
Elliptic Hypergeometric Functions

Fokko J. van de Bult

Abstract These lecture notes discuss some of the basics of elliptic hypergeomet-
ric functions. These are fairly recent generalizations of ordinary hypergeometric
functions. In this chapter we first discuss both ordinary hypergeometric functions
and elliptic functions, as you need to know both to define elliptic hypergeometric
series. We subsequently discuss some of the important properties these series satisfy,
in particular we consider the biorthogonal functions found by Spiridonov and
Zhedanov, both with respect to discrete and continuous measure. In doing so we
naturally encounter the most important evaluation and transformation formulas for
elliptic hypergeometric series, and for the associated elliptic beta integral.

1 Introduction

While the theory of ordinary and basic hypergeometric functions goes back to the
time of Euler and Gauß, the study of elliptic hypergeometric functions only started
in the late 1990s, after the publication of a paper [2] by Frenkel and Turaev. As
a testament to the usefulness of hypergeometric functions, and specifically also
elliptic hypergeometric functions, Frenkel and Turaev introduced the elliptic hyper-
geometric functions when studying solutions to the Yang-Baxter equation. Since
then, elliptic hypergeometric functions have appeared in many other applications.
To get an impression of their applications you can browse the list of papers on
elliptic hypergeometric functions on the website of Rosengren (see the note at the
top of the bibliography).

Given the name, it might come as no surprise that to understand elliptic
hypergeometric series and integrals it is important to understand both ordinary
hypergeometric functions and elliptic functions. The theory of elliptic hypergeo-
metric functions is really a reflection of the theory for ordinary hypergeometric
functions, but usually twisted in a slightly more complicated way. One of the ques-
tions one should often ask is “I know hypergeometric functions satisfy this property,
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does it have an elliptic hypergeometric analogue?” and the other way around “What
is the ordinary/basic hypergeometric version of this elliptic hypergeometric result?”
On the other hand the basic building blocks for elliptic hypergeometric series are
elliptic functions, so it is important to know the basic properties of elliptic functions
as well.

This explains the order of these notes: First we briefly discuss the basics of (basic)
hypergeometric series, then the basics of elliptic functions, before we consider the
elliptic hypergeometric functions themselves. We then continue by showcasing a
few of the most important identities satisfied by elliptic hypergeometric functions.
In particular we will be focused on the generalizations of the classical orthogonal
polynomials (Legendre, Jacobi, Wilson, etc.) to the elliptic level.

2 Hypergeometric Series

A general reference for ordinary hypergeometric functions is [1].

Definition 2.1 A hypergeometric series is a series
P

dn for which the quotient of
two subsequent terms r.n/ D dnC1=dn is a rational function of n.

The name hypergeometric originates from the geometric series
P1

kD0 xk D

1=.1 � x/, which is a special case of hypergeometric series where the quotient
r.n/ is a constant function. Other examples of hypergeometric series are ex D
P1

nD0 xn=.nŠ/ and the binomial .1C x/n D
Pn

kD0

�n
k

�

xk.
Notice that any rational function can be factored

r.n/ D
.nC a1/.nC a2/ � � � .nC ar/

.nC b1/.nC b2/ � � � .nC bs/
z:

Thus the zeros are at n D �aj and the poles at n D �bj. This means that

dn D d0

n�1
Y

kD0

r.k/ D d0
.a1; a2; : : : ; ar/n

.b1; b2; : : : ; bs/n
zn

where we use the notation

Definition 2.2 The pochhammer symbol .a/n is defined for n 2 Z�0 as

.a/n D
n�1
Y

kD0

.aC k/ :

Note that this implies that .a/0 D 1. We use an abbreviations for products of these
pochhammer symbols:

.a1; a2; : : : ; ar/n D .a1/n.a2/n � � � .ar/n
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Considering this general expression for the terms of a hypergeometric series we
introduce the notation

Definition 2.3 The hypergeometric series are defined as

rFs

�

a1; : : : ; ar

b1; : : : ; bs
I z

	

D

1
X

nD0

.a1; : : : ; ar/n

.1; b1; : : : ; bs/n
zn :

Notice the 1 which is always added as a numerator parameter. First of all .1/n D
nŠ, so it indeed appears in the series we gave before. Indeed we have

ex D 0F0

�

�

�
I x

	

; .1C x/n D 1F0

�

�n
�
I�x

	

:

Thus it often saves us some writing. But more importantly it means that the
summand dn D 0 for n < 0 (in generic cases), so the starting point of our series is
an inherent boundary. If you really do not want the 1 as a b-parameter, you can add
it as an a-parameter, after which the .1/n in the numerator cancels to the .1/n in the
denominator, so the geometric series is written as 1=.1 � x/ D 1F0.1I �I x/.

For positive integer n the series for .1 C x/n only contains a finite number of
nonzero terms. Such a series is called a terminating hypergeometric series. You can
easily spot them in the rFs notation, as one of the numerator arguments must be a
negative integer.

To consider a series as an analytic function, we need to consider whether it
converges. Since hypergeometric series are defined by a pretty property for the
quotient of two subsequent terms, the ratio test can be easily applied. Indeed we
have to consider the limit limn!1 r.n/. Any rational function has a limit at infinity,
and this gives the following result for the convergence of hypergeometric series:

Theorem 2.4 The series rFs.a1; : : : ; arI b1; : : : ; bsI z/ converges if one of the fol-
lowing holds

• It is terminating
• If r � s
• If r D sC 1 and jzj < 1

and it diverges if one of the following holds

• It is nonterminating and r > sC 1
• It is nonterminating and r D sC 1 and jzj > 1.

Hypergeometric series are intricately linked to the Gamma function.

Definition 2.5 The Gamma function is defined as the unique meromorphic function
which equals


 .z/ D
Z 1

0

tz�1e�t dt

for <.z/ > 0.
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Note that 
 .z C 1/ D z
 .z/ (by integration by parts), so we can easily extend
the domain of the function to C n Z�0 once we have defined it for <.z/ > 0. This
difference equation also ensures that 
 has simple poles at Z�0, as it would imply
for example that for <.z/ > �1 we have 
 .z/ D .1=z/

R1

tD0 tze�t dt, which is an
analytic function times 1=z. The first relation to hypergeometric series comes from
the fact that

.a/n D

 .aC n/


 .a/

which only uses the difference equation for the Gamma function. Thus hypergeo-
metric series can be written as

rFs

�

a1; : : : ; ar

b1; : : : bs
I z

	

D

 .1; b1; : : : ; bs/


 .a1; : : : ; ar/

1
X

nD0


 .a1 C n; : : : ; ar C n; 1/


 .1C n; b1 C n; : : : ; bs C 1/
zn

using the same abbreviation for products of Gamma functions as we introduced
before for pochhammer symbols. The second relation to hypergeometric series
comes from integrals. Consider the integral (over a complex contour)

Z i1

�i1


 .aC s; bC s;�s/


 .cC s/
.�z/s

ds

2� i

where the integration contour separates the poles of 
 .a C s/ and 
 .b C s/ from
those of 
 .�s/. (Notice that 1=
 .z/ is an entire function). The contour, and the
poles are pictured in Fig. 1.

The .�z/s is defined using a branch cut at the negative real axis (for �z, so not
for the integration variable s). Shifting the contour to the right we encounter all the

Fig. 1 The contour for the
Barnes’ integral weaves
between the poles of the
integrand
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poles of 
 .�s/. If we move the contour over those poles, the limit of the resulting
integral goes to zero (use Stirling’s formula to prove this). Thus the result of the
original integral is the infinite series of residues we have to pick up. That is

Z i1

�i1


 .aC s; bC s;�s/


 .cC s/
.�z/s

ds

2� i

D

1
X

nD0

Res

�


 .aC s; bC s;�s/


 .cC s/
.�z/s; s D n

�

D Res

�


 .aC s; bC s;�s/


 .cC s/
.�z/s; s D 0

� 1
X

nD0

Res
�


 .aCs;bCs;�s/

 .cCs/ .�z/s; s D n

�

Res
�


 .aCs;bCs;�s/

 .cCs/ .�z/s; s D 0

�

D

 .a; b/


 .c/

1
X

nD0

.a; b/n
.c;�n/n

.�z/n D

 .a; b/


 .c/

1
X

nD0

.a; b/n

.c; 1/n
zn

which is the hypergeometric series 2F1. Thus integrals involving Gamma functions
are related to hypergeometric series by the picking up of residues. And a third
relation is that a hypergeometric series can sometimes be evaluated, that is, written
without an infinite sum in terms of simple functions, using Gamma functions. For
example the famous evaluation (for convergent series)

2F1

�

a; b
c
I 1

	

D

 .c; c � a � b/


 .c � b; c � a/
: (1)

Exercise 2.6 Use Stirling’s formula to show that the Gauß hypergeometric series
2F1.a; bI cI 1/ converges for <.c � a � b/ > 0. When does a hypergeometric series
rC1Fr evaluated at z D 1 converge?

Exercise 2.7 Fill in the details of the derivation that

Z i1

�i1


 .aC s; bC s;�s/


 .cC s/
.�z/s

ds

2� i
D

 .a; b/


 .c/
2F1

�

a; b
c
I 1

	

:

That is, show that (when the series converges) the integrand converges to zero as
<.s/!1.

3 Basic Hypergeometric Series

A generalization of the hypergeometric series are the basic hypergeometric, or q-
hypergeometric series. The basic reference on this topic is [3].



48 F.J. van de Bult

Definition 3.1 A basic hypergeometric series is a series
P

dn for which the
quotient of two subsequent terms r.n/ D dnC1=dn is a rational function of qn.

We will assume from now on that jqj < 1. Notice that this means that r.n/
is periodic with period 2� i= log.q/. Many results from ordinary hypergeometric
series generalize. There exists a q-Gamma function which generalizes the ordinary
Gamma function, but it is actually often more convenient to work with the q-
pochhammer symbols:

Definition 3.2 The q-pochhammer symbols are defined for n 2 N [ f1g as

.aI q/n D
n�1
Y

kD0

.1 � aqk/ ;

For n D1 we often omit the subscript;

Notice that the infinite product .aI q/ D .aI q/1 converges for jqj < 1. If the
rational function is factored as

r.n/ D
.1 � a1qn/ � � � .1 � arqn/

.1 � b1qn/ � � � .1 � bsqn/
z

then we can express the terms in the series using the q-pochhammer symbols as

dn D d0
.a1; : : : ; arI q/n
.b1; : : : ; bsI q/n

zn :

Notice that limn!1 r.n/ D z, so the q-hypergeometric series converge for jzj < 1.
We want to keep this discussion brief, so we will end with mentioning that the

limit q! 1 returns us to the theory of ordinary hypergeometric series, as

lim
q!1

.qaI q/n
.1 � q/n

D

n�1
Y

kD0

lim
q!1

1 � qaCk

1 � q
D

n�1
Y

kD0

.aC k/ D .a/n :

4 Elliptic Functions

As for information about elliptic functions, I like the by now ancient Modern
Analysis [12]. We just need a few basic results.

Definition 4.1 An elliptic function is a meromorphic function f WC ! C which is
periodic in two directions. That is, there are !1; !2 2 C n f0g with !2=!1 … R such
that f .zC !i/ D f .z/ for i D 1; 2.
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We will often write elliptic functions as functions of x D qz instead of as
functions of z. One of the two periods is then equal to 2� i= log.q/. If we write
the other period as log.p/= log.q/, we see that f .x/ D f .qz/ D f .qzClog.p/= log.q// D

f .px/. Thus we say a function is p-elliptic if it is invariant under multiplying the
argument by a factor p. In this section we will not use this notation yet, but we will
once we get to elliptic hypergeometric series.

It can be convenient to consider the group !1Z C !2Z (under addition) which
acts on C. A fundamental domain of this action is the parallelogram with vertices
0, !1, !1 C !2 and !2.

It should be realized that the condition of ellipticity is a rather strict condition.
For example

Theorem 4.2 An analytic, elliptic function is constant.

Proof Let f be an analytic, elliptic function. On the closure of the fundamental
domain f is a continuous function on a compact domain, hence it is bounded. But
as it takes all its values on this fundamental domain, f is bounded on C. Liouville’s
theorem now shows that f must be constant. ut

Moreover it can have only as many zeros as poles

Theorem 4.3 If f is an elliptic function, which is not constant zero, then it has as
many poles as zeros counted with multiplicity.

Proof Assume no poles/zeros are located on the boundary of the fundamental
domain D. If there are, you should shift the fundamental domain so that this is the
case (which is possible since there are at most countably many poles/zeros). Then
consider the integral

R

@D f 0.z/=f .z/ dz=.2� i/ which gives the difference between the
number of poles and the number of zeros. The contour consists of four parts: let’s
call the line from 0 to !1 the bottom, the line from !1 to !1 C !2 the right side, the
line from !1 C !2 to !2 the top, and the line from !2 back to 0 the left side. This
is consistent with the following picture (note that if the orientation of the contour is
different the argument remains the same)

0

1

1 + 2

2

w

w w
w

This integral now evaluates to zero, as the part of the integral over the left edge
of the fundamental domain equals the part of the integral over the right edge with
opposite orientation. (One shift by a period does not change the integrand). Thus the
left and right edge cancel each other. Likewise for the top and bottom edge. ut

And you can even prove
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Theorem 4.4 If an elliptic function f has poles in a fundamental domain at
p1; : : : ; pk and zeros at z1; : : : ; zk (multiple poles/zeros listed multiple times) then
Pk

nD1 pn D
Pk

nD1 zn mod !1ZC !2Z.

Proof Consider the contour integral
R

@D zf 0.z/=f .z/ dz=.2� iz/, with the contour as
before. Now the integral of the bottom edge plus the integral of the top edge equals
the integral�!2

R

f 0.z/=f .z/ dz=.2� i/ along the bottom edge 0 to !1. However since
f .!1/ and f .0/ are identical, the difference log.f /.!1/�log.f /.0/must be a multiple
of 2� i. Thus the sum of the integrals over the bottom edge and the top edge is an
integer multiple of !2. Likewise the sum of the integrals over the left and right edges
equals an integer multiple of !1. ut

Together the last two theorems imply that no elliptic function with just a single
pole/zero in a fundamental domain exists. This fact can often be used to prove
identities for elliptic functions:

If you can show an elliptic function has at most one pole in a fundamental
domain, it must be constant!

5 Elliptic Hypergeometric Series

Elliptic hypergeometric series first appeared in [2], in which Frenkel and Turaev
were considering solutions to the Yang–Baxter equation. In the second edition of
[3] a chapter was added about elliptic hypergeometric series, which gives a nice
overview, but for some aspects it was written a bit prematurely as the theory was at
the time in big development. A nice introduction, a little more expansive than this
one, can be found in the recent lecture notes [7] by Rosengren.

The definition of elliptic hypergeometric series should not come as a surprise
anymore:

Definition 5.1 An elliptic hypergeometric series is a series
P

dn for which the
quotient of two subsequent terms r.n/ D dnC1=dn is an elliptic function of n.

We would like to proceed as before by factoring the quotient r.n/ in elementary
building blocks for elliptic functions, but we can’t do that using elliptic functions.
Indeed nonconstant elliptic functions must always have both multiple zeros and
multiple poles, so they won’t function well as bricks in our construction. Therefore
we consider the theta functions

Definition 5.2 We define the theta functions as

�.xI p/ D .x; p=xI p/1 D
1
Y

kD0

.1 � pkx/.1 � pkC1=x/ :
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The associated theta pochhammer symbols are given by

�.xI pI q/n D �.xI p/n D
n�1
Y

kD0

�.xqkI p/

(where we often suppress the q-dependence).

These theta functions are a different way of writing the Jacobi theta function.
The product formula is related to the Jacobi theta function using the famous Jacobi
triple product formula:

.x; q=x; qI q/1 D
1
X

kD�1

qk.k�1/=2.�x/k :

Now observe that these theta functions have a simple behavior if you multiply x
by p:

�.pxI p/ D �.1=xI p/ D .1=x; pxI p/ D
.1 � 1=x/

1 � x
.p=x; xI p/ D �

1

x
�.xI p/ :

So if we now write

r.n/ D
�.a1qn; : : : ; arqnI p/

�.b1qn; : : : ; brqnI p/
z

we have a function which has one period 2� i= log.q/ and a second period
log.p/= log.q/ if the balancing condition

Qr
kD1 ak D

Qr
rD1 bk holds (and observe

that we have to take as many numerator terms as denominator terms). Note that
�.aqnI p/ is an entire function of n and in a fundamental domain of 2� i= log.q/ZC
log.p/= log.q/Z it has a single zero. Thus these theta functions allow us to write
elliptic functions with given zeros and poles as a simple product. Like the rFs

notation we now define

Definition 5.3 If the balancing condition a1a2 � � � ar D qb1b2 � � � br�1 holds then we
define

rEr�1

�

a1; : : : ; ar

b1; : : : ; br�1
I z

	

D

1
X

kD0

�.a1; : : : ; arI p/k
�.q; b1; : : : ; br�1I p/k

zk :

Let us consider the convergence of this series. The ratio test does not work as the
limit as the argument of an elliptic function goes to infinity does not exist. While
you can have convergent elliptic hypergeometric nonterminating series, in practice
everybody only works with terminating series. That is series with a �.q�nI q/k in the
numerator, which becomes 0 for k > n.
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It turns out that most results, and the only series we will encounter throughout
these lecture notes, are so-called very well-poised series, which are a special case:

Definition 5.4 Assuming r is even and the balancing condition

b1b2 � � � br�6 D ar=2�3qr=2Cn�4

holds, the terminating very-well-poised series is given by

rVr�1.aI b1; : : : ; br�6; q
�nI q; p/

D rEr�1

�

a;˙q
p

a;˙q
p

ap; b1; : : : ; br�6; q�n

˙
p

a;˙
p

ap; aq=b1; : : : ; aq=br�6; aqnC1I q

	

D

n
X

kD0

�.aq2kI p/

�.aI p/

�.a; b1; : : : ; br�6; q�nI p/k
�.q; aq=b1; : : : ; aq=br�6; aqnC1I p/k

qk :

Proof of equivalence of two expressions above Here we use

�.xI p/2k D

2k�1
Y

rD0

.xqr; pq�r=xI p/ D
2k�1
Y

rD0

1
Y

sD0

.1 � xqrps/.1 � psC1q�r=x/

D

2k�1
Y

rD0

1
Y

sD0

.1 �
p

xqr=2ps=2/.1C
p

xqr=2ps=2/

� .1 � p.sC1/=2q�r=2=
p

x/.1C p.sC1/=2q�r=2=
p

x/

D

2k�1
Y

rD0

.˙
p

xqr=2;˙
p

pxqr=2;˙q�r=2
p

p=x;˙pq�r=2=
p

xI p/

D

2k�1
Y

rD0

�.˙
p

xqr=2;˙
p

pxqr=2I p/

D �.˙
p

x;˙
p

qx;˙
p

px;˙
p

pqxI p/k

which implies

�.aq2kI p/

�.aI p/
D
�.aqI p/2k

�.aI p/2k
D
�.˙
p

aq;˙q
p

a;˙
p

pqa;˙q
p

paI p/k
�.˙
p

a;˙
p

aq;˙
p

ap;˙
p

apqI p/k

D
�.˙q

p
a;˙q

p
apI p/k

�.˙
p

a;˙
p

apI p/k
:

ut
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It should be noted that for ordinary and basic hypergeometric series we have

aC 2k

a
D
.a=2C 1/k
.a=2/k

;
1 � aq2k

1 � a
D
.˙q
p

aI q/k
.˙
p

aI q/k

thus we only need 1 or 2 parameters for this first factor instead of 4. So a very well-
poised 10V9 corresponds to the basic hypergeometric very-well poised 8W7, and the
ordinary hypergeometric very-well poised 7F6.

As far as I know, all identities for elliptic hypergeometric series (and integrals)
are based on a single identity:

Theorem 5.5 For w; x; y; z 2 C n f0g we have

1

y
�.wx˙1; yz˙1I p/C

1

z
�.wy˙1; zx˙1I p/C

1

x
�.wz˙1; xy˙1I p/ D 0 :

Proof One of the most common techniques for proving identities involving theta
functions is to use the argument that elliptic functions with more zeros than poles
are constant zero. Let us consider what happens if we change w ! pw. Then the
first term becomes

1

y
�.pwx˙1; yz˙1I p/ D

1

y
�.wx˙1; yz˙1I p/

�

�
1

wx

��

�
x

w

�

D
1

y
�.wx˙1; yz˙1I p/

1

w2
:

By symmetry the other two terms are also multiplied by 1=w2 upon setting w! pw.
So we do not have an elliptic function (it could not really be because it is analytic
and has zeros). However if we divide by the first term the left-hand side does become
an elliptic function in w, which is even (invariant under w! 1=w)

f .w/ D 1C
y

z

�.wy˙1; zx˙1I p/

�.wx˙1; yz˙1I p/
C

y

x

�.wz˙1; xy˙1I p/

�.wx˙1; yz˙1I p/
:

In a fundamental domain, this function has at most a (simple) pole at w D x and
w D x�1. If we set w D z we obtain that the function vanishes:

f .z/ D 1C
y

z

�.zy˙1; zx˙1I p/

�.zx˙1; yz˙1I p/
C 0 D 1C

y

z

�.z=yI p/

�.y=zI p/
D 0 ;

using the identity �.1=xI p/ D �.1=x/�.xI p/. Likewise there are zeros at w D y˙1

and w D z�1. As a nonconstant elliptic function with at most two poles can have at
most two zeros the function f .w/ must therefore be constant zero. ut

As a generalization of the ordinary Gamma function, there is an elliptic Gamma
function [9] which satisfies the simple difference equation


e.qx/ D �.xI p/
e.x/ ;
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ensuring that

�.xI p/k D

e.xqk/


e.x/
:

This is a reflection of the difference relation 
 .zC 1/ D z
 .z/ and .a/k D 
 .aC
k/=
 .a/ for the ordinary Gamma function.

Definition 5.6 The elliptic Gamma function is defined as


e.x/ D 
e.xI p; q/ D
Y

r;s�0

1 � prC1qsC1=x

1 � prqsx
:

Notice that the elliptic Gamma function is symmetric under p $ q. In a
specific way you can consider it to be the simplest function satisfying the difference
equations 
e.qx/ D �.xI p/
e.x/ and 
e.px/ D �.xI q/
e.x/. Where the ordinary
Gamma function has poles at the negative integers, the elliptic Gamma function
has (generically simple) poles at x D pZ

�0qZ
�0 ; as any function must if it is to

satisfy the two difference equations. Just to be explicit: the elliptic Gamma function
is itself not an elliptic function, however it can be used to simply express elliptic
hypergeometric series.

Exercise 5.7 Prove the following basic relations for theta functions:

(a) �.pxI p/ D �.1=xI p/
(b) �.pnxI p/ D .�1=x/np�.

n
2/�.xI p/

Exercise 5.8 Prove the following basic relations for the elliptic Gamma function:

(a) Reflection identity: 
e.x; pq=x/ D 1
(b) Limit: limp!0 
e.xI p; q/ D 1=.zI q/1
(c) Quadratic transformation: 
e.x2I p; q/ D 
e.˙xI

p
p;
p

q/
(d) Quadratic transformation: 
e.xI p; q/ D 
e.x; qxI p; q2/

Exercise 5.9 Calculate the residue

Res

�

1

z

e.az/I z D 1=a

�

D
1

.pI p/.qI q/
:

Exercise 5.10 Show that an rVr�1 is a p-elliptic function of its arguments, as long
as the balancing condition b1b2 � � � br�6 D ar=2�3qr=2Cn�4 remains satisfied. Thus
for example

rVr�1.aI b1; : : : ; br�6; q
�nI q; p/ D rVr�1.aI pb1; b2=p; b3; : : : ; br�6; q

�nI q; p/ :
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6 6j-Symbols and Spiridonov–Zhedanov Biorthogonal
Functions

This section introduces the biorthogonal functions of Spiridonov and Zhedanov
[11].

The Askey scheme and q-Askey scheme [4] contain many families of orthogonal
polynomials. We will not reprint them here, because the schemes take up a lot
of space. Basically they contain all classical families of orthogonal polynomials1.
The (q)-Askey scheme can even be generalized to include pairs of families of
biorthogonal rational functions. That is: we consider two families of rational
functions F D ff0; f1; : : : g and G D fg0; g1; : : : g and a bilinear form such that
hfn; gmi D ınm�n. Generalizing in this way you can make the schemes a few times
larger. On the elliptic level the scheme for pairs of families of biorthogonal functions
becomes very simple: There is just one family.

However, everything in the (q-)Askey scheme is a limit of this family. To be
completely honest this is not completely fair, as there are biorthogonal functions
with respect to a continuous measure, and specializing the product of two parame-
ters to q�N you obtain biorthogonality with respect to a finite point measure (for a
finite set of functions). This difference is similar to the relation of Wilson to Racah
polynomials. So in a way you might consider there to be two pairs of families of
biorthogonal functions. In this section we will focus on the discrete biorthogonality
on a measure with finite support, while in Sect. 8 we consider the continuous
measure. In Exercise 8.6 you can verify the relation between these two measures
yourselves.

I feel that Rosengren’s [8] elementary derivation of the biorthogonality using
6j-symbols is a nice exposition, so I will follow that here. We first introduce the
functions

hk.xI a/ D �.a�; a�
�1I p/k ; � C ��1 D x :

which are entire functions of x for a ¤ 0. Then we can consider (for given N, a and
b) the set of functions

B D fhk.xI a/hN�k.xI b/ j 0 � k � Ng :

Then these N C 1 functions are all of the form f .x/ D
QN

jD1 �.aj�; aj�
�1I p/. That

is, writing � D e2� iz and F.z/ D f .e2� iz C e�2� iz/, we have even theta functions of
degree 2N with characteristic 0, which means these functions satisfy: f .�z/ D f .z/,
f .zC 1/ D f .z/ and f .zC 
/ D e�2� iN.2zC
/f .z/ where p D e2� i
 . These functions

1You might ask: What is classical? There are many different definitions based on properties such
a classical family should have, which result in different families being called classical or not. As
far as I know any definition includes only families from the (q)-Askey scheme, but some are more
restrictive. I just use the definition “Everything in the (q-)Askey scheme is classical.”
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form a space of degree N C 1. It turns out that if

pma=b … fqk j 1 � N � k � N � 1g ; pmab … fqk j 0 � k � N � 1g

the functions in B form a basis of this space. But if we replace the parameters a and
b by c and d, we obtain another basis for this same space. As such there is a basis
transformation

hk.xI a/hN�k.xI b/ D
N
X

lD0

Rl
k.a; b; c; dINI q; p/hl.xI c/hN�l.xI d/ :

Let us calculate these coefficients Rl
k. First we prove a binomial theorem

Theorem 6.1 We have

hN.xI a/ D
N
X

kD0

CN
k .a; b; c/hk.xI b/hN�k.xI c/

with

CN
k D qk.k�N/ �.qI p/N�.a=c; qN�kacI p/k�.a=b; abqkI p/N�k

�.bcI p/N�.q; .b=c/qk�N I p/k�.q; .c=b/q�kI p/N�k
:

Compare this theorem to .xC y/N D
PN

kD0

�N
k

�

xkyN�k.

Proof We will prove this using recurrence relations for the binomial coefficients, so
let us see what happens if we increase N by one: First of all

hNC1.xI a/ D hN.xI a/�.a�qN ; a��1qN I p/ :

To get a nice expression on the right-hand side we have to somehow write

hk.xI b/hN�k.xI c/�.a�qN ; a��1qN I p/

D c1hk.xI b/hN�kC1.xI c/C c2hkC1.xI b/hN�k.xI c/ ;

that is

�.a�qN ; a��1qN I p/ D c1�.c�qN�k; c��1qN�kI p/C c2�.b�qk; b��1qkI p/ :

Now we need to find an identity between three terms involving theta functions, so we
hope we can apply Theorem 5.5. We have got three terms of the form �.s�˙1I p/ for
s D aqN , s D cqN�k and s D bqk, so we know what the parameters in Theorem 5.5
should be. Taking w D � , x D aqN , y D bqk and z D cqN�k the identity from the
theorem becomes
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1

bqk
�.�aqN ; �a�1q�N ; bcqN ;

b

c
q2k�N I p/

C
1

cqN�k
�

�

�bqk; �b�1q�k; acq2N�k;
c

a
q�kI p

�

C
1

aqN
�

�

�cqN�k; �c�1qk�N ; abqNCk;
a

b
qN�kI p

�

D 0 :

Using �.1=xI p/ D �.1=x/�.xI p/ we can clean this up to

�

�

a�qN ; a��1qN ; bcqN ;
b

c
q2k�N I p

�

C
aqk

c
�

�

b�qk; b��1qk; acq2N�k;
c

a
q�kI p

�

C
b

cqN�2k
�

�

c�qN�k; c��1qN�k; abqNCk;
a

b
qN�kI p

�

D 0

and then find

�.a�qN ; a��1q�N I p/ D
�.acq2N�k; .a=c/qkI p/

�.bcqN ; .b=c/q2k�N I p/
�.b�qk; b��1qkI p/

C
�.abqNCk; .a=b/qN�kI p/

�.bcqN ; .c=b/qN�2kI p/
�.c�qN�k; c��1qN�kI p/ :

Therefore we find the recurrence relation

CNC1
k D

�.acq2NC1�k; .a=c/qk�1I p/

�.bcqN ; .b=c/q2k�N�2I p/
CN

k�1 C
�.abqNCk; .a=b/qN�kI p/

�.bcqN ; .c=b/qN�2kI p/
CN

k :

With the initial conditions C0
0 D 1 and CN

�1 D CN
NC1 D 0 the coefficients are

determined uniquely. Indeed we can now prove the formula for CN
k by induction.

Note first that 1=�.qI p/�1 D �.qq�1I p/ D 0, so indeed the expression satisfies the
initial conditions CN

�1 D CN
NC1 D 0. Next we use induction and using Theorem 5.5

once more in a tedious calculation find that our formula for CN
k is correct. ut

Now we can determine the coefficients Rl
k explicitly by twice applying this

binomial theorem:
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Theorem 6.2 We have

Rl
k.a; b; c; dINI q; p/ D ql.l�N/ �.qI p/N

�.qI p/l�.qI p/N�l

�

�.ac˙1I p/k�

�

bdqN�l;
b

d
I p

�

l

�

�

b

c
; bcI p

�

N�k

�

�

b

c
I p

�

N�l

�

�

c

d
ql�N I p

�

l

�

�

d

c
q�lI p

�

N�l

�

�

cd;
b

c
I p

�

N

�.bcI p/l

� 12V11

�

c

b
q�N I q�k; q�l;

a

b
qk�N ;

c

d
ql�N ; cd;

1

ab
q1�N ;

qc

b

�

:

Proof Indeed we have

hk.xI a/hN�k.xI b/

D

k
X

jD0

Ck
j .a; c; bqN�k/hj.xI c/hN�j.xI b/

D

k
X

jD0

N�j
X

mD0

Ck
j .a; c; bqN�k/CN�j

m .b; cqj; d/hjCm.xI c/hN�j�m.xI d/

D

N
X

lD0

min.k;l/
X

jD0

Ck
j .a; c; bqN�k/CN�j

l�j .b; cqj; d/hl.xI c/hN�l.xI d/ :

Thus we obtain

Rl
k.a; b; c; dINI q; p/ D

min.k;l/
X

jD0

Ck
j .a; c; bqN�k/CN�j

l�j .b; cqj; d/

which is exactly the series from the statement of the theorem. ut

Note that we can find several different expressions by using a different proof. So
this gives transformation formulas for the 12V11.

Having proved that these elliptic hypergeometric series form the coefficients in a
base transformation, we can derive some properties. First of all

Theorem 6.3 (Biorthogonality) We have

N
X

lD0

Rl
n.a; b; c; dINI q; p/R

m
l .c; d; a; bINI q; p/ D ınm :
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You can view this theorem as hR�n;R
m
� i D ınm, where � denotes the parameter, and

the bilinear form has support on the set of integers f0; 1; : : : ;Ng.

Proof Perform the basis transformation first from the basis hk.xI a/hN�k.xI b/ to the
basis hl.xI c/hN�l.xI d/ and then back again. This gives

hk.xI a/hN�k.xI b/

D

N
X

lD0

Rl
k.a; b; c; dINI q; p/hl.xI c/hN�l.xI d/

D

N
X

lD0

N
X

jD0

Rl
k.a; b; c; dINI q; p/R

j
l.c; d; a; bINI q; p/hj.xI a/hN�j.xI b/

D

N
X

jD0

N
X

lD0

Rl
k.a; b; c; dINI q; p/R

j
l.c; d; a; bINI q; p/hj.xI a/hN�j.xI b/ :

Then we see that the final series only has a nonzero term for the j D k case, and the
corresponding coefficient must be 1. ut

If we consider the special case of the biorthogonality where n D m D 0, the
series in the functions Rl

n and Rm
l both contain just a single term, and thus the

resulting identity becomes an evaluation of a single sum. This summation is the
original Frenkel–Turaev summation formula [2]

Theorem 6.4 We have

10V9

�

aI b1; b2; b3;
qnC1a

b1b2b3
; q�n

�

D

�

�

aq

b1b2
;

aq

b1b3
;

aq

b2b3
; aqI p

�

n

�

�

aq

b1
;

aq

b2
;

aq

b3
;

aq

b1b2b3
I p

�

n

:

Proof For n D m D 0 the result simplifies to

1 D

N
X

kD0

Rk
0.a; b; c; dINI q; p/R

0
k.c; d; a; bINI q; p/

D
�.q; bcI p/N

�.cd; b=a; abI p/N

�

N
X

kD0

qk.k�N/ �.bdqN�k; b=d; ca˙1I p/k�.b=c; da˙1I p/N�k

�.q; .c=d/qk�N ; bcI p/k�.q; .d=c/q�kI p/N�k
:
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Next we use the elementary identities

�.xq�kI p/k D �.pq=xI p/k �.xI p/N�k D
�.xI p/N

�.pq1�N=xI p/k

�.xqkI p/k D
�.xI p/2k

�.xI p/k
�.xq�kI p/N�k D

�.xI p/N�.pq=xI p/k
�.pq1�N=xI p/2k

�.pxI p/k D

�

�
1

x

�k

q�.
k
2/�.xI p/k

to obtain

1 D
�.bc˙1; da˙1I p/n
�.dc˙1; ba˙1I p/N

�

N
X

kD0

�..c=d/q1�N I p/2k

�..c=d/q�N I p/2k

�.q1�N=.bd/; b=d; ca˙1; .c=d/q�N ; q�N I p/k
�.q; bc; qc=d; q1�Nc=b; q1�N.1=d/a˙1I p/k

qk

D
�.bc˙1; da˙1I p/n
�.dc˙1; ba˙1I p/N

10V9

�

c

d
q�N I

q1�N

bd
;

b

d
; ca˙1; q�N

�

:

Renaming the parameters gives the desired result. ut

Exercise 6.5 Prove the addition formula

Rm
n .a; b; e; f INI q/ D

N
X

kD0

Rk
n.a; b; c; dINI q/R

m
k .c; d; e; f INI q/ :

Exercise 6.6 The two functions which are biorthogonal are quite similar. Find a
relation

Rl
k.a; b; c; dINI q; p/ D Prefactor Rk

l .‹INI q; p/ :

You can do this by choosing a new set of parameters such that the arguments in the
12V11 on both sides are equal.

7 Elliptic Beta Integral

In contrast to the ordinary and basic hypergeometric theory, we do not want
to consider nonterminating elliptic hypergeometric series. Thus to find a proper
generalization of nonterminating identities we consider integrals. The elliptic beta
integral was proven by Spiridonov [10]. Taking the proper limit p ! 0 and then
q ! 1 you can reduce it to the classical beta integral (proper means that we let the
parameters behave in a certain way as p ! 0 and q ! 1), but many other famous
integrals and nonterminating series of hypergeometric type are possible limits as
well. For example the identity (1) is also a limit.
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Theorem 7.1 For parameters satisfying the balancing condition
Q6

rD1 tr D pq we
have

.pI p/.qI q/

2

Z

C

Q6
rD1 
e.trz˙1/


e.z˙2/

dz

2� iz
D

6
Y

r;sD1
r<s


e.trts/ :

Here the contour C is a deformation of the unit circle traversed in positive
direction which contains the poles at z D trpZ

�0qZ
�0 and excludes the poles at

z D t�1r pZ
�0qZ

�0 . In particular for jtrj < 1 you can take the unit circle itself.

There are several different proofs, but I prefer the one below. The bilinear form
returns later as the form with respect to which we obtain biorthogonal functions.

Proof Let us define the bilinear form

hf ; git1;:::;t6 D
.pI p/.qI q/

2
Q6

r;sD1
r<s


e.trts/

Z

C

f .z/g.z/

Q6
rD1 
e.trz˙1/


e.z˙2/

dz

2� iz
: (2)

Here we want f .z/ and g.z/ to be even (that is, z ! z�1-symmetric) mero-
morphic functions such that f .z/
e.t6z˙1/=
e.q�mt6z˙1/ is an analytic function
(which restricts the poles of f ) and likewise g.z/
e.t5z˙1/=
e.q�lt5z˙1/ is analytic.
The contour then has to be adjusted to consider the poles of 
e.q�mt6z˙1/ and

e.q�lt5z˙1/.

Let us also consider the difference operator

.D.u1; u2; u3/f /.z/ D
X

	D˙1

�.u1z	 ; u2z	 ; u3z	 ; u1u2u3z�	 I p/

�.u1u2; u1u3; u2u3; z2	 I p/
f .q	=2z/ : (3)

First observe that D maps even functions to even functions, and a direct calculation
shows that p-elliptic functions are mapped to p-elliptic functions. Then the result
of the application of the difference operator to the constant function 1 is an even
p-elliptic function with poles at most when �.z˙2I p/ D 0. But this means it must
be a constant function. Plugging in the value z D u1 the term with 	 D �1 vanishes
and we obtain

.D.u1; u2; u3/1/.z/ D
�.u21; u2u1; u3u1; u2u3I p/

�.u1u2; u1u3; u2u3; u21I p/
D 1 :

This identity can also be viewed as a form of the fundamental theta-function identity
from Theorem 5.5. Moreover we can calculate that

hD.t1; t2; t6/f ; git1;:::;t6

D hf ;D.q�1=2t3; q
�1=2t4; q

�1=2t5/giq1=2t1;q1=2t2;q�1=2t3;q�1=2t4;q�1=2t5;q1=2t6
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where we apply the difference equation �.zI p/
e.z/ D 
e.qz/ several times, split
the sum in its two constituent parts and shift the integration variable z ! zq�1=2	

and then recombine. Notice that we do not have to worry about the contour in the
shift, as we have defined the contour as separating several different poles and that
definition just shifts the contour along with z. We also have to use the balancing
condition

Q6
rD1 tr D pq to equate �.q1=2t1t2t6z	 I p/ D �.t3t4t5=.q3=2z	 /I p/.

Specializing this to f D g D 1 we obtain for the constant term

h1; 1it1;:::;t6 D h1; 1iq1=2t1;q1=2t2;q�1=2t3;q�1=2t4;q�1=2t5;q1=2t6 :

In particular we can shift three parameters by some half-integer power of q upwards,
and three others downwards. Applying this twice we obtain

h1; 1it1;:::;t6 D h1; 1iqt1;t2;t3;t4;t5;q�1t6 :

Thus if we consider the constant term as a function of t1 up to t5 (with t6 determined
by the balancing condition), it is invariant under multiplying one of the parameters
by an integer power of q. Due to p $ q symmetry it is also invariant under
multiplication by integer powers of p.

Since the constant term is a meromorphic function of the parameters, and since
for generic values of p and q the set pZqZ has an accumulation point (other than 0
or infinity), we can conclude that the constant term is a constant function. It remains
to see what the constant is.

Therefore we want to evaluate it at a single point. For t1t2 D 1 there is no contour
of the desired shape as the pole at z D t1 should be included, whereas the pole at
z D 1=t2 should be excluded (and in this specialization they are at the same point).
The same holds for the poles at z D t2 and z D 1=t1. This problem can be resolved
by shifting the contour first over the poles at z D t1 and z D 1=t1, picking up
the associated residues, and then specializing to t1t2 D 1 (which is then perfectly
possible). Due to symmetry the residue at z D t1 is minus the residue at z D 1=t1
(and we have to add the one at z D t1 and subtract the one at z D 1=t1) so this gives a
factor 2. The prefactor of the remaining integral contains the factor 1=
e.t1t2/ D 0

at t1t2 D 1, so the remaining integral vanishes. The result of the constant is thus
equal to twice the residue at z D t1 evaluated at t1t2 D 1. Thus we find

h1; 1it1;:::;t6

D 2Res

�

.pI p/.qI q/

2
Q6

r;sD1
r<s


e.trts/

Q6
rD1 
e.trz˙1/


e.z˙2/

1

z
; z D t1

�ˇ

ˇ

ˇ

ˇ

t1t2D1

D
.pI p/.qI q/

Q6
r;sD1
r<s


e.trts/

Q6
rD2 
 .t

2
1; trt

˙1
1 /


 .t˙21 /
Res

�


e.t1=z/

z
; z D t1

�ˇ

ˇ

ˇ

ˇ

t1t2D1

D

Q6
rD2 
 .tr=t1/

Q6
r;sD2
r<s


e.trts/
 .t�21 /

ˇ

ˇ

ˇ

ˇ

t1t2D1

D
1

Q6
r;sD3
r<s


e.trts/

ˇ

ˇ

ˇ

ˇ

t1t2D1

D 1
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where in the last step we use that 
e.x/ D 
e.pq=x/ and that t3t4 D pq=t1t2t5t6 D
pq=t5t6 (and similar). ut

To make the connection from integral to elliptic hypergeometric series we again
can use the technique of picking up residues (as we did for ordinary hypergeometric
series). In order to specialize the elliptic beta integral to t1t2 D q�n we have to
change the contour by moving it over the poles at z˙1 D t1qk for 0 � k � n and
their inverses. After picking up these residues we can make the specialization. Due
to the prefactor 1=
e.t1t2/ of the integral, the remaining integral is multiplied by
zero. Thus we are left with a sum of residues:

Pn
kD0 Res.�; z D t1qk/. This will be

a terminating elliptic hypergeometric series. In fact, in this way we will recover the
original Frenkel–Turaev summation formula (Theorem 6.4).

A series obtained in this way will be an elliptic hypergeometric series for any
integral

R

�.z/ dz=.2� iz/ for which the integrand satisfies

�.qz/

�.z/
D
�.pqz/

�.pz/
: (4)

In particular we will only consider integrals which satisfy this condition. For the
elliptic beta integral it can be checked directly by using the difference equations of
the elliptic Gamma function and some elementary identities of the theta function.

Transformations for more complicated integrals can now be easily derived. For
an elliptic beta integral with 8 parameters (satisfying a balancing condition) the
symmetries can be obtained by iterating the identity below.

Theorem 7.2 For parameters
Q8

rD1 tr D .pq/2 define the integral

I.t1; : : : ; t8I p; q/ D
.pI p/.qI q/

2

Z

C

Q8
rD1 
e.trz˙1/


e.z˙2/

dz

2� iz

where the contour circles the origin in positive direction separating the poles of

e.trz/ from those of 
e.tr=z/. If jtrj < 1 then we can take the unit circle. Then we
have

I.t1; : : : ; t8I p; q/ D
4
Y

r;sD1
r<s


e.trts/
8
Y

r;sD5
r<s


e.trts/I

�

t1
	
; : : : ;

t4
	
; t5	; : : : ; t8	 I p; q

�

where 	2 D t1t2t3t4=.pq/ D pq=.t5t6t7t8/.

Proof The equation is obtained by evaluating in two different orders the double
integral

“

C�C


e.	z˙1w˙1/
Q4

rD1 
e..tr=	/z˙1/
Q8

rD5 
e.trw˙1/


e.z˙2;w˙2/

dz

2� iz

dw

2� iw
:

ut



64 F.J. van de Bult

If you turn this integral into a series by specializing two parameters to (for
example) t1t8 D q�N you obtain a 12V11 series on both sides of the equation. As
this can be done for both sides of the integral transformation at once, you can derive
transformation formulas for the 12V11 in this way.

Exercise 7.3 Show that an elliptic beta integral

Z

C

Q2mC4
rD1 
e.trz˙1/


e.z˙2/

dz

2� iz

satisfies (4) if and only if
�Q2mC4

rD1 tr
�2
D .pq/2m.

Exercise 7.4 Show that the beta integral

.pI p/.qI q/

2
Q

1�r<s�2mC4 
e.trts/

Z

C

Q2mC4
rD1 
e.trz˙1/


e.z˙2/

dz

2� iz
;

2m
Y

rD1

tr D .pq/m

evaluates at t1t2 D q�n to the series

prefactor 2mC8V2mC7

�

t21I t1t3; : : : ; t1t2mC3;
qnCmt1

t3 � � � t2mC3
; q�n

�

:

Also determine the prefactor explicitly. Hint: Move the integration contour over an
appropriate sequence of poles and pick up the associated residues.

Exercise 7.5 Obtain Frenkel–Turaev’s summation formula for a 10V9 as a special
case of the elliptic beta integral evaluation.

Exercise 7.6 (a) Assume the balancing condition a3qnC2 D b1b2b3b4b5b6 holds.
Obtain the transformation formula

12V11.aI b1; b2; b3; b4; b5; b6; q
�nI p; q/

D

�

�

aq;
a

b4b5
;

aq

b4b6
;

aq

b5b6
I p

�

n

�

�

aq

b4
;

aq

b5
;

aq

b6
;

aq

b4b5b6
I p

�

n

� 12V11

�

a2q

b1b2b3
I

aq

b2b3
;

aq

b1b3
;

aq

b1b2
; b4; b5; b6; q

�nI p; q

�

as a special case of Theorem 7.2. Alternatively you can derive this directly
copying the proof of the transformation for the integrals, using a double sum
and Frenkel–Turaev’s summation formula.
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(b) Iterate the above formula to obtain

12V11.aI b1; b2; b3; b4; b5; b6; q
�nI p; q/

D

�

�

aq;
b2
p
;

aq

b1b3
;

aq

b1b4
;

aq

b1b5
;

aq

b1b6
I p

�

�

�

aq

b1
;

b2
pb1

;
aq

b3
;

aq

b4
;

aq

b5
;

aq

b6
I p

�

� 12V11

�

b1
qnb2
I b1;

b1
aqn

;
aq

b2b3
;

aq

b2b4
;

aq

b2b5
;

aq

b2b6
; q�n

�

:

(c) Can you find more transformations satisfied by the 12V11 by iterating the
transformation from part (a)? (You should be able to find two more, one of
which is the inversion of summation transformation which sends the summation
index k! n � k.)

8 Continuous Biorthogonality

This section discusses a slightly more general pair of families of biorthogonal
functions than we did before. The difference between what we did before is
similar to the difference between Wilson polynomials and Racah polynomials, in
that a specialization of parameters in the Wilson polynomials gives the Racah
polynomials, such that you obtain only a finite set of orthogonal polynomials (which
then are orthogonal to a discrete measure). The discussion here follows the work of
Eric Rains [5, 6], who actually generalized the theory to multivariate biorthogonality
(such as how Koornwinder polynomials generalize Askey–Wilson polynomials). In
these notes we restrict ourselves to the univariate case though; which makes some
formulas more explicit.

The relevant functions are defined as

Definition 8.1 Suppose t1t2t3t4u1u2 D pq then we define

Rn.zI t1 W t2; t3; t4I u1; u2/

D 12V11

�

t1
u1
I

pqn

u1u2
; q�n; t1z

˙1;
q

u1t2
;

q

u1t3
;

q

u1t4
I p; q

�

:

Recall the bilinear form introduced to prove the elliptic beta integral (2). These
functions are biorthogonal with respect to this form. To be precise we have
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Theorem 8.2 We have

hRn. � I t1 W t2; t3; t4I u1; u2/;Rm. � I t1 W t2; t3; t4I u2; u1/it1;t2;t3;t4;u1;u2

D ın;m

�

�

p

u1u2
I p

�

2n

�

�

q; t2t3; t2t4; t3t4;
qt1
u1
;

pqt1
u2
I p

�

n

�

�

pq

u1u2
I p

�

2n

�

�

p

u1u2
; t1t2; t1t3; t1t4;

p

t1u2
;
1

t1u1
I p

�

n

q�n :

Observe that u1 and u2 are interchanged in the second function; hence we have
biorthogonality and not plain orthogonality. After specializing t1t2 D q�N this
biorthogonality reduce to the biorthogonality from Theorem 6.3 (see Exercise 8.6).
The proof of this biorthogonality follows at the end of these notes.

The biorthogonal functions are self-dual

Theorem 8.3 We have

Rn.t1q
kI t1 W t2; t3; t4I u1; u2/ D Rk.Ot1q

nI Ot1I Ot2; Ot3; Ot4I Ou1; Ou2/

for dual parameters

Ot1 D

r

t1t2t3t4
pq

; Ot1Otr D t1tr .r D 2; 3; 4/ ;
Ot1
Our
D

t1
ur
.r D 1; 2/ :

Proof This can be seen by directly plugging the values in the definition. ut

The biorthogonal functions are “eigenfunctions” of the difference operator
from (3) (with “eigenvalue” 1).

Theorem 8.4 We have

D.u1; t1; t2/Rn. � I q
1=2t1 W q

1=2t2; q
�1=2t3; q

�1=2t4I q
1=2u1; q

�1=2u1/

D Rn. � I t1 W t2; t3; t4I u1; u2/ :

Proof You can apply the difference operator to the individual terms on the left-hand
side and equate the results term by term. The required theta function identity is
(what else) Theorem 5.5. ut

On the level of elliptic hypergeometric series the previous result is an example
of a contiguous relation. It relates three series whose parameters are almost equal,
they differ only by some (integer) powers of q. There is an identity between any
three 12V11’s whose parameters differ by some integer powers of q, though making
it explicit is often quite a lot of work.2

2One might observe that the name “contiguous relation” is somewhat of a misnomer. It is not so
much that the relation itself is contiguous (which means “next to”) but that it relates functions
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A less trivial result is the fact that the biorthogonal functions are symmetric under
permutations of t1; t2; t3 and t4 (up to a factor independent of z). From the definition
as a series you can only read off the permutation symmetry of t2; t3, and t4. Indeed
we have

Theorem 8.5 We have

Rn.zI t2 W t1; t3; t4I u1; u2/ D
Rn.zI t1 W t2; t3; t4I u1; u2/

Rn.t2I t1 W t2; t3; t4I u1; u2/

and

Rn.t2I t1 W t2; t3; t4I u1; u2/ D
�.t2t3; t2t4; p=.u2t2/; qt1=u1I p/n
�.qt2=u1; t1t3; t1t4; p=.t1u2/I p/n

:

Proof The evaluation of Rn.t2I t1 W t2; t3; t4I u1; u2/ is Frenkel–Turaev’s summation
formula, Theorem 6.4. We can apply it after cancelling identical parameters from
the numerator and the denominator of the elliptic hypergeometric series.

The t1 $ t2 symmetry of the biorthogonal functions is given by a transformation
formula for 12V11’s. This formula can be derived as a discrete version of the
transformation for elliptic beta integrals from Theorem 7.2 by setting the product
of two parameters equal to q�n, see Exercise 7.6. ut

Given the symmetry above and the difference operators, we find that the Rn are
“eigenfunctions” of D.u1; t2; t3/ (etc.) with “generically different eigenvalues” for
different n (as we will see shortly). Since the D’s are “self-adjoint,” we would expect
that biorthogonality now follows directly. Unfortunately the fact that the parameters
change after applying the difference operators/taking the adjoint means that the
standard proof does not apply anymore. Thus we have to resort to a slightly different
proof.

Proof of biorthogonality Using the symmetry of the biorthogonal functions, and the
effect of the difference operator D.u1; t1; t2/ we find that

D.u1; t3; t4/Rn. � I q
�1=2t1 W q

�1=2t2; q
1=2t3; q

1=2t4I q
1=2u1; q

�1=2u2/

D
�.t1t2qn�1; qnt3t4; u2t1; t1=u1I p/

�.t1t2=q; t3t4; u2t1q�n; .t1=u1/qnI p/
Rn. � I t1 W t2; t3; t4I u1; u2/ :

at parameter values which are contiguous. A better term which is sometimes used, would be
“contiguity relation.” However in these notes I prefer to use the terminology of the standard work
[1].
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Thus we obtain as result of repeated difference operators

D.u1; t1; t2/D.q
1=2u1; q

�1=2t3; q
�1=2t4/Rn. � I t1 W t2; t3; t4I qu1; u2=q/

D
�.t1t2qn; qn�1t3t4; u2t1; t1=u1I p/

�.t1t2; t3t4=q; u2t1q�n; .t1=u1/qnI p/
Rn. � I t1 W t2; t3; t4I u1; u2/

and likewise

D.u1; t1; t3/D.q
1=2u1; q

�1=2t2; q
�1=2t4/Rn. � I t1 W t2; t3; t4I qu1; u2=q/

D

�

�

t1t3qn; qn�1t2t4; u2t1; t1=u1I p

�

�

�

t1t3;
t2t4
q
; u2t1q�n; .t1=u1/qnI p

�Rn. � I t1 W t2; t3; t4I u1; u2/ :

Now notice that we have two different (second order) difference operators, which
map the same old Rn to the same new Rn with a different factor. In particular we find

D.u1; t1; t2/D.q
1=2u1; q

�1=2t3; q
�1=2t4/Rn. � I t1 W t2; t3; t4I qu1; u2=q/

D
�.t1t2qn; qn�1t3t4; t1t3; t2t4=qI p/

�.t1t2; t3t4=q; t1t3qn; qn�1t2t4I p/

� D.u1; t1; t3/D.q
1=2u1; q

�1=2t2; q
�1=2t4/Rn. � I t1 W t2; t3; t4I qu1; u2=q/ :

Now we observe that these generalized eigenvalues are different for different
choices of n (for generic values of the tr). Let us write

L1 D D.u1; t1; t2/D.q
1=2u1; q

�1=2t3; q
�1=2t4/ ;

L2 D D.u1; t1; t3/D.q
1=2u1; q

�1=2t2; q
�1=2t4/ ;

L�1 D D.u2=q; t1; t2/D.q
�1=2u2; q

�1=2t3; q
�1=2t4/ ;

L�2 D D.u2=q; t1; t3/D.q
�1=2u2; q

�1=2t2; q
�1=2t3/ ;

and then re-express the difference equations as

LiRn. � I t1 W t2; t3; t4I qu1; u2=q/

D �i;n.t1; t2; t3; t4; u1; u2/Rn. � I t1 W t2; t3; t4I u1; u2/ :

Note that L�1 is the same as L1 with u1 $ u2=q, so we also have difference equations

L�i Rn. � I t1 W t2; t3; t4I u2; u1/

D ��i;n.t1; t2; t3; t4; u1; u2/Rn. � I t1 W t2; t3; t4I u2=q; qu1/ :
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Now we can calculate

hRn. � I t1 W t2; t3; t4I u1; u2/;Rm. � I t1 W t2; t3; t4I u2; u1/itr ;ur

D
1

�1;n
hL1Rn. � I t1 W t2; t3; t4I qu1; u2=q/;Rm. � I t1 W t2; t3; t4I u2; u1/itr ;ur

D
1

�1;n
hRn. � I t1 W t2; t3; t4I qu1; u2=q/;L�1Rm. � I t1 W t2; t3; t4I u2; u1/itr ;qu1;u2=q

D
��1;m

�1;n
hRn. � I t1 W t2; t3; t4I qu1; u2=q/;Rm. � I t1 W t2; t3; t4I u2=q; qu1/itr ;qu1;u2=q

D
�2;n�

�
1;m

�1;n�
�
2;m

hRn. � I t1 W t2; t3; t4I u1; u2/;Rm. � I t1 W t2; t3; t4I u2; u1/itr ;ur :

Thus we see that the bilinear form vanishes unless the prefactor equals 1. However
we have

�2;n�
�
1;m

�1;n�
�
2;m

D

�

�

t1t2;
t3t4
q
; u2t1q�n;

t1
u1

qnI p

�

�

�

t1t2qn; qn�1t3t4; u2t1;
t1
u1
I p

�

�

�

t1t3qn; qn�1t2t4; u2t1;
t1
u1
I p

�

�

�

t1t3;
t2t4
q
; u2t1q�n;

t1
u1

qnI p

�

�

�

�

t1t2qm; qm�1t3t4; qu1t1;
qt1
u2
I p

�

�

�

t1t2;
t3t4
q
; qu1t1q�m;

qt1
u2

qmI p

�

�

�

t1t3;
t2t4
q
; qu1t1q�m;

qt1
u2

qmI p

�

�

�

t1t3qm; qm�1t2t4; qu1t1;
qt1
u2
I p

�

D
�.t1t2qm; qm�1t3t4; t1t3qn; qn�1t2t4I p/

�.t1t2qn; qn�1t3t4; t1t3qm; qm�1t2t4I p/
:

And thus the prefactor is generically not equal to 1 (except when n D m). ut

We will not prove the squared norm formula for the biorthogonal functions under
the continuous measure. There are several proofs in the quoted literature. The proof
in [6] proceeds by induction using a raising operator, and you can explore this in the
exercises. This raising operator also gives rise to a Rodriguez-type formula for the
biorthogonal functions: If you define

DC.u1 W u2 W u3; u4; u5/f .z/

D
�.pqu2=u1I p/

�.u2u3; u2u4; u2u5; u2u6I p/

X

	D˙1

Q6
rD2 �.urz	 I p/

�.pqz	=u1; z2	 I p/
f .q	=2z/
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where

u6 D
p2q

u1u2u3u4u5
;

then the following identity holds:

DC.u1 W t1 W t2; t3; t4/Rn. � I q
1=2t1 W q

1=2t2; q
1=2t3; q

1=2t4I q
�1=2u1; q

�3=2u2/

D RnC1. � I t1 W t2; t3; t4I u1; u2/ (5)

Indeed you can now write Rn as the result of applying n difference operators
consecutively on the constant function 1, which is a Rodriguez-type formula.

Exercise 8.6 (a) Specialize the biorthogonal functions of this section at t1t2 D q�N

and z D t1qk. Now show that there is a change of parameters which turns the
resulting functions into the biorthogonal functions of Sect. 6. That is, you want
an identity

Rl.t1q
kI t1 W 1=.t1q

N/; t3; t4I u1; u2/ D prefactor Rk
l .a; b; c; dIN/ ;

where tr D tr.a; b; c; d;N/ and ur D ur.a; b; c; d;N/.
(b) Check that interchanging u1 and u2 corresponds to changing Rk

l .a; b; c; dIN/ to
Rl

k.c; d; a; bIN/.
You can now check that the biorthogonality for the Rl

k of Sect. 6 is indeed a
special case of the biorthogonality of the Rl from this section. Note that in the
special case t1t2 D q�N there is no proper contour for the integral defining the
biorthogonality. In order to make sense of the integral, you have to move the contour
over the poles at z D t1; t1q; : : : ; t1qN before taking this specialization, thus creating
discrete point masses in the measure at these values.

In the final exercises you can explore difference equations satisfied by the
biorthogonal functions.

Exercise 8.7 In this exercise you will derive the elliptic hypergeometric equation:
the second order difference equation satisfied by the biorthogonal functions gener-
alizing the Askey–Wilson difference equation.

(a) Show that

12V11.aI b1; b2; b3; b4; b5; b6; q
�nI p; q/

D

�

�

b2;
b2
a
;

b1
b3q

;
b1b3
aq
I p

�

�

�

b1
q
;

b1
aq
;

b2
b3
;

b2b3
a
I p

� 12V11.aI b1=q; b2q; b3; b4; b5; b6; q
�nI p; q/

C .b2 $ b3/
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by considering this identity term by term. The notation means that we have a
second term on the right-hand side, identical to the first term except with b2 and
b3 interchanged.

(b) Use the transformation formula from Exercise 7.6(a) on all three terms of the
above transformation to obtain other contiguous relations, in particular the
relation

12V11.aI b1; b2; b3; b4; b5; b6; q
�nI p; q/

D

�

�

a

b1
;

b2
aqnC1

;
b3

b1q
I p

�

�

�

b1
aqn

;
aq

b2
;

b3
b2
I p

�

6
Y

rD4

�

�

aq

b2br
I p

�

�

�

a

b1br
I p

�

� 12V11.aI b1q; b2=q; b3; b4; b5; b6; q
�nI p; q/

C .b2 $ b3/

(c) Combine the contiguous relations above to obtain a relation

0

B

B

@

�

�

q

b1
;

b1
aqnC1

;
b1q

b2
;

b2
b3
;

b2b3
a
;

aq

b1b4
;

aq

b1b5
;

aq

b1b6
I p

�

�

�

b2
b1
;

b3q

b1
I p

�

C

�

�

q

b2
;

b2
aqnC1

;
b2q

b1
;

b1
b3
;

b1b3
a
;

aq

b2b4
;

aq

b2b5
;

aq

b2b6
I p

�

�

�

b1
b2
;

b3q

b2
I p

�

C

�

�

b1q

b2
;

b2q

b1
;

b1b2
aq

;
1

b3
;

b3
aqn

;
a

b3b4
;

a

b3b5
;

a

b3b6
I p

�

�

�

b1
qb3

;
b2
qb3
I p

�

1

C

C

A

�12V11.aI b1; b2; b3; b4; b5; b6; q
�nI p; q/

D

�

�

b1;
b1
a
;

b2
aqnC1

;
b2q

b1
I p

�

�

�

aq

b2
;

b1
b2
I p

�

6
Y

rD3

�

�

aq

b2br
I p

�

�12V11.aI b1q; b2=q; b3; b4; b5; b6; q
�nI p; q/

C.b1 $ b2/
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Hint: You need to use either one of the two relations above twice. Recall that the
12V11 is permutation symmetric in its 6 br-parameters to obtain different versions
of the same contiguous relation.

The coefficient on the left-hand side is of course unique, but can be written in many
ways as the sum of three products of theta functions. For example the left-hand side
of this equation is symmetric under interchanging b3 and b4, which is not apparent
from its explicit expression. It might well be that you found a different expression.
If you want to show equality between any pair of these different expressions you
need to use Theorem 5.5.

(d) Derive a difference equation of the form

A.z/Rn.qz/C B.z/Rn.z=q/ D C.z/Rn.z/

using the above contiguous relation.

Exercise 8.8 In this exercise you will prove the Rodriguez-type formula for the
biorthogonal functions.

(a) Prove the following difference equation by equating both sides termwise. You
have to shift the summation index of one of the two series on the right-hand side
first.

12V11.aI b1; b2; b3; b4; b5; b6; q
�n�1I p; q/

D 12V11.aI b1=q; b2; b3; b4; b5; b6; q
�nI p; q/

�

�

�

aq; aq2;
b1

aqnC2
; b1qnI p

�

�

�

aqnC1; aqnC2;
aq

b1
;

b1
aq2
I p

�

6
Y

rD2

�.brI p/

�.aq=brI p/

� 12V11.aq2I b1; b2q; b3q; b4q; b5q; b6q; q
�nI p; q/

(b) Now apply the symmetry of the 12V11 of Exercise 7.6(b) to all three sides of the
previous equation to derive the relation

12V11.aI b1; b2; b3; b4; b5; b6; q
�n�1I p; q/

D

�

�

aq;
b1b3

aqnC1
; b2;

aq

b3b4
;

aq

b3b5
;

aq

b3b6
I p

�

�

�

b1
aqnC1

;
b2
b3
;

aq

b3
;

aq

b4
;

aq

b5
;

aq

b6
I p

�

� 12V11.aqI b1q; b2q; b3; b4; b5; b6; q
�nI p; q/

C .b2 $ b3/:

(c) Use this relation to prove (5).
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Exercise 8.9 In this final exercise you will prove the squared norm formula for the
biorthogonal functions. Define the difference operator

.D�.u0/f /.z/ D
X

	D˙1

�

�

u0z	 ; u0qz	 ;
p

u0
z	 ;

1

u0q
z	 I p

�

�.z2	 /
f .q	=2z/

(a) Show that D� is “adjoint” to the DC operator in the sense that

hDC.u1 W t1 W t2; t3; t4/f .z/; g.z/itr ;ur

D hf .z/;D�.q
�3=2u2/g.z/iq1=2tr ;q�1=2u1;q�3=2u2 :

(b) Show that the following relation holds term-by-term

12V11.aI b1; : : : ; b6; q
1�nI p; q/

D

�

�

b1;
b1
a
;

aqn

b2
; qnb2I p

�

�

�

qn; aqn;
b1
b2
;

b1b2
a
I p

� 12V11.aI b1q; b2; b3; b4; b5; b6; q
�nI p; q/

C .b1 $ b2/ :

(c) Apply symmetries of the 12V11 to all terms in the above relation to derive

12V11.aI b1; : : : ; b6; q
1�nI p; q/

D

�

�

b3
a
;

b1b3
aqnC1

;
aqn

b2
;

b1b2
aq

;
a

b4
;

a

b5
;

a

b6
I p

�

�

�

a; qn;
b1
q
;

b3
b2
;

a

b4b5
;

a

b4b6
;

a

b5b6
I p

�

� 12V11

�

a

q
I

b1
q
;

b2
q
; b3; b4; b5; b6; q

�n

�

C .b2 $ b3/:

(d) Use the above relation to show that

D�.q
�3=2u2/Rn. � I t1 W t2; t3; t4I u1; u2/

D �nRn�1. � I q
1=2t1 W q

1=2t2; q
1=2t3; q

1=2t4I q
�1=2u1; q

�3=2u2/

for some coefficients �n.
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(e) Using induction, prove the quadratic norm formula hRn;Rni D � � � from
Theorem 8.2.
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