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General Equilibrium Theory

Here we briefly review the general equilibrium theory, which is pretty
traditional: preference and the concept of ordinal utility, demand and
comparative statics, the definition of Arrow–Debreu equilibrium, Pareto
efficiency and welfare theorems, welfare comparison and compensation
principle, and incomplete asset markets. As they are standard, they are
presented without proofs. For a comprehensive treatment of general equi-
librium theory, see a standard textbook, such as Mas-Colell et al. [1] as
well as reputable books, such as Debreu [2], Mas-Colell [3], Magill and
Quinzii [4].

2.1 Preference and Utility Function

Consider that, there are n goods in the economy. The consumption set
for each individual is taken to be the nonnegative orthant Rn+.

Let � denote a generic individual’s preference ordering over Rn+, which
satisfy

Completeness : for all x, y ∈ R
n+, it holds either x � y or y � x .

Transitivity : for all x, y, z ∈ R
n+, x � y and y � z imply x � z.
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Continuity : for all sequences {xν} and {yν} in R
n+, such that xν � yν

for all ν and limν→∞ xν = x and limν→∞ yν = y it holds x � y.

Let � denote the strict preference and ∼ denote indifference, which is
defined by

x � y ⇐⇒ x � y and not y � x

and
x ∼ y ⇐⇒ x � y and y � x

Through the book, we also assume that preference � satisfies

Strong Monotonicity : for all x, y ∈ R
n+ it holds

x ≥ y, x 
= y =⇒ x � y

Strict Convexity : for all x, y ∈ R
n+ with x 
= y and λ ∈ (0, 1) it holds

x ∼ y =⇒ λx + (1 − λ)y � x

although we may consider a weaker version of convexity at some point:

Convexity : for all x, y ∈ R
n+ with x 
= y and λ ∈ (0, 1) it holds

x ∼ y =⇒ λx + (1 − λ)y � x

A numerical function u : Rn+ → R is said to represent � if it holds

x � y ⇐⇒ u(x) ≥ u(y)

for all x, y ∈ R
n+. It is called a utility function.

The concept of utility function here is ordinal, in the sense that such a
function is no more than a representation of preference ranking, and the
assigned numerical values as utilities have no quantitative meaning.
To be precise, the following statement holds.
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Theorem 2.1 Fix a preference ranking �.
(i) Suppose that a utility function u represents �. Take any function f :
u(Rn+) → R that is strictly increasing. Then a function f ◦ u defined by

( f ◦ u)(x) = f (u(x))

for each x ∈ R
l+ is also a utility function which represents �.

(ii) Suppose that u and v are utility functions which represent �. Then, there
is a strictly increasing function f : u(Rn+) → R such that

v = f ◦ u

2.2 Demand and Compensated Demand

2.2.1 Demand Function and Indirect Utility Function

Consider a generic consumer, who is supposed to be price-taking through-
out. Given, a price vector p ∈ R

n++ and income w > 0, she solves the
utility maximization problem

max
x∈Rn+

u(x)

subject to
p · x ≤ w.

The existence of optimization point is guaranteed by Continuity and
compactness of budget set B(p, w) = {x ∈ x ∈ R

n+ : p · x ≤ w}.
Under Strong Monotonicity the budget constraint is met with equality,
and under Strict Convexity the optimal consumption is unique; hence,
it is denoted by x(p, w) and satisfies p · x(p) = w for all (p, w). The
function x : R

n++ × R++ → R
n+ defined as above is called demand

function.
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Denote the maximal utility under (p, w) by v(p, w). The function
v : Rn++ × R++ → R defined so is called indirect utility function.

Proposition 2.1 Let x(p, w) and v(p, w) denote the demand function
and the indirect utility function defined for utility representation u(·), respec-
tively.

Let f be anymonotone transformation and denote the compensated demand
function and the expenditure function defined for representation ũ(x) =
f (u(x)).
Let x̃(p, w) and ṽ(p, w) denote the demand function and the indirect

utility function defined for utility representation ũ(·), respectively.
Then, it holds

x̃(p, w) = x(p, x)

ṽ(p, w) = f (v(p, w)).

2.2.2 Compensated Demand Function, Expenditure
Function, and Income Compensation Function

Given, a price vector p ∈ R
n++ and utility levelu, consider the expenditure

minimization problem
min
x∈Rn+

p · x

subject to
u(x) ≥ u

Denote the solution as a function of (p, u) by h(p, u), and call it
compensated demand function. From StrongMonotonicity andContinuity,
the solution for expenditureminimization problem always exists, and from
Strict convexity the solution is always unique.

Also, denote the minimized expenditure by

e(p, u) = p · h(p, u),

and call it expenditure function.
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The expenditure-minimizing point is utility-maximizing given the price
when the minimized expenditure is given as the income. Thus, it holds

h(p, u) = x(p, e(p, u))

Also, the utility-maximizing point is minimizing the expenditure given
the price in order to satisfy the same level of utility as it yields. Thus, it
holds

x(p, w) = h(p, v(p, w))

We might be uncomfortable with taking “utility level” as an input,
as it appears to contradict with the concept of ordinal utility. But it is
without loss of generality to formulate compensated demand function
and expenditure function with a particular representation, as different
formulations obtained from different utility representations are suitably
translatable to each other.

Proposition 2.2 Let h(p, u) and e(p, u) denote the compensated demand
function and the expenditure function defined for utility representation u(·),
respectively.

Let f be any monotone transformation, and denote the compensated
demand function and the expenditure function defined for representation
ũ(x) = f (u(x)).

Let ˜h(p, u) and ẽ(p, u) denote the compensated demand function and
the expenditure function defined for utility representation ũ(·), respectively.
Then, it holds

˜h(p, v) = h(p, f −1(v))

ẽ(p, v) = e(p, f −1(v)).

The proof follows directly from the definition.
Actually, we can get rid of utility representation in order to consider

the concept of compensated demand, by introducing income compensation
function, which is defined by

μ(p′|p, w) = e(p′, v(p, w))



12 T. Hayashi

Then by definition it holds

h(p′, v(p, w)) = x(p′, μ(p′|p, w))

Thus, we can carry out the analysis of compensated demand just by
demand function x and income compensation function μ, which turns
out to be rather helpful in some cases.

2.3 Comparative Statics

To facilitate comparative statics, we will assume differentiable preferences.

Differentiable Preference : OnRn++,� allows representationu : Rn++ →
R which is twice-continuously differentiable, such that

1. Du(x) � 0 for all x ∈ R
n++,

2. it has negative definite bordered Hessian at all x ∈ R
n++.

Under Differentiable Preference, we can define marginal rate of substi-
tution of Good h for Good k at x ∈ R

l++ by

MRSk,h(x) =
∂u(x)
∂xk

∂u(x)
∂xh

We also impose a boundary condition, which rules out corner solutions.

Boundary Condition: For all x ∈ R
n++ it holds

lim
zk→0

MRSk,h(zk, xh, x−{k,h}) = ∞

and
lim
zh→0

MRSk,h(xk, zh, x−{k,h}) = 0

The following claims are standard.1
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Proposition 2.3 (Interior Solution) Under Differentiable Preference and
Boundary Condition, the utility maximization problem has a unique solution
x(p, w) in R

n++, which satisfy the first-order condition

Du(x) = λp

where λ > 0 is the corresponding Lagrange multiplier. Moreover, the demand
function x(p, w) and indirect utility function v(p, w) are differentiable over
R
n++ × R++.
Under Differentiable Preference and Boundary Condition, the expenditure

minimization problem has a unique solution h(p, u) in Rn++, which satisfy
the first-order condition

p = μDu(x)

where μ > 0 is the corresponding Lagrange multiplier. Moreover, the com-
pensated demand function h(p, u) and expenditure function e(p, u) are
differentiable over Rn++ × u(R++).

Proposition 2.4 (Shepard’s Lemma) Compensated demand function and
expenditure minimization satisfy

∂e(p, u)

∂pk
= hk(p, u)

for all k = 1, . . . , n.

Proposition 2.5 (The Slutsky Equation) Demand function and compen-
sated demand function satisfy

∂hl(p, u)

∂pk
= ∂xl(p, w)

∂pk
+ xl(p, w)

∂w
xk(p, w)

for all k, l = 1, . . . , n.



14 T. Hayashi

Proposition 2.6 (Roy’s Identity) Demand function and indirect utility
function satisfy

xk(p, w) = −
∂v(p,w)

∂pk
∂v(p,w)

∂w

for all k = 1, . . . , n.
From Shepard’s lemma, for income compensation function, we obtain

∂μ(p′|p, u)

∂p′
k

= ∂e(p′, v(p, w))

∂p′
k

= hk(p
′, v(p, w))

= xk(p
′, μ(p′|p, w))

for all k = 1, . . . , n.

2.4 General Equilibrium in Exchange
Economies

2.4.1 Setting and Definitions

Consider that, there are I individuals and n goods. Each i = 1, . . . , I is
characterized by

1. Consumption set Rn+
2. Preference relation �i over Rn+, which is assumed to satisfy the con-

ditions as in the previous section.
3. Initial endowment ωi ∈ R

n++

Here is the definition of competitive equilibrium.

Definition 2.1 A competitive equilibrium is a pair of price vector p ∈
R
n+ \ {0} and allocation x such that p · xi ≤ p · ωi and it holds

p · x ′
i ≤ p · ωi =⇒ xi � x ′

i
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for all x ′
i ∈ R

l+ for all i = 1, . . . , I, and

I
∑

i=1

xi =
I

∑

i=1

ωi

2.4.2 Efficiency

Let us briefly review the definition of Pareto efficiency and the two welfare
theorems.

Definition 2.2 Allocation x = (xi )i=1,...,I ∈ R
I n is said to be feasible if

I
∑

i=1

xi ≤
I

∑

i=1

ωi .

Definition 2.3 A feasible allocation x is said to be Pareto-efficient if there
is no feasible allocation x ′ such that

x ′
i �i xi

for all i = 1, . . . ,m and
x ′
i �i xi

for at least one i .

Theorem 2.2 (First welfare theorem) Under Strong Monotonicity of pref-
erence, any competitive equilibrium allocation is Pareto-efficient.2

Theorem 2.3 (Second welfare theorem) Assume Strong Monotonicity and
Convexity of preference. Then, any Pareto-efficient allocation x is obtained
as a competitive quasi-equilibrium allocation after suitable redistribution of
initial endowments, in the following sense: there is a pair of price vector
p ∈ R

n+ \ {0} and income distribution w = (wi )i=1,...,I ∈ R
I+ such that

it holds p · xi = wi and
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xi � x ′
i =⇒ p · x ′

i ≤ wi

for all x ′
i ∈ R

l+ for all i = 1, . . . , I , and

I
∑

i=1

xi =
I

∑

i=1

ωi

2.4.3 Differential Characterization

Under the assumption of differentiable preferences satisfying the boundary
condition, an interior equilibrium allocation is characterized by the first-
order condition

Dui (xi ) = λi p,

where λi is the corresponding Lagrange multiplier for individual i .
Hence the marginal rate of substitution is equalized to relative price.

The marginal rate of substitution of Good h for Good k for i at xi ∈ R
l++

is given by

MRSk,hi (xi ) =
∂ui (xi )
∂xik

∂ui (xi )
∂xih

Let MRSi (xi ) = (MRSk,hi (xi ))k,h=1,...,l .
Then, it holds

MRSk,hi (xi ) = pk
ph

for all k, h = 1, . . . , n and for all i = 1, . . . , I .
Here efficiency of interior allocation is characterized by equalization

of the marginal rate of substitution between individuals. In other words,
efficiency imposes that subjective relative values between goods are equal
for all individuals at margin.
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Then the following claim holds.

Proposition 2.7 Interior allocation x is Pareto-efficient if and only if

MRSi (xi ) = MRSj (x j )

for all i, j = 1, . . . , n.
At an interior competitive equilibrium allocation, it follows from the

first-order condition that

MRSk,hi (xi ) = pk
ph

for all k, h. Hence the first welfare theorem follows.
At any interior Pareto-efficient allocation it holds

MRSi (xi ) = MRSj (x j )

and the second welfare theorem follows by taking the competitive equi-
librium price p ∈ R

l++ by

pk
ph

= MRSk,hi (xi )

for all k, h, where the definition does not depend on the choice of i because
of equalization of MRSs.

The Pareto Set

There may be arbitrarily many Pareto-efficient allocations. As illustrated in
Fig. 2.1, we can draw arbitrarily many pairs indifference curves which
are tangent to each other. We can actually draw a continuous curve by
depicting points at which such tangency holds. In the current setting in
which the goods are continuously divisible, there is actually a continuum
of Pareto-efficient allocations.
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OA
A’s Good 1

A’s Good 2
OBB’s Good 1

B’s Good 2

IA

IB

Fig. 2.1 Set of Pareto-efficient allocations

2.5 The Compensation Principle

Change in economic activity does not always make all individuals better
off. Nevertheless, in the partial equilibrium analysis such change is often
justified on the ground that it is maximizing social surplus or generating
a larger surplus.

What normative criteria is it resorting to? Later, we will see that it is
resorting to so-called compensation principles. Let me provide the general
definition of the principles here. There are several criteria being proposed
in the literature.
The so-called Kaldor criterion says that a change should be accepted if

we can make everybody better off by reallocating the allocation obtained
by the change than in the allocation before the change. Formally, it says

Definition 2.4 An allocation y = (y1, . . . , yn) is a Kaldor-improvement
of x = (x1, . . . , xn) if there exists an allocation y′ = (y′

1, . . . , y
′
n) with

n
∑

i=1

y′
i =

n
∑

i=1

yi
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such that it holds
y′
i �i xi

for all i and
y′
i �i xi

for at least one i .
It is obvious that if y is a Pareto-improvement of x it is a Kaldor-

improvement of x .
See Fig. 2.2, in which there are two consumers A and B. Then allo-

cation (yA, yB) is a Kaldor-improvement of (xA, xB), since we can ob-
tain (y′

A, y′
B) by reallocating (yA, yB), which is a Pareto-improvement of

(xA, xB). Note that vectors y′
A − yA and y′

B − yB are exactly opposite of
each other.

Or, one can explain this by using utility possibility frontiers. Fix a
representation of A’s preference uA and a representation of B’s preference
uB . Given, a vector of aggregate resources available to the society e =
(e1, e2), let

Good 1

Good 2
yB

xB

yB

xA

yA

yA

Fig. 2.2 Kaldor-improvement
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I (e) = {(uA(xA), uB(xB)) : xA + xB = e1, xA2 + xB2 = e2}
be the set of pairs of A’s utility and B’s utility which are obtained by
allocating e. Of course, this is only for describing trade-offs between A’s
gain and B’s gain and utility numbers themselves have no quantitative
meanings.

See Fig. 2.3, in which two utility possibility frontiers are drawn, I (e)
obtained from e and I (e′) obtained from e′. Then y on I (e′) makes a
Kaldor-improvement of x on I (e) since we can pick y′ on I (e′) which is
in the upper-right of x .

Let me state two problems of the Kaldor criterion. One is,

It says a change should be accepted if we can reallocate the allocation
after the change so as to make everybody better-off. Why not just doing
such reallocation? If the reallocation is indeed done it is simply a Pareto-
improvement, isn’t it?

The definition of Kaldor-improvement only says “we can reallocate the
allocation,” and it does not require that such reallocation is indeed done.

A

B

y
y

x

I(e)

I(e )

Fig. 2.3 Kaldor-improvement
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Why should one get convinced by such unwarranted story of potential
reallocation when he is, in fact, losing because of the change? If the real-
location is left undone such criterion is deceptive, and if the allocation is
indeed done we just need the Pareto criterion and it is just redundant.
The other problem is that an allocation which Kaldor-improves up-

on another may be Kaldor-improved upon by the latter. See Fig. 2.4, in
which (yA, yB) is a Kaldor-improvement of (xA, xB) through the po-
tential reallocation to (y′

A, y′
B), and (xA, xB) is a Kaldor-improvement

of (yA, yB) through the potential reallocation to (x ′
A, x ′

B). Hence, the
Kaldor-criterion cannot rank properly between allocations in general.

One can explain this by using the utility possibility frontiers. See
Fig. 2.5, in which two utility possibility frontiers are drawn, I (e) ob-
tained from e and I (e′) obtained from e′. Then y on I (e′) makes a
Kaldor-improvement of x on I (e) since we can pick y′ on I (e′) which is
in the upper-right of x . However, x makes a Kaldor improvement of y as
well, since we can pick x ′ on I (e) which is in the upper-right of y.

Let me introduce a criterion which is the “complement” of the Kaldor
criterion.The so-calledHicks criterion says that a change should be accept-
ed if we cannot make everybody better off by reallocating the allocation

Good 1

Good 2
yB

xB

xB

yB

xA

xA

yA

yA

Fig. 2.4 Mutual Kaldor-improvements
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A

B

y
y

x

x

I(e)

I(e )

Fig. 2.5 Mutual Kaldor-improvements

before the change than in the allocation obtained by the change. In an-
other words, one is a Hicks-improvement of another if the latter is not a
Kaldor-improvement of the former.

Formally,

Definition 2.5 An allocation y = (y1, . . . , yn) is a Hicks-improvement
of x = (x1, . . . , xn) if there exists no allocation x ′ = (y′

1, . . . , y
′
n) with

n
∑

i=1

x ′
i =

n
∑

i=1

xi

such that it holds
x ′
i �i yi

for all i and
x ′
i �i yi

for at least one i .
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A

B

y

x

I(e)

I(e )

Fig. 2.6 Hicks improvement

Letme explain this using utility possibility frontiers. See Fig. 2.6.There,
we can never go to the upper-right of y on I (e′) by reallocating x on I (e).
Hence y is a Hicks improvement of x .
The same comments as above apply to the Hicks criterion. Besides the

ethical issue, an allocation which Hicks-improves upon another may be
Hicks-improved upon by the latter. See Fig. 2.6 again.There, we can never
go to the upper-right of y on I (e′) by reallocating x on I (e). Hence y is
a Hicks improvement of x . However, it is also the case that we can never
go to the upper-right of x on I (e) by reallocating y on I (e′). Hence x is
a Hicks improvement of y.

Since the Kaldor criterion and Hicks criterion are the “complement” of
each other, if we impose bothwe can avoid the problem that two allocations
dominate each other under the Kaldor criterion alone and under theHicks
criterion alone, respectively. It is called Scitovsky criterion.

Definition 2.6 Anallocation y = (y1, . . . , yn) is aScitovsky-improvement
or of x = (x1, . . . , xn) if y is both a Kaldor-improvement and a Hicks-
improvement of x .
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A

B

x

y

z
w

Fig. 2.7 Gorman paradox

If one is a Hicks-improvement of another it means the latter is not
a Kaldor-improvement of the former. Hence it is always the case that if
one is a Scitovsky-improvement of another the latter is not a Scitovsky-
improvement of the former.

However, the ranking by the Scitovsky-improvement may be intran-
sitive, that is, it may have a cycle. See Fig. 2.7. There y is a Scitovsky-
improvement of x , z is a Scitovsky-improvement of y, w is a Scitovsky-
improvement of z, but x is a Scitovsky-improvement of w. It is called
the Gorman paradox. So the Scitovsky-improvement does not help,
unfortunately.

Samuelson considered a weakening of the condition, stating that one
allocation should be better than another when the entire utility possibility
frontier given by the former is above the entire utility possibility frontier
by the latter. Let us call this Samuelson criterion. This leads to a cycle again
when it is combined with the Pareto criterion, however.The same example
works. In Fig. 2.7, y is a Pareto-improvement of x , z is a Samuelson-
improvement of y,w is a Pareto-improvement of z, but x is a Samuelson-
improvement of w.

Now, we are pretty much in deadlock.
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2.6 Social Welfare Function

2.6.1 Arrovian Social Welfare Function

We saw that the Pareto criterion alone is silent about which efficient
allocation is socially desirable, and cannot rank between efficient allocation
even including indifference.

Also, it is orthogonal to any notion of fairness. Consider, for exam-
ple, between a slightly inefficient allocation and an efficient but extremely
unfair (in some sense) allocation.Then, we will be required to give a quan-
titative judgment over several mutually orthogonal criteria.This motivates
us to provide a complete ranking over allocations.

Let ω ∈ R
n+ be the social endowment vector, and let

X =
{

x ∈ R
nI++ :

I
∑

i=1

xi = ω

}

be the set of feasible allocations in which everybody receives positive con-
sumption.

LetR be the set of complete, transitive, continuous convex, and strong-
ly monotone preference relations over Rn+. LetR0 be the set of complete
and transitive orderings over X .

An Arrovian social welfare functional is a mapping R : RI → R0,
where R(�) denotes the social ranking given a profile of individual pref-
erences�= (�i )

I
i=1 ∈ RI , and let P(�) denote the corresponding strict

ranking.
The following two axioms are natural to require.

Axiom 2.1 Pareto: For all �∈ RI and for all x, y ∈ X , if

x �i y

for all i = 1, . . . , I , then
x P(�)y.
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Axiom 2.2 Nondictatorship: There is no i = 1, . . . , I such that for all
�∈ RI and for all x, y ∈ X , if

x �i y

then
x P(�)y.

Now the well-known independence of irrelevant alternatives axiom
basically states that only the ordinal information about preferences should
matter.

Axiom 2.3 Independence of Irrelevant Alternatives : For all�,�′∈ RI and
for all x, y ∈ X , if

x �i y ⇐⇒ x �′
i y

for all i = 1, . . . , I , then

x R(�)y ⇐⇒ x R(�′)y.

Here is a version Arrow theorem stated for exchange economy, which
is proven, for example, by Bordes et al. [5].

Theorem 2.4 Let n ≥ 2. Then, there is no social welfare functional
R : RI → R0 which satisfies Independence of Irrelevant Alternatives,
Pareto, and Nondictatorship.

2.6.2 Bergson–Samuelson Social Welfare Function

We saw that it is impossible to aggregate preferences so that the ag-
gregation is independent of the choice of cardinalization of preference
representation.

Wemay still accept the idea that evaluation of allocation should depend
only on individuals’ utilities, and exclude any “paternalistic” judgment
which involves something beyond individual utility functions, while it
has to involve a choice of cardinalization.
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Let us take utility representation of each individual’s preference as given,
which are assumed to bemonotone and concave, and consider aggregating
them. Then, a Bergson–Samuelson social welfare function is given in the
form

U (x) = W (u1(x1), . . . , uI (xI ))

where W : ∏I
i=1 ui (R

l+) → R is an aggregator function.
Let us focus on the class of additive Bergson–Samuelson social welfare

functions, given the form

U (x) =
I

∑

i=1

αi ui (xi )

where α ∈ R
I+ \ {0} be a fixed welfare weight vector.

Then the following claims hold.

Theorem 2.5 For any α ∈ R
I+ \ {0}, the maximizer of

U (x) =
I

∑

i=1

αi ui (xi )

in the set of feasible allocations is Pareto-efficient.

Theorem 2.6 Let x be any Pareto-efficient allocation in the set of feasible
allocations. Then there is a welfare weight vector α ∈ R

I+ \ {0} such that
x is maximizing

U (x) =
I

∑

i=1

αi ui (xi )

in the set of feasible allocations.
We should note that unless we have a strong belief or evidence that a par-

ticular way of cardinalization is the reasonable one among many, focusing
on the additive aggregation like above is no more than for a mathemati-
cal convenience. For example, take an exponential transformation of the
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original cardinalization, so that

vi (xi ) = exp ui (xi ),

implying
ui (xi ) = log vi (xi )

Then we obtain

U (x) =
I

∑

i=1

αi ui (xi )

=
I

∑

i=1

αi log vi (xi )

= log
I

∏

i=1

vi (xi )
αi

which is ordinally equivalent to another Bergson–Samuelson social welfare
function

V (x) =
I

∏

i=1

vi (xi )
αi

which is multiplicative. This point is the key point in the so-called
Harsanyi-Sen debate on whether establishing an additive aggregation the-
orem indeed provides a formal foundation of Benthamite utilitarianism.
To understand, see the comprehensive treatment by Weymark [6].

2.6.3 Negishi Approach

Negishi [7] showed that competitive market maximizes a weighted sum
of individual utilities, where the weights are determined endogenously so
that each individual’s one is equal to the inverse of his marginal utility of
income. Such weight vector is called Negishi weights.
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Assume differentiable preference, and go back to the first-order condi-
tion for competitive equilibrium, where

Dui (xi ) = λi p

for each i = 1, . . . , I .
Now, let αi = 1

λi
for each i , and consider the weighted sum of utilities

I
∑

i=1

αi ui (xi )

Then competitive equilibrium allocation maximizes this weighted sum
of utilities since it yields an extreme value for the Lagrangean in the form

L =
I

∑

i=1

αi ui (xi ) −
n

∑

k=1

μk

(

I
∑

i=1

xik −
I

∑

i=1

eik

)

as the Lagrange multiplier on Good k is taken to be μk = pk for each
k = 1, . . . , n and αi = 1

λi
for each i .

We should be careful, though, because such Negishi weight vector
α = (α1, . . . , αI ) is endogenously determined in equilibrium.This makes
a critical difference from Bergson–Samuelson social welfare function in
which welfare weights are exogenously chosen by the planner, which reflects
his value judgment. For a fixed profile of initial endowment the Negishi
“social welfare function” behaves as if it is a Bergson–Samuelson social
welfare function, but such welfare weight changes as initial endowment
changes, which is not the case in BS.

2.7 General Equilibrium Under Uncertainty

Aggregate expected consumer surplus is a prominent one as an efficiency
measure in partial equilibrium welfare analysis under uncertainty. We
will give a general equilibrium characterization of when the use of such
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measure is justified.Here, we briefly review the general equilibriummodels
of resource allocation under uncertainty.

2.7.1 The Environment

Focus on the two-period setting, in which there is no consumption or
earning taking place in Period 0.
There are S states of the world in Period 1. There are n goods at each

state in Period 1. Hence, the consumption space is thus RSn+ , where its
element for individual i = 1, . . . , I is denoted by xi = (xi1, . . . , xi S).

Each individual i has

• Preference �i over RSn+ .
—Typically, it is assumed to be represented in the expected utility form

ui (xi ) =
S

∑

s=1

πsvi (xis)

where the function vi is called von-Neumann/Morgenstern index.
• Endowment ωi ∈ R

Sn++

Note that von-Neumann/Morgenstern index of the utility function, not a
utility function, which forms a class of additive representations of prefer-
ence. As far as we restrict attention to the class of additive representations
of a given preference, which is a proper subset of the whole set of represen-
tation of the preference, such index has cardinal meaning, as its curvature
explains the degree of risk aversion. Note, however, that overall represen-
tation is still ordinal. For example, take an exponential transformation of
the expected utility form, then we have

eui (xi ) = e
∑S

s=1 πsvi (xis) =
S

∏

s=1

(

evi (xis)
)πs

.
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Now let ũi (xi ) = eui (xi ) and ṽi (z) = evi (z). Then we obtain

ũi (xi ) =
S

∏

s=1

(̃vi (z))
πs .

which is a geometric mean rather than arithmetic mean.

2.7.2 Arrow–Debreu Market

Let us first describe the case that there is a complete system of markets for
all state-contingent consumptions.

Definition 2.7 An Arrow–Debreu equilibrium is a pair of price vector
p ∈ R

Sn+ \ {0} and an allocation x such that p · xi ≤ p · ωi and it holds

p · x ′
i ≤ p · ωi =⇒ xi � x ′

i

for all x ′
i ∈ R

Sn+ for all i = 1, . . . , I , and

I
∑

i=1

xi =
I

∑

i=1

ωi

From the first welfare theorem, allocation in Arrow–Debreu equilib-
rium is Pareto-efficient according to the individuals’ ex-ante preferences
over state-contingent consumptions.

2.7.3 Sequential Trade

Now consider that there is not necessary a complete system of market-
s for state-contingent consumptions. Instead, let us consider a possibly
incomplete system of asset markets.
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Consider that there are K assets. Let R denote the return matrix, where
Rsk denoteAsset k’s gross return rate at State s. Asset price vector is denoted
by q ∈ R

K and spot price vectors are denoted by ps ∈ R
n++ for each

s = 1, . . . , S.
Then individual i = 1, . . . , I faces a sequence of budget constraints

in the form

K
∑

k=1

qkzik ≤ 0

psxis ≤
K

∑

k=1

Rskzik + psωis, s = 1, . . . , S

The natural restriction on asset price system is that it allows no arbitrage.

Definition 2.8 (q, R) admits an arbitrage if there exists z such that qz ≤
0 and Rsz ≥ 0 for all s and Rsz > 0 for at least one s.

Here is the well-known necessary and sufficient condition for the no
arbitrage condition.

Theorem 2.7 (q, R) admits no arbitrage if and only if there exists μ ∈
R

S+ \ {0} such that q = μR.
Here is the definition of competitive equilibrium which corresponds to

the current setting of incomplete asset markets.

Definition 2.9 A Radner equilibrium is a quadruple of asset price vector
q, spot price vectors (ps)s=1,...,S , consumption allocation x and portfolio
allocation z such that for each i the consumption-portfolio pair (xi , zi )
is optimal for �i under the constraint

K
∑

k=1

qkzik ≤ 0

psxis ≤
K

∑

k=1

Rskzik + psωis, s = 1, . . . , S
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The following observations are straightforward.

Proposition 2.8 If (q, p, x, z) constitutes a Radner equilibrium given
R then (q, R) admits no arbitrage.

Proposition 2.9 If (q, p, x, z) constitutes a Radner equilibrium given
R then there exists μ ∈ R

S+ \ {0} such that q = μR.
Let us verify that when the asset markets are in fact complete Radner

equilibrium and Arrow–Debreu equilibrium are equivalent.

Definition 2.10 The asset markets are complete when rankR = S.

Theorem 2.8 Suppose the asset markets are complete.
(i) If (p, x) forms an Arrow–Debreu equilibrium then there is an asset price
vector q and portfolio allocation such that (q, p, x, z) forms a Radner equi-
librium.
(ii) If (q, p, x, z) forms a Radner equilibrium, then there is a vector
μ ∈ R

S+ \ {0} such that the price vector defined by (μ1 p1, . . . , μS pS),
and x form an Arrow–Debreu equilibrium.

2.7.4 Market Incompleteness and Efficiency

Incompleteness of assetmarkets in general leads to (ex-ante) inefficiency of
allocation, we cannot hedge all the uncertainties. What about the second-
best property? Here, assume that n = 1, and Let

U∗
i (zi ) = Ui (R1zi + ωi1, . . . , RSzi + ωi S)

for each i = 1, . . . , I

Definition 2.11 Asset allocation (z1, . . . , zI ) ∈ R
I K is constrained

Pareto-efficient if it is feasible (that is,
∑I

i=1 zi ≤ 0) and if there is no
other feasible asset allocation (z′1, . . . , z′I ) such that

U∗
i (z′i ) ≥ U∗

i (zi )
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for all i and
U∗
i (z′i ) > U∗

i (zi )

for at least one i .
When there is only one consumption good at each state, Radner equi-

librium satisfies the constrained Pareto-efficiency.

Theorem 2.9 Assume two periods and n = 1. Then asset allocation in
Radner equilibrium is constrained Pareto-efficient.
This result is not true when there are two or more goods, or there are

more than two periods, because you cannot even define the indirect utility
function defined with portfolio choices alone.

A crude intuition might tell us that when we have more assets our
(ex-ante) welfare improves, as we have more devices to hedge uncertainty.
This is wrong. That a complete market leads to an efficient allocation and
whether our welfaremonotonically improves as themarket becomes “more
complete” are different questions. In fact, Hart [8] shows an example that
introducing a new security to trade makes everybody worse-off. We will
come back to this problem in the last chapter.

Notes

1. See, for example, Katzner [9] as well as Mas-Colell et al. [1].
2. Strong Monotonicity can be weakened to Local Nonsatiation, which says

that at any point and its open neighborhood (relative to the consumption
space) there is always a strictly better point in it.
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