether) these
approaches can be exploited.

(d) The final solution when it emerges should, in retrospect, have an
unexpected elegance or conceptual simplicity.

Example 1.2 The positive numbers x, y and z satisfy

2
X 4xy+ 5 =25
L42=9
3 TL=
Z+xz+x2=16

Find the value of xy + 2yz + 3zx.

Note: The sources of the problems will be included in the solutions
section

The readers are invited to think about this statement and to try by
themselves the “promising points of attack™ in the words of Gardiner.

As last part of this introduction, here is a quote of Branko Griinbaum in
his introduction to the book of Soifer (1990) How Does One Cut a
Triangle?.

Many people find mathematics attractive because it presents to the
mind the same challenge that other activities, such as sports, present to
the body. In mathematics, and specially in geometry, there are abun-
dance of topics that are accessible without much previous knowledge.
They present the exploring mind with opportunities to rise to that
challenge, and to experience the joy of discovery.

2.2 What Is a Mathematical Situation?

Searching in libraries, it is possible to find—at least—two types of books
which can be related to the topic of the chapter.

(1) Books where mathematical situations with problems are presented
(with or without solutions).

(2) Books where mathematical problems are discussed in detail, showing
what should be the way by which the solution must be presented to the
audience (much more detailed than the typical way in which the solution
seems to appears like riding a parachute, falling down from the sky).
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One of the earliest examples of books from type 1 is Geometry for
Advanced Pupils, by Maxwell (1949).

Dr. Maxwell presents here 47 configurations from which is possible to
deduce results, many problems and geometric properties of interest. He also
includes examples from the Oxford and Cambridge Examinations Papers.

An interesting paper, published in Quantum, January/February 2001 by
the late Prof. I. Sharygin, is Where do problems come from? (Sharygin
2001) (The art of problem composition). Sharygin explains in this paper
some of his own procedures for composing problems (Olympiad type): by
reformulation, problems built on other problems, considering special cases
of a theorem; varying the problem statement; by generalization of a problem
(or some result). And he says: However, the main source of new problems is
inquisitiveness, the desire to reveal the essence of a problem, the ability to
look at a well-known fact from an unusual point of view. This is when the
most interesting geometric problems appear, ones that can be called
discoveries.

Sharygin ends his paper with this assertion: You don’t have to be a
budding mathematical genius to make geometric discoveries—some prob-
lems show that any student can do it. And this includes you!

Another book of type 1 is Geometry in figures, by Akopyan (2011) (no
Editorial name, but the place is Lexington, KY). This is a collection of
theorems and problems of Euclidean geometry formulated in figures,
without text. This is a good illustration about what a geometrical situation is.
Recently (2015), the Union of Bulgarian Mathematicians published the
book by Dimitrov, Lichev and Chovanov 555 problems of Geometry (in
Bulgarian) with the solutions to the problems of the book by Akopyan.

To end with the examples of publications of type 1 it is worth mentioning
the book by Monk (2009). This is a very popular book among the partici-
pating countries in the IMO since it was published. The five categories of
problems of the book are E (easy), 18 problems; M (moderate difficulty), 20
problems; H (hard), 18 problems; C (Computational), 24 problems; and T
(Trigonometry), 18 problems.

For the books of Type 2 the situation seems to be better. There are many
publications about this subject (see the References section for more titles)
and some of them are really excellent. Here are a few examples:

Burns (2000).

Gardiner (1997).

Savchev and Andreescu (2003).
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Nevertheless, it seems there are not many titles in libraries and bookstores
which describe what a mathematical situation is. Paraphrasing Prof. Eduardo
Wagner, Brazilian expert in problem solving: As important as teaching
Mathematics is to create new problems, interesting and challenging.
Problems are new questions, of different aspect to the usual one and which
should stimulate the development of the reasoning. To create one problem a
big effort, enough time to try many attempts, and good luck are required.
With continued work and much reading, the ability to create problems is
developed and the ideas can emerge in our mind more easily. This work is
not different to other sciences or artistic work. To acquire any ability,
everybody needs specific training.

The “Office of creating problems”, promoted by the OEI (Iberoamerican
States Organization) in the years 1994 to 1997, is an introduction to the art
of creating problems. With its own methodology, the participants have the
opportunity of experimenting with real problem creation situations, and
they then developed their own methods.

A Mathematical situation is not yet a problem. It consists of a set of
mathematical objects, linked by some certain relations. With this basis, the
participants (in the Office) must investigate the properties of the proposed
situation, adding if necessary other elements, and to create one of more
problems. In this way, with the reasoning focused in a particular situation,
the activity was followed with the biggest interest by the participants and
some new problems of different degrees of difficulty were created. End of the
quote, taken from Wagner (1997).

Prof. Wagner was the coordinator of the “Office” in the years 1994, 1995
and 1996. The Mexican Prof. Alejandro Bravo was the coordinator in 1997.

The next section of the chapter provides examples of mathematical sit-
uations, which are deliberately left open, in order that readers can experi-
ment by themselves creating new problems (this would be truly excellent!).
In the subsequent sections, the problems arising from these situations are
presented and the section of detailed solutions will follow.
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2.3 Several Examples of Mathematical Situations

Situation 3.1 In the acute triangle ABC, let AM be the median (M belongs
to the side BC), and let AD be the internal bisector of angle A. (D belongs to
the side BC). From B the perpendicular to AD is drawn, meeting AD at J, to
AM at L and to AC at K.

Situation 3.2 The most important carpet seller of Orient is very worried.
His device to measure the carpets has been stolen and so he can’t measure
the new carpet recently received, for one of his best clients. The carpet is
rectangular, but the dimensions are unknown. If he display the carpet in the
floor of two of the rooms of his house, one after the other, in a convenient
way, the four corners of the carpet are located on each one of the 4 walls of
each room.

Situation 3.3 The quadrilateral ABCD has an inscribed circle, being K,
L. M and N the tangency points with the sides AB, BC, CD and DA,
respectively. The lines DA and CB intersect at S, and the lines BA and CD
intersect at P.

Situation 3.4 Let M and N be points of the side BC of the triangle ABC,
such that BM = CN (point M is located between B and N). Let P and Q be
points located respectively on AN and AM such that ZPMC=
£MAB and £QNB = #ZNAC.

Situation 3.5 Consider the sum Y/_, x;y;, where the values of the

2n variables xj, ..., X;; Y1, ..., Yo are only O either 1. Let I(n) be the
number of 2n-tuples xj, ..., X;; ¥1, ..., ¥» such that the sum is an odd
number, and P(n) the number of 2n-tuples xi, ..., X,; y1, ..., Y, such that

P(n)
HON

the sum is an even number. Consider

Situation 3.6 In the triangle ABC, G is the point of intersection of the
medians and K the point of intersection of the symmedians. The lines AG
and AK intersect again the circumcircle of ABC at M and N, respectively. Let
P =BCNGN,R =BCNKM and S = GRNKP.

Situation 3.7 The acute triangle ABC is inscribed in a circle. The point P is
inside the triangle. Lines AP, BP and CP intersect again the circumcircle of
ABC at X, Y and Z, respectively. Consider the triangle XYZ.

Situation 3.8 Consider the sequence of real numbers {x,} with x arbitrary
and x, 4.1 = 2()6,,)2 —1.
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Situation 3.9 Lines r and s lie mutually orthogonal and do not are in the
same plane. Let AB be its common perpendicular (A € r, B € s). Consider the
sphere of diameter AB. The points M €r and N €s are variable, with the
condition that MN is tangent to the sphere. Let 7" be the point of tangency.

Situation 3.10 Let ABC be a triangle inscribed in a circle, and [/ is the
incenter of the triangle. Lines Bl and CI intersect again the circumcircle at
M and N, respectively. Line MN intersect AB at P and AC at Q, respectively.

Situation 3.11 With center in the incenter / of the triangle ABC, a circle is
drawn, intersecting in two points each side of the triangle: to BC at D and
P (being D the most near to B), to CA at E and Q (being E the most near to
(), and to AB at F and R (being F' the most near to A). Let S be the point of
intersection of the diagonals of the quadrilateral EQFR, and T the point of
intersection of the diagonals of the quadrilateral FRDP. Finally, let U be the
intersection of the diagonals of the quadrilateral DPEQ.

Situation 3.12 ABCD is a convex quadrilateral, and M = ACNBD. The
internal  bisector of ZACD intersects BA at K. Suppose
MA-MC + MA-CD = MD - MB.

2.4 Some Problems Arising from the Mathematical
Situations of Sect. 2.3

Problem 4.1 In the acute triangle ABC, let AM be the median (M belongs to
the side BC), and let AD be the internal bisector of angle A (D belongs to the
side BC). From B the perpendicular to AD is drawn, meeting AD at J, to AM
at L and to AC at K. Show that AB and DM are parallel.

Problem 4.2 The most important carpet seller of Orient is very worried. His
device to measure the carpets has been stolen and so he can’t measure the
new carpet recently received, for one of his best clients. The carpet is
rectangular, but the dimensions are unknown. If he display the carpet in the
floor of two of the rooms of his house, one after the other, in a convenient
way, the four corners of the carpet are located on each one of the 4 walls of
each room. If the sides of the first room are 55 and 50, and those of the
second room are 55 and 38, find the dimensions of the carpet.

Problem 4.3 The quadrilateral ABCD has an inscribed circle, being K, L. M
and N the tangency points with the sides AB, BC, CD and DA, respectively.
The lines DA and CB intersect at S, and the lines BA and CD intersect at P. If
S, K and M are collinear, prove that P, N and L are also collinear.
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Problem 4.4 Let M and N be points of the side BC of the triangle ABC,
such that BM = CN (point M is located between B and N). Let P and Q be
points located respectively on AN and AM such that £PMC = 2MAB and
£ZONB=«NAC Would it be always true that £QBC = 2PCB?

Problem 4.5 Consider the sum Y.7_, x;y;, where the values of the 2n vari-

ables xi, ..., X5 y1, ..., y, are only O either 1. Let I(n) be the number of

2n-tuples x1, ..., Xu; Y1, ..., Y, such that the sum is an odd number, and P

(n) the number of 2n-tuples xj, ..., X,; Y1, --., ¥» such that the sum is an
P(n) _ 2"+1

even number. Show that o) = =1

Problem 4.6 In the triangle ABC, G is the point of intersection of the
medians and K the point of intersection of the symmedians. The lines AG
and AK intersect again the circumcircle of ABC at M and N, respectively. Let
P=BCNGN, R=BCNnKM and S = GRNnKP. Show that AGSK is a
parallelogram.

Problem 4.7 The acute triangle ABC is inscribed in a circle. The point P is
inside the triangle. Lines AP, BP and CP intersect again the circumcircle of
ABC at X, Y and Z, respectively. Determine the position of the point P for
that XYZ be equilateral.

Problem 4.8 Consider the sequence of real numbers {x,} with xq arbitrary
and x,41=2(x,)* — 1. Show that, if |xo| <1, then|x,|<1. Find a closed
expression for x,,.

Problem 4.9.1 Lines r and s are mutually orthogonal and do not are in the
same plane. Let AB be its common perpendicular (A € r, B € s). Consider the
sphere of diameter AB. The points M €r and N €s are variable, with the
condition that MN is tangent to the sphere. Let T be the point of tangency.
Show that TM.TN is constant.

Problem 4.9.2 Lines r and s are mutually orthogonal and do not are in the
same plane. Let AB be its common perpendicular (A €, B €s). Consider the
sphere of diameter AB. The points M €r and N €s are variable, with the
condition that MN is tangent to the sphere. Let T be the point of tangency.
Determine the geometrical locus of the point 7.

Problem 4.10 Let ABC be a triangle inscribed in a circle, and [ is the
incenter of the triangle. Lines Bl and CI intersect again the circumcircle at
M and N, respectively. Line MN intersect AB at P and AC at Q, respectively.
Show that /A is perpendicular to MN.

Problem 4.11 With center in the incenter / of the triangle ABC, a circle is
drawn, intersecting in two points each side of the triangle: to BC at D and
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P (being D the most near to B), to CA at E and Q (being E the most near to
(), and to AB at F and R (being F the most near to A). Let S be the point of
intersection of the diagonals of the quadrilateral EQFR, and T the point of
intersection of the diagonals of the quadrilateral FRDP. Finally, let U be the
intersection of the diagonals of the quadrilateral DPEQ. Show that the
circumcircles of the triangles FTR, DPU and EQS have one common point.

Problem 4.12 ABCD is a convex quadrilateral and M = ACNBD. The
internal bisector of ZACD intersects BA at K. Suppose MA-MC +
MA - CD = MD - MB. Show that 2BKC = «CDB.

2.5 Hints, Solutions and Comments to Some
of the Problems and Examples

2.5.1 Comment and Hint to Example 1.2

The right hand side of the three equations are numbers of a Pythagorean
triad. The left hand side of the equations represents the expressions of the
cosine law for some convenient angles. So, the advice is to locate one point
M inside a rectangle triangle with convenient sides in a such way the three
equations be fulfilled, and from this, evaluate more easily xy + 2yz + 3zx.

Source of the problem: Zhang Jung-da et al., Mathematics Competitions,
vol.10, number 2, 1997, pp. 52-63.

2.5.2 Solution to Problem 4.1

In the acute triangle ABC, let AM be the median (M belongs to the side BC),
and let AD be the internal bisector of angle A. (D belongs to the side BC).
From B the perpendicular to AD is drawn, meeting AD at J, to AM at L and
to AC at K. Show that AB and DM are parallel (Fig. 2.1).

Solution (by F. Bellot)

There is no loss of generality if we suppose that angle B is bigger than
angle C. First, being AD the internal bisector of angle A, ZBAD = %. And as
BJ is perpendicular to AD, ZABJ=90° — %‘. The same argument in the
triangle AJK gives us ZAKJ =90° — *2—‘. Then, triangle ABK is isosceles and
AK = AB = c. From this, we get KC = b — c.

To prove that AB and DM are parallel, it is enough to prove that % =
and the theorem of Thales will finish the problem.

BD
DE’
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Fig. 2.1 Figure for
Problem 4.1

First we will compute %. From the angular bisector theorem, we have

BD = . As E is the midpoint of BC, we have DE=BE —BD = ZEIC’;Z;
2c_

therefore 22 = 2¢
—C
To compute %, we can use the Menelaus theorem in triangle AEC with

the transversal KMB:

AM | EB | CK _ AM _ 2c
ME " BC " KA — 1©ME =3 and we are done. [
Source of the problem: Course on Euclidean Geometry I, University of

Costa Rica, 2012.

2.5.3 Solution of Problem 4.2

The most important carpet seller of Orient is very worried. His device to
measure the carpets has been stolen and so he can’t measure the new carpet
recently received, for one of his best clients. The carpet is rectangular, but
the dimensions are unknown. If he display the carpet in the floor of two of
the rooms of his house, one after the other, in a convenient way, the four
corners of the carpet are located on each one of the 4 walls of each room. If
the sides of the first room are 55 and 50, and those of the second room are
55 and 38, find the dimensions of the carpet.

Solution by Maria Ascension Lépez Chamorro, Valladolid (Spain)

We will solve the problem in a more general context, and then will apply
it to the case of the carpet with the given numerical measures.
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Fig. 2.2 First figure D 2 x
for Problem 4.2 x| T e 2 ¢
#
¥ b
T
. X
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Let ABCD be a rectangle, and let XYZT be another rectangle, inscribed in
the first, with Z on the side AB, T on BC, X on CD and finally Y on DA
(Fig. 2.2).

Suppose AB=CD =1;; AD=BC=0L; XY=ZT=a; YZ=TX =b.
(In terms of the problem, a, b are the dimensions of the carpet; /;, [, those of the
room).

Triangles XDY and ZBT are congruent, also YAZ and TXC. This means

XC=AZ=7;XD=7ZB=t;DY=BT=x;AY=TC=y

But moreover triangles XDY and YAZ are similar, and then § =i=1

This proportion can be written as bt=ay; bx=az; and moreover the
equalities z+y=1[; and x+y=1/, holds.
From this we obtain the two relations

bx
a

them in the unknowns x and y gives us (% - s)y=ll - lallz; (2 - %)x=

+ % =1;; x+y=1[, and solving

L= $h.
The final expressions for x, y, z, ¢ are the following:

_ a(alz - bl[) o b(ah —blz) L b(alz - bll) L a(ah —blz)

xX= 1) - ’Z_ ) -
at-b? Y at-b? at-b? ar-b?

But by Pythagora’s Theorem, x> + > =a?; y* 4+ z° = b*. Both equalities

. . — b2 _
given the same equation: (“Cfg_ﬁjél) + (acfi _Z?

ing and simplifying this can be written as

)2 =1; and developing, order-

(@®+ %) (B +B) -4l hab = (& — b*)*(*)
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If the rectangle XYZT also can be inscribed in another rectangle with
dimensions m; and m,, the same reasoning allows us to writing a second
equation

(a® +b%) (m7 +m3) —dmympab = (a* — b2)2(**)
Substracting (*) and (**) we get
(a®+b*) (5 + 5 —m} —m3) — 4ab(l,1, — mymy) = 0.
In order to simplify the notation we define
k=0L+5—mj —m3;h=lLil,—mmy; andu=(b/a).
With this we have the quadratic equation in u

(1+u?)k—4uh=0s ku* —4uh+ k=0

2h+/412 — k2
H=—.
k

Now we make the computations with the data of the problem (crossing
the fingers!):

[} =55; I, =50;m; =55; my =38.
We get in sequence:

k=88-12; h=55-12
4 —h* = (2h+k)(2h — k) =12%-11%-6°
u=2or(1/2)

and from this,

x=20;t=15=>a=25, b=50
and for the second rectangle we get

x1=7,t1 =24=>a=25, b=>50,

and so the same carpet can be placed in both rooms (Fig. 2.3). |
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Fig. 2.3 Second figure
for Problem 4.2

{
' < /i My
15 24 L{'
Lt =55 =M Me XY=k =25
Lity= 59 Y, Z =%2 250
My My ~ 38

Source of the problem: Course on Euclidean Geometry I, University of
Costa Rica, 2012.

2.5.4 Solution of the Problem 4.3

The quadrilateral ABCD has an inscribed circle, being K, L. M and N the
tangency points with the sides AB, BC, CD and DA, respectively. The lines
DA and CB intersect at S, and the lines BA and CD intersect at P. If S, K and
M are collinear, prove that P, N and L are also collinear.

Source of the problem: Belarusian Math Olympiad 1996 (TST). In the
booklet of this Olympiad no authorship attribution of the problem is given.
In the booklet the solution of the student M. Vronski, given during the test (a
long but nice metrical solution) is published. Some time after the 2002
Melbourne Conference of the WFNMC, where I presented this problem, I
received the following solution:

Solution (by Andy Liu)

Let O be the centre of the circle and r its radius. Then OS and LN are
perpendicular and let them meet at R. Also, OP and SKM are perpendicular
and let them meet at Q. Since triangles OLR and OSL are similar, we have
OS.OR = /. Similarly, OP.0Q = r*. Hence PQRS is cyclic. Now,
ZPRS = 2PQS =90° = «NRS. It follows that I, N and P are collinear. N
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2.5.5 Solution of the Problem 4.4

Let M and N be points of the side BC of the triangle ABC, such that BM = CN
(point M is located between B and N). Let P and Q be points located
respectively on AN and AM such that ZPMC = £ZMAB and £QNB = ZNAC
Would it be always true that ZQBC = 2PCB?

Source of the problem: National round of the Spanish Mathematical
Olympiad 2015, Problem 6 (Fig. 2.4).

Solution (official solution, slightly edited by F. Bellot)

The key idea of this solution is to consider the circles (BNQ) and (PMC).
If AM meet again the circle (BNQ) at X, and AN meet again the circle (PMC)
at Y, its trivial that quadrilaterals BONX and MPCY are cyclic. But being
£QBC = 20BN and £PCB = 2PCM, then the angles of the problem will be
equal if ZOBN =2ZPCM

But ZOBN = 2QXN = ZMXN and £PCM = £PYM = ZNYM

Then, the problem will be solved in affirmative sense if we prove the
equality

£ZMXN = 2NYM

and this means than the four points M, N, Y, X belong to the same circle.
So, we will try to prove that

AM AY
AM -AX=AN -AYe—= — 2.55.1
N QAN e (2.5.5.1)

Fig. 2.4 Figure for
Problem 4.4
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Our argument is the following:

Triangles ABM and CAN have the same area, because their basis are equal
by hypothesis and their altitudes from A are the same. So we have

AM -AB- sin a=AN-AC- sin j (2.55.2)

where a =MAB;  =NAC.

For another hand, two of the angles of the triangle ABX are a, and
£BXQ = £QNB = fincircle (BNQ)

Similarly, two angles of triangle ACY are  and a. Therefore triangles
ABX and ACY are similar, and we can write down the proportionality
between the homologous sides as

AY CY
= 2.
AX AB (23)
Finally, using the sinus law in triangle ACY, we get
AC  CY @sinﬁ_ cY
sina  sinf  sina AC
and (2.5.5.2) can be written as
AM AC-sinffp AC CY CY _ by(3) = cY
AN ~AB-sna AB AC_ AB_ T AC
and we are done. |

2.5.6 Solution to Problem 4.5

n

Consider the sum ) x;y;, where the values of the 2n variables
i=1

X1y - s X3 V15 - - -, Yy are only O either 1. Let /(n) be the number of 2n-tuples
X1y - s X031, - - -, Yu such that the sum is an odd number, and P(n) the
number of 2n-tuples xi, ...,X;; V1, --.,y, such that the sum is an even

P(n) _ 2741
I(n) — 2n-1"

number. Show that

Source of the problem: This problem, created jointly by the Mexican
mathematicians Gerardo Raggi and Humberto Céardenas, was awarded with
the Second Prize in the First Iberoamerican Contest of Creation of Problems,
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organized by the O.E.I. (Organization of Iberoamerican States for the
Education, the Science and the Culture). Before this award were announced,
the problem was included in the shortlist presented to the International Jury
of the XII Iberoamerican Mathematical Olympiad, held at Guadalajara,
Jalisco, Mexico, September 1997, and proposed to the students as problem
number 4.

Official solution

First observe that for each natural number n, the recursive formula P
(n + 1) = 3P(n) + 1 holds. This is so, because in any 2n-uple in which the
value is even, there are three possibilities of to choose the couple (x,41,
Yn+1) to obtain one 2(n + 1)-uple such that the value still be even; and
starting with one 2n-uple such that the value is odd, there are only one way
to choose the couple (x,.,1,V.1)—both values equal to 1—to complete to
get an even value.

Analogously we have I(n + 1) = 31(n) + P(n).

We will use these recursive formulas and the induction over n to get the
result.

The proposition is true if n = 1, because P(1) = 3 and /(1) = 1.

Suppose the result true for some n > 1 and we will prove it forn + 1. We
have

P(n+1) _3P(m)+1(n) _3(GED+1_3-2°43+2'—1 4242 2"*'+1
I(n+1)  31(n)+P(n) 3+ (&) 3.27-3+427+1 4.2-2 2n+1-1

2.5.7 Solution to Problem 4.6

In the triangle ABC, G is the point of intersection of the medians and K the
point of intersection of the symmedians. The lines AG and AK intersect
again the circumcircle of ABC at M and N, respectively. Let P = BCNGN,
R =BCNKM and S = GRN KP. Show that AGSK is a parallelogram.

Source of the problem: Problem proposed by Spain to the International Jury
of the 12th Iberoamerican Math. Olympiad. The Problem selection com-
mittee changed the statement to the problem, changing barycenter and
Lemoine’s point by circumcenter and orthocenter, making it more easy. This
is the originally proposed problem.



2 From a Mathematical Situation to a Problem 43

Fig. 2.5 Figure for Problem 4.6

Solution by F. Bellot (Fig. 2.5).

Let E=BCNAG, F=BCNnAK, L=ABNCK and T = ACnBK.

Taking account that cevians AE and AF are isogonal, the arcs BM and NC
in the circle (ABC) are equal. From this we have that angles AEC and AMN
are supplementary, due to the equalities

1 1
£AEC = = (arcAC + arcBM); £LAMN = EarcAN =3 (arcAC +arcNC)

N —

This means that EF is parallel to MN, and as a consequence,

EM _FN

— =, 2.5.7.1
AM AN 257.1)
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For another hand, the power of point E with respect to the circle cir-
cumscribed to ABC can be written in two different ways:

BC?
AE -EM = ——,
4
Hence
BC?
EM = . 2.5.7.2
4.AE ( )
From (2.5.7.2) we get
4.AE*+BC?
AM= ————,
4.AE
whence, taking account that
2(AB? +AC?) — BC?
AR = (AB” + ) ’
4
we get
AB? + AC?
AM= ——— 25.7.3
2-AE ( )
From (2.5.7.2) and (2.5.7.3) we obtain
EM BC?
— = 2.5.7.4
AM  2(AB2+AC?) ( )
and by (2.5.7.2), we can write down
FN BC?
(2.5.7.5)

AN ~ 2(AB2+ACY)

As the cevians AF, CL and BT are concurrent at K, the Van Aubel
theorem allow us to write

AK_AL+Ar
KF LB TC’
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and by the Theorem of the Symmedian,
AL_AC AT AR
LB ABY’ TC AC*
So we get

AK _AB*+BC?

=B (2.5.7.6)

For another hand, the Menelaus theorem applied to the triangle AEF with
the transversal KM gives us

ER _AK EM
RF~ KF AM’
. . . _ _ 1
From this, with (2.5.7.4) and (2.5.7.6), we obtain ££ = 7, and as £8 = |
we have
EF EG
— = 2.5.7.7
RF GA ( )

and therefore GR is parallel to AF, whence GS is parallel to AK (2.5.7.8).
Again the Menelaus theorem at AEF with GN gives us
EP AN GE
PF FN AG’
which with (2.5.7.5) gives us
EP AK
PF  KF’
and this means KP is parallel to AE, or that is the same, KS parallel to AG

(2.5.7.9).
So (2.5.7.8) and (2.5.7.9) proves that AGSK is a parallelogram. |

2.5.8 Comments and Solution to Problem 4.7

The acute triangle ABC is inscribed in a circle. The point P is inside the
triangle. Lines AP, BP and CP intersect again the circumcircle of ABC at X,
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Fig. 2.6 Figure for
Problem 4.7

Y and Z, respectively. Determine the position of the point P for that XYZ be
equilateral.

Comments

This problem, created in the Symposium held immediately before the IXth
Iberoamerican Math. Olympiad 1994, was included in the exam as problem
4. The solution below—slightly edited—was obtained by a Portuguese
student, Joao Menano, during the contest (Fig. 2.6).

Solution

Consider, for instance, the side AB and the diameter of the circle (ABC)
which is parallel to this side. Point C, then, must belong to the opposed
semicircle to that in which A and B are located, because triangle ABC is
acute. The same observation is valid for any other couple of vertices. Then
we can forget the point C. We will find all the points P such that y = 720°.
This condition is obviously necessary and sufficient for that X and Y be two
vertices of the equilateral triangle XYZ (the center of the equilateral triangle
must to be the center of the circle).

We have 2YOB=2-/YABand £ZXOA=2-4XBA. In order to get
£X0Y =120°. We need that

2XO0Y + 2YOB + #AOB + 2A0X =360°

£2AOB =180° — 2OAB — £OBA.
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Observing the Fig. 2.4, this means

60°+¢e+06

20+2=60°+e+5=>a+p= 5

The set of points P which verify this last equation are the points of an arc
of circle through A and B with this measure. By means of this construction
we get an arc of circle to which P belongs. Repeating this construction using
other vertices, say B, C, we will get another arc of circle. The intersection of
both arcs gives the position of searched point P. |

2.5.9 Solution to the Problems 4.8

Consider the sequence of real numbers {x,} with x, arbitrary and
Xp+1=2(x,)* — 1. Show that, if |xo| < 1, then |x,| < 1. Find a closed formula
for x,,.

Solution by F. Bellot

If |xo| < 1, we can write xo = cos 0, forsome 6 € [0, r).

Then we get x; =2(cos? @) — 1 = cos 26, and |x;| < 1. Continuing in this
approach, we obtain x; = cos(226), and by induction we can prove that
X, = cos(2"9), and we are done the two proposed problems. |

2.5.10 Solution to Problems 4.9.1 and 4.9.2

Lines r and s are mutually orthogonal and do not are in the same plane. Let
AB be its common perpendicular (A€r, B€s). Consider the sphere of
diameter AB. The points M € r and N € s are variable, with the condition
that MN is tangent to the sphere. Let T be the point of tangency. Show that
TM.TN is constant. Determine the geometrical locus of the point 7.

Both problems were also created during the Symposium on Creating
problems, previously to the 10th Iberoamerican Mathematical Olympiad,
Chili 1995. The problem was chosen by the International Jury and proposed
to the students as problem 3 (Fig. 2.7).

First we will prove that TM.TN is constant (this part was not included in
the text of the problem 3 of the Iberoamerican Olympiad 1995).The picture
can be simplified a bit (Fig. 2.8):
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Fig. 2.7 Figure for $
Problem 4.9.1

Fig. 2.8 Figure for 3
Problem 4.9.2

The argument is by Eduardo Wagner. If we take AB = 2, MA = MT = x,
NB = NT =y, then we get

NM?=NB*>+BM* & (x+y)’ =y* +4+ x> & xy=2

|

Going back to the Fig. 2.7, we will give an analytical solution of the
problem. (Solution by F. Bellot during the Symposium).

Suppose AB = 2. We will choose the midpoint O of AB as origin of a

Cartesian system of coordinates in the space, the line AB will be the x axis;

[T

the line through O parallel to the line s as “y” axis; and the perpendicular to

the plan xy through O (upwards) as “z” axis. OB is the positive “x” axis.
The equation of the sphere is x> +y? +z> = 1; the equations of the line

rare (x= —1,y=0); the equations of the line s are (x=1,z=0) and the

coordinates of points M and N are M(—1,0,m),N(1,n,0).
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The equations of the line MN are ’%21 =L =8y,
The condition of tangency of the line MN with the sphere is 4 = m?n?, that
is mn=42.
If mn=2, the -coordinates of the tangency point 7 are

m>=2 _2m 2m
m2+2° mr+2° m?+2

) and as the second and third coordinates of T are the

same, this means that 7 belong to the plane of equation y = z, and so this
plane contain the line AB and make an angle of 45° with the plan xy.

If mn = -2, the plane to which 7 belongs is y = —z, which is orthogonal
to the first one. Both planes pass through the center of the sphere, and
intersect it following two maximal circles through A and B, forming angles
of 45° with the plan xy. |

2.5.11 Solution to Problem 4.10

Let ABC be a triangle inscribed in a circle, and [ is the incenter of the
triangle. Lines Bl and CI intersect again the circumcircle at M and N,
respectively. Line MN intersect AB at P and AC at Q, respectively. Show
that /A is perpendicular to MN.

Source of the problem: Problem created during the Third Iberoamerican
Workshop about the creation of problems, held in San José, Costa Rica,
Sept. 1996, just before the 11th Iberoamerican Math Olympiad (Fig. 2.9).

Fig. 2.9 Figure for
Problem 4.10
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Let L be the midpoint of the arc BC which do not contains A. The per-
pendicular line from N on LA intersects AL at T. The perpendicular line from
N on ML intersects ML at W. Note that [ is the orthocenter of the triangle
LMN. The line WT is parallel to AC, and therefore is the line of the statement
of the problem.

Now, if from N draw the perpendicular to AM, intersecting AM at X, the
Simson line of N with respect to the triangle AML is the line which pass
through 7 and W, that is, X = AMNTW. |

2.5.12 Solution to Problem 4.11

With center in the incenter I of the triangle ABC, a circle is drawn, inter-
secting in two points each side of the triangle: to BC at D and P (being D the
most near to B), to CA at E and Q (being E the most near to C), and to AB at
F and R (being F the most near to A). Let S be the point of intersection of the
diagonals of the quadrilateral EQFR, and T the point of intersection of the
diagonals of the quadrilateral FRDP. Finally, let U be the intersection of the
diagonals of the quadrilateral DPEQ. Show that the circumcircles of the
triangles FTR, DPU and EQS have one common point.

Source of the problem: The problem was created during the 4th Workshop of
Creation of problems, held in Guadalajara, Jalisco, Mexico in September of
1997, just before the 12th Iberoamerican Mathematical Olympiad. The
workshop was conducted by Prof. Alejandro Bravo. The problem was chosen
by the International Jury and proposed to the students as problem number 3.

Solution by Alejandro Bravo.

As S belongs to the bisector of angle A of triangle ABC, the angles QIS
and SIF are equal. But angle QIF = 2(angle SIQ) is a central angle in the
circle, and QES is inscribed and subtend the same arc FQ; therefore angle
QES = angle SIQ and the four points Q, S, / and E are concyclic (Fig. 2.10).

Fig. 2.10 Figure for
Problem 4.11
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The same argument proves that U belong to this same circle. Repeating
the reasoning, the circles circumscribed to the triangles DPU, EQS and FRT
pass through the incenter / of the triangle ABC. |

2.5.13 Solution of the Problem 4.12

ABCD is a convex quadrilateral and M = AC N BD. The internal bisector of
ACD intersect BA at K. Suppose MA-MC + MA-CD = MD - MB. Show
that ZBKC = 2CDB.

Source of the problem: Course of Euclidean Geometry 1, University of
Costa Rica.

Solution by F. Bellot

First we will draw a figure in such a way that it meet the conditions of the
statement of the problem (Fig. 2.11):

Drawing first the dotted circle, choose on it arbitrary points B, C and
D. Choosing then the angle KCD, with K on the circle, joining K with B we
will get the straight line where the point A must to be. Then, with the
protractor the angle KCA equal to the angle KCD is drawn (because CK is
the bisector of ACD) and so the position of the point A is determinate.

The thesis of the problem is equivalent to say that the points B, C, D and
K are in the circle (and this justify the drawing) and furthermore gives an
interpretation of the strange condition

MA-MC+MA-CD=MD-MB (2.5.13.1)

Fig. 2.11 Figure for
Problem 4.12




52 F. Bellot-Rosado

given in the statement of the problem.
First at all, as R is the foot of the internal bisector CK of triangle MDC,
we have, by the internal bisector theorem,
RM MC D= MC -RD
RD ~ CD MR
The value of CD is substituted in (2.5.13.1):
MA-MC+MA - YSRD = MD - MB.
The left hand side «can be written in the form
MA-MC- (1+ 82) =MD - MB, i.e.
MR +RD

MD
MA-MC- —— =MD -MB&MA-MC- — =MD -MB
MR MR

which reduces to M‘}V}yc =MB s MA-MC=MR -MB. This last equality
warranty that the points B, C, A and R are in the same circle (not drawn in
the picture above), and therefore the angles BAC and BRC are equal.
Consider now the triangles KAC and DRC. Both have equal the angle
C (because CK is the bisector of angle ACD), and for another hand
£2KAC=«DRC, because they are supplementary of the equal angles
£BAC = 2DRC. Therefore the third angles in both triangles should to be

equal, that is ZBRC = «BDC, and we are done. |
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