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Chapter 2
TRAIL-R3/R4 and Inhibition of TRAIL 
Signalling in Cancer

Lubna Danish, Daniela Stöhr, Peter Scheurich, and Nadine Pollak

Abstract  The tumour necrosis factor (TNF) ligand family member TNF-related 
apoptosis-inducing ligand (TRAIL) induces apoptosis predominantly in tumour 
cells, but not in normal tissues, representing therefore an attractive candidate for 
cancer therapy. The human TRAIL/TRAIL receptor system is very complex, four 
different membrane receptors bind the ligand. Two of these receptors, TRAIL-R1 
and TRAIL-R2, transmit apoptotic but also non-apoptotic signals, whereas the other 
two, TRAIL-R3 and TRAIL-R4, act as inhibitors. Most tumour cells co-express 
several TRAIL receptors, allowing receptor interference. Several molecular mecha-
nisms have been proposed by which TRAIL-R3 and TRAIL-R4 may counteract pro-
apoptotic TRAIL signalling at the plasma membrane level, but possibly also 
intracellularly. A detailed understanding of the role of the individual TRAIL recep-
tors and their interplay will be advantageous for the development of new TRAIL 
receptor agonists for cancer therapy. In fact, new TRAIL formulations will be needed 
since first clinical studies with soluble TRAIL or receptor agonistic antibodies 
showed only limited success. This review summarizes the complex TRAIL/TRAIL 
receptor system and the mechanisms by which TRAIL-R3 and TRAIL-R4 may inter-
fere with TRAIL-mediated apoptosis induction. In addition, we discuss the prognos-
tic and predictive value of TRAIL receptor expression in patients’ tumour material.
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2.1  �Introduction

Human cytokines belonging to the tumour necrosis factor (TNF) ligand family and 
their cognate TNF receptors regulate a multitude of biological processes. Their 
functions are crucial in the regulation of immune responses, such as co-stimulatory 
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signalling or cell death induction in potentially harmful cells [1]. Accordingly, many 
of these cytokines and their receptors are interesting candidates as therapeutic 
agents or targets [2]. TNF superfamily ligands as well as their receptors are structur-
ally related. Most ligand members are initially expressed as homotrimeric type I 
transmembrane proteins. In addition, soluble forms of the ligands can be generated 
by proteolytic cleavage or alternative splicing with significant consequences on bio-
activity of these molecules, being typically higher in the membrane-presented mode 
[3]. Ligand bioactivity is exerted by binding and activating the corresponding 
partner(s) within the TNF receptor family. Typically, TNF receptors are expressed 
as type II transmembrane proteins and contain one to six cysteine-rich domains 
(CRDs) in their extracellular part. These CRDs have been demonstrated to not only 
harbour the ligand interaction site but additionally a homophilic interaction site 
called the pre-ligand binding assembly domain (PLAD).

Induction of apoptosis, a form of programmed cell death, is attributed to a sub-
group within the TNF receptor members, the death receptors like TNF-R1, Fas 
(CD95), TRAIL-R1 and TRAIL-R2. In particular, the TRAIL system has gained 
enormous attraction since its apoptotic capacity is restricted to cancer cells whereas 
normal cells are insensitive to TRAIL [4]. Remarkably, the TRAIL receptor system 
is of particular complexity. Four specific membrane-expressed TRAIL receptors are 
capable to bind the ligand. Two of them, TRAIL-R1 and TRAIL-R2, are character-
ized by an intracellular death domain (DD) and are thus known as death receptors 
transmitting the apoptotic TRAIL-induced signal. TRAIL-R3 is membrane-
anchored by a glycosylphosphatidylinositol (GPI) moiety and presumably not capa-
ble of intracellular signalling at all while TRAIL-R4 features a truncated DD with 
restricted signalling capacity. TRAIL-R3 and TRAIL-R4 are often referred to as 
decoy or regulatory receptors since they interfere with TRAIL-induced apoptosis 
induction. Intracellularly located TRAIL receptors have been detected more recently 
and proposed to be functional, representing a further level of complexity within the 
TRAIL signalling system. In particular, nuclear TRAIL-R2 has been proposed to 
enhance the malignancy of tumour cells [5].

In this chapter, we will introduce the TRAIL signalling system strongly focus-
ing on the interference of TRAIL-R3 and TRAIL-R4 with TRAIL death receptors 
and the value of TRAIL receptor expression in different types of cancer as prog-
nostic factor since this might determine the successful application of TRAIL-based 
therapeutics.

2.2  �The TRAIL Signalling System

2.2.1  �Structure of TRAIL

The ligand TRAIL, also called Apo2 ligand (Apo2L), TNF superfamily member 10 
(TNFSF10), TNF ligand 2 (TL2), CD253 or TNF ligand gene 6A (TNLG6A), was 
first described in the late nineties by two independent groups [6, 7]. TRAIL was soon 
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shown to represent a potential anti-tumour agent, while physiologically playing a 
role in the regulation of the innate and adaptive immune responses. The gene coding 
for human TRAIL consists of five exons and is located on chromosome 3. The mol-
ecule TRAIL shows 23% sequence homology to the death receptor ligand member 
FasL and 19% identity with TNF [6]. Until now, three splice variants of the full-
length protein (TRAIL α) are known. These are TRAIL β, lacking exon 3, TRAIL 
γ, lacking exons 2 and 3, and TRAIL δ, lacking exons 3 and 4 [8]. All these latter 
molecules are depleted in their receptor interaction domain and are thus thought to 
be unable of receptor activation. They have been rather suggested to compete with 
TRAIL α for translation, in this way regulating TRAIL signalling [9, 10]. TRAIL 
transcripts are found in many different tissues such as liver, lung, colon, brain, heart, 
testis and kidney, but also in different cells of the haematopoietic system where 
TRAIL expression is inducible [6, 11]. When expressed on the surface of human 
cells, TRAIL is a type II transmembrane glycoprotein with a short amino-terminal 
cytoplasmic and a long extracellular carboxyl-terminal domain composed of two 
anti-parallel β-sheets [6, 7]. Similar to other TNF superfamily members, the extra-
cellular domains (ECD) of TRAIL protomers associate at hydrophobic interfaces to 
form compact homotrimers. Unique for TRAIL is a zinc-binding site at the trimer 
interface which is indispensable for the structure and stability of the trimer, hence 
also for its bioactivity [12]. Limited proteolysis of membrane-bound TRAIL by 
cysteine proteases has been suggested as a mechanism to generate the soluble form 
of the ligand [13]. However, soluble TRAIL is capable to induce apoptosis predomi-
nantly via TRAIL-R1 whereas full activation of TRAIL-R2 is achieved only by 
membrane-integrated TRAIL [14].

2.2.2  �Structure and Function of TRAIL Receptors

As mentioned above the TRAIL/TRAIL receptor system is relatively complex, com-
prising altogether six receptor molecules, of which four are membrane-bound and 
two are soluble (Fig. 2.1). Among the membrane-bound receptors, TRAIL-R1, also 
called death receptor 4 (DR4) or TNFR superfamily member 10 A (TNFRSF10A), 
was the first to be discovered in 1997 by a group around Dixit while searching the 
human genome database for sequences with homology to the TNF receptor 1 [15]. 
A second receptor, TRAIL-R2, DR5, TNFRSF10B, Apo2, TRAIL receptor inducer 
of cell killing 2 (TRICK2), or KILLER was discovered independently by several 
groups [16–22]. The receptors are encoded by two genes located on chromosome 8p 
and are expressed as type I transmembrane proteins with one partial and two com-
plete CRDs in their extracellular portion and a DD in their cytoplasmic region. 
TRAIL-R1 and TRAIL-R2 both exist in two splice variants including full-length 
TRAIL-R1 comprising 468 amino acids and its splice variant (bDR4) lacking 168 
amino acids within the extracellular ligand-binding region [23] as well as long DR5 
(DR5(L)) containing 440 amino acids and short DR5 (DR5(S)) lacking 29 amino 
acids within the ECD and the predicted transmembrane domain [17].

2  TRAIL-R3/R4 and Inhibition of TRAIL Signalling in Cancer
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Interestingly, chimpanzees and humans have two death-inducing TRAIL 
receptors, whereas all other vertebrates solely display one. Since TRAIL-R1 shows 
only about 50% sequence identity with TRAIL-R2, one could speculate of differ-
ent functions for these two receptor molecules. It is clear that both TRAIL death 
receptors can induce apoptosis in tumour cells, however, divergent reports exist 
regarding their contribution in cells co-expressing both receptors [24]. Moreover, 
recent reports show that both receptors can be also found in the cytoplasm and the 
nucleus of different cell lines in addition to their localization at the cell surface 
[25]. The mechanism of action of intracellular receptors is mainly undefined, but 
data suggest a proliferative role for nuclear TRAIL-R2 rather than a pro-apoptotic 
function [5]. Furthermore, a novel apoptosis-counteracting function for mem-
brane-bound TRAIL-R2 in KRAS mutated tumour cells has been revealed. Here, 
TRAIL binding promotes migration and invasion via a DD-independent signalling 
pathway [26].

Fig. 2.1  Schematic representation of the structural features of human TRAIL receptors. The 
extracellular parts of TRAIL-R1 to TRAIL-R4 consist of cysteine-rich domains (CRDs, grey and 
green), a structural feature of receptors belonging to the TNF receptor superfamily. The first CRD, 
a partial one, mediates homophilic interactions between pre-ligand binding assembly domains 
(PLAD-PLAD) while the membrane proximal CRD2 and CRD3 form the ligand interaction site. 
The death receptors TRAIL-R1 and TRAIL-R2 are characterized by a functional death domain 
(DD, red) in their intracellular part, this domain is truncated for TRAIL-R4. TRAIL-R3 com-
pletely lacks an intracellular domain, it is linked to the membrane via a glycosylphosphatidylino-
sitol (GPI) anchor. Splice variants for TRAIL-R1, TRAIL-R2 and TRAIL-R4 are reported, here 
only the longer protein variants are depicted (see text for detail). In addition to the four membrane 
receptors two soluble receptors have been suggested to be capable of TRAIL binding, namely OPG 
and DcR3. Both secreted receptors form disulfide-linked dimers. OPG consists of four CRDs and 
two DD-related domains while DcR3 is composed of four CRDs followed by a heparin-binding 
domain at its C-terminus
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In addition to TRAIL-R1 and TRAIL-R2 two more receptors have been discovered 
in the late nineties referred to as TRAIL-R3, Decoy Receptor 1 (DcR1), TNFRSF10C, 
TRAIL Receptor without an Intracellular Domain (TRID), CD263 or Lymphocyte 
Inhibitor of TRAIL (LIT) [16, 18, 20, 27, 28] and TRAIL-R4, also named DcR2, 
TNFRSF10D, CD264, or TRAIL Receptor with a truncated Death Domain 
(TRUNDD) [29–31]. As already suggested by the names, these two molecules are 
most likely incapable of apoptotic signalling since TRAIL-R3 completely lacks any 
transmembrane and intracellular domain, whereas TRAIL-R4 has only a truncated 
DD. Similar to TRAIL-R1 and TRAIL-R2, TRAIL-R3 and TRAIL-R4 display one 
partial and two complete CRDs in their extracellular parts (Fig. 2.1).

TRAIL-R3 is not a transmembrane protein but is rather anchored in the cell 
membrane via a GPI moiety. It consists of 259 amino acids and in contrast to the 
other membrane-bound TRAIL receptors no splice variant has yet been identified. 
Signalling of TRAIL-R3 has so far not been studied intensively. However, the com-
plete absence of a transmembrane and an intracellular domain indicates the lack of 
classical signalling capabilities, although signalling via its GPI anchor cannot be 
excluded [32].

Two splice variants have been identified for TRAIL-R4, TRAIL-R4-α and 
TRAIL-R-β, with 386 and 348 amino acids, respectively, the latter lacking the first 
complete CRD [33]. As TRAIL-R4 contains only an incomplete DD it is suggested 
to be not capable to transmit an apoptotic signal upon TRAIL binding. However, it 
is still under debate whether TRAIL-R4 transmits non-apoptotic signals (see 
below). The role of TRAIL-R3 and TRAIL-R4 as inhibitory receptors rendering 
cells resistant against TRAIL-mediated apoptosis is discussed in more detail later in 
this chapter.

Besides the membrane-integrated receptors TRAIL-R1 to TRAIL-R4, two solu-
ble members of the TNF receptor family have been reported to be capable of bind-
ing TRAIL, namely osteoprotegerin (OPG, TNFRSF11B) and decoy receptor 3 
(DcR3, TNFRSF6B) (Fig. 2.1). OPG is secreted by osteoblasts and regulates osteo-
clast differentiation based on its ability to block receptor activator of nuclear factor 
“kappa-light-chain-enhancer” of activated B-cells ligand (RANKL)-stimulated 
osteoclast formation [34]. OPG was shown to bind to TRAIL, although with very 
low affinity, thereby also acting as a decoy receptor in TRAIL signalling [35]. 
Recent studies indicate that OPG might be involved in the pathogenesis of cardio-
vascular disease, in the development of both type 1 and type 2 diabetes, in endothelia 
cell biology and in kidney diseases, but the role of TRAIL binding in these pro-
cesses is still undefined [36].

The DcR3 gene is frequently amplified in tumour cells and the protein is overex-
pressed in various cancer cells [37, 38]. Ligands of DcR3 beside TRAIL also include 
FasL, TNF-like molecule 1A (TL1A), and LIGHT [37, 39, 40]. The interaction 
between DcR3 and TRAIL was demonstrated only recently in pancreatic cells, 
revealing a lower affinity as compared to that of LIGHT [41]. In these cells the 
apoptotic response to either TRAIL or FasL was enhanced when DcR3 levels were 
decreased [41, 42]. In summary, OPG and DcR3 might play a role in cancer pro-
gression, but whether these molecules do this by interference with the TRAIL sig-
nalling system remains to be investigated.

2  TRAIL-R3/R4 and Inhibition of TRAIL Signalling in Cancer
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2.2.3  �TRAIL Receptor Signalling

2.2.3.1  �Apoptotic Signalling

The term apoptosis was introduced by Kerr and colleagues in 1972 [43] and 
describes a tightly regulated process of cell death with distinct morphological 
changes such as cell shrinkage, membrane blebbing and fragmentation of the 
nucleus. In contrast to unregulated cell death, necrosis, where loss of membrane 
integrity leads to the release of damage-associated molecular patterns (DAMPs) 
causing an inflammatory response, apoptosis is a rather immunological silent form 
of cell death since apoptotic cells become phagocytosed by immune cells to prevent 
activation of the immune system [44]. In the human body each day around ten bil-
lion of malignant and infected but also overaged and redundant cells die by apopto-
sis [45]. Interestingly, apoptosis not only occurs in the adult body but takes part also 
in embryogenesis, being involved for example in the development of limbs and 
modelling of the nervous system. Apoptosis can be triggered either by binding of 
death ligands like TNF, FasL or TRAIL to their cognate cell surface receptors result-
ing in the execution of the so-called extrinsic apoptotic pathway. Alternatively, 
intracellular stimuli such as DNA damage or oxidative stress induce apoptosis via 
activation of the intrinsic pathway of this signalling network. Depending on the cell 
type TRAIL-mediated apoptosis either involves solely the extrinsic pathway or 
includes both pathways. In type I cells, binding of TRAIL, TRAIL-fusion proteins 
or agonistic antibodies specific for TRAIL-R1 or TRAIL-R2, often referred to as 
pro-apoptotic receptor agonists (PARAs), initially triggers receptor clustering, 
thereby forming the death-inducing signalling complex (DISC), comprising Fas-
associated protein with death domain (FADD), procaspase –8/–10 and cellular 
FLICE-like inhibitory protein (cFLIP). Essential for DISC formation are homo-
philic interactions of the DDs of the TRAIL receptors with those of FADD and, in 
addition, death effector domain (DED) interactions between FADD and the initiator 
procaspases. During DISC assembly procaspase –8/–10 oligomerizes and gets acti-
vated through proximity-induced formation of procaspase dimers and autoproteoly-
sis, allowing the activated initiator caspases to further cleave and activate effector 
procaspases –3/–6/–7 to finally dismantle the cell. In type II cells the very same 
signalling pathway becomes activated by stimulation of TRAIL-R1 and/or 
TRAIL-R2, but remains at the level of only a very weak activation of initiator cas-
pases not sufficient for strong effector caspase activation. Accordingly, these cells 
need amplification of the apoptotic signal by the mitochondrial intrinsic pathway to 
successfully trigger apoptosis. To this, receptor-activated caspase-8 cleaves trun-
cated BH3 interacting domain death agonist (Bid), a pro-apoptotic B-cell lymphoma 
2 (Bcl-2) family member, to form truncated Bid (tBid) which then translocates to 
the mitochondria to become an integral membrane protein triggering the polymer-
ization of proapoptotic Bcl-2 family members Bax and/or Bak in the mitochondrial 
outer membrane. This leads to release of the pro-apoptotic factors cytochrome c, 
apoptosis inducing factor (AIF) and second mitochondria derived activator of apop-
tosis (Smac) into the cytoplasm. In the presence of dATP, cytochrome c induces 
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formation of the apoptosome, comprising also procaspase-9 and the apoptotic 
protease activating factor-1 (Apaf-1). Activated caspase-9 subsequently cleaves and 
activates effector procaspases to allow execution of the apoptotic program [46, 47].

2.2.3.2  �Necroptotic Signalling

More recently it was shown that members of the TNF superfamily such as TRAIL, 
but also various toxic stimuli, can induce another form of programmed cell death 
referred to as necroptosis. In this signalling pathway TRAIL binding to TRAIL-R1/
R2 leads to the recruitment of receptor-interacting kinase 1 (RIP1), as well as cel-
lular inhibitors of apoptosis proteins, cIAP1 and cIAP2, into the signalling complex, 
resulting in RIP1 polyubiquitination. Polyubiquinated RIP1 subsequently binds 
FADD and procaspase-8 forming a complex called ripoptosome in which procas-
pase-8 becomes activated and is also capable to execute the apoptotic program. 
However, in the case of inhibited caspase-8 activity, RIP1 can alternatively bind 
RIP3 to form the so-called necroptosome leading to auto-phosphorylation and acti-
vation of RIP3 and further recruitment and oligomerization of mixed lineage kinase 
domain-like (MLKL). Disruption of the cell membrane, causing a necrotic type of 
cell death is finally induced when MLKL oligomers are inserted into the 
membrane.

As mentioned before necrosis but also necroptosis can lead to the release of 
DAMPs and as a consequence to an extensive inflammatory response in the human 
body. Concerning tumour development these released immunostimulatory mole-
cules can have two sides. On the one hand it was shown that production of DAMPs 
during necroptosis can help to eliminate cancer cells by activating natural killer 
(NK) cells and cytotoxic T cells, on the other hand these molecules can also have a 
tumour promoting function facilitating tumour angiogenesis as well as invasion and 
metastasis. In any case, necroptosis seems to represent a backup mechanism in the 
human body to eliminate infected, damaged or malignant cells which are for any 
reason resistant against apoptotic cell death [44, 48].

2.2.3.3  �Non-cytotoxic Signalling

In TRAIL-resistant cells, ligation of TRAIL-R1 and/or TRAIL-R2 not only initiates 
apoptotic signals, but also stimulates cellular survival via activation of the transcrip-
tion factor nuclear factor “kappa-light-chain-enhancer” of activated B-cells (NF-kB), 
as well as the mitogen-activated protein kinases (MAPKs) and the phosphoinosit-
ide-3-kinase/Akt (PI3K/Akt) pathways [49]. Concerning the molecular mechanism 
of this pro-survival signalling, the formation of a secondary signalling complex 
including FADD, procaspase-8, RIP1, TNFR-associated factor 2 (TRAF2) and the 
inhibitor of kB kinase (IKKγ) was proposed [50]. However, more recent publica-
tions suggest an RIP1-independent process [51] or a subdivided mechanism [52]. 
Beside TRAIL-R1 and TRAIL-R2, TRAIL-R4 was also suggested to be capable of 
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intracellular pro-survival NF-kB and Akt signalling, as discussed further in more 
detail below.

Interestingly, beside the differential expression levels of intracellular proteins 
also the localization of TRAIL receptors at the plasma membrane was proposed to 
determine the formation of differential signalling complexes. It was shown that acti-
vation of aggregated TRAIL receptors in cholesterol-rich membrane microdomains 
(often called “lipid rafts”) leads to the formation of complexes capable of apoptotic 
signalling. In contrast, receptors outside of such microdomains are mainly involved 
in non-apoptotic signalling [53].

2.2.4  �TRAIL’s Role In Vivo

Although TRAIL is mainly known for its tumour cell killing capacity it is involved 
in numerous other regulatory mechanisms in the human body including the defence 
against viral and bacterial infections as well as haematopoiesis. To exert its function 
as a regulator of immune responses TRAIL is expressed in different leukocytes, 
both from the innate and adaptive immune systems. Most important are hereby the 
NK and T cells, but also B cells, dendritic cells, eosinophils, neutrophils, macro-
phages and monocytes which all can express TRAIL after stimulation with different 
activating agents like interferons (IFNs) or antigens [54]. Interestingly, TRAIL 
seems to be not only involved in the signalling of immune cells but even in their 
development [55].

NK cells play an important role in the innate immune response against intracel-
lular pathogens but are at the same time also involved in combating tumour cells. 
The activation status of NK cells is dependent on different activating and inhibitory 
receptors as well as cytokines like IFNs and interleukins (ILs). Among these, espe-
cially IFN-γ and IFN-α are known to induce TRAIL expression [56, 57]. 
Interestingly, it was shown that NK cells are also involved in balancing adaptive 
immune responses versus autoimmunity since they have been shown to limit the 
autoimmune response during chronic infections by TRAIL-mediated killing of T 
helper cells [58, 59]. Furthermore, in hepatitis B, C and lymphocytic choriomenin-
gitis infection, NK cells not only directly eliminate virus-infected cells but also 
regulate T cell responses via TRAIL release [60–62]. T cells, or more precisely T 
helper (Th) and cytotoxic T cells are also able to express TRAIL after stimulation 
of the T cell receptor together with type I IFNs [63, 64]. Similar to NK cells these 
are also involved in the elimination of malignant and virus infected cells in the 
human body. Additionally, TRAIL seems to be involved in the regulation of the Th 
type 1 (Th1) and Th2 responses, since Th2 cells are resistant to TRAIL-mediated 
apoptosis but express TRAIL after T cell receptor stimulation whereas stimulated 
Th1 cells are sensitive for TRAIL and up-regulate FasL. Furthermore, the inhibition 
of TRAIL in mice which display allergic airway diseases inhibited homing of Th2 
cells to the airways [65–67].
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Concerning viral and bacterial infections of the human body TRAIL seems to 
play the role of a double-edged sword. On the one hand TRAIL is involved directly 
and indirectly in the elimination of infected cells, but on the other hand some viral 
and bacterial species manipulate TRAIL signalling to evade from the immune 
response and to increase replication. A participation of TRAIL in viral defence of 
the human body can for example be observed during influenza infection. Hereby, 
infected alveolar cells are eliminated by TRAIL positive cytotoxic T cells, but 
TRAIL is believed also to limit the immune response reducing the chance for 
infection-induced immunopathology [68–70]. However, it was also described that 
TRAIL can be released by activated alveolar macrophages leading to damage of 
uninfected lung tissue [71]. Also, during hyper- inflammation TRAIL might play a 
conflicting role, depending on the stage of the disease. At the beginning, TRAIL 
appears to have mainly a protective function while eliminating activated neutro-
phils. Later in the disease TRAIL acts as an immune suppressor, thereby, contribut-
ing to the severe development [72, 73].

Shortly after its discovery in the late nineties, TRAIL was shown to not only kill 
tumour cells when applied exogenously, but proved to be effective in the human 
body as an endogenously expressed protein leading to the suppression of tumour 
growth [74]. As mentioned above, cells of the immune system, especially NK cells, 
T cells, macrophages and neutrophils, not only kill virus infected cells but can also 
identify and eliminate malignant cells in  vivo and in  vitro by releasing TRAIL 
among other cytokines when activated with IFN-γ [64, 75–79].

Interestingly, TRAIL and its receptors are expressed not only on malignant cells 
and cells of the immune system but also in many other tissues of the human body 
including testis, lung, colon, kidney and endothelium [11]. Their biological func-
tions, however, are in most cases largely undefined. In the human testis, TRAIL for 
example has been shown to regulate germ cell apoptosis during the first wave of 
spermatogenesis [80] and it was further demonstrated that high levels of TRAIL in 
the seminal plasma protect spermatozoa [81]. Also, the endothelium is known to 
express TRAIL receptors and the medial smooth cell layer of the aorta and 
pulmonary arteries produce the ligand TRAIL [82, 83] which was demonstrated to 
promote survival as well as proliferation of endothelial cells [84]. Further, TRAIL 
takes part in the interplay of endothelial cells with leucocytes, modelling cell adhe-
sion by down regulation of chemokine receptors [85]. The application of TRAIL 
resulted in enhanced phosphorylation of oxide synthase in endothelial cells, which 
was shown to increase cell migration as well as cytoskeleton reorganization and 
might also affect blood vessel vasodilatation and angiogenesis [86, 87].

2.3  �The TRAIL System in Cancer

Cancer is a major cause of death and therefore an enormous health challenge. 
Worldwide cancer incidents have been increased during the last decades, mostly 
attributable to increased average life expectancy. On the other hand, significant 
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survival improvement could be achieved during the last 20 years by new medical 
diagnosis tools and better adjuvant therapies.

Cancer is treated typically by surgical resection of the tumour combined with 
adjuvant therapy. The classical approach is radiotherapy and chemotherapy, how-
ever, both are not cancer cell specific and in addition tumour cells can acquire resis-
tance. To overcome these limitations, numerous novel therapeutic strategies have 
been developed and approved by the U.S. Food and Drug Administration during the 
last decade, such as targeted therapies and small molecule inhibitors [88]. In addi-
tion, much effort is put into the identification of predictive or prognostic tumour 
biomarkers, including characteristic genetic alterations or particular protein expres-
sion pattern. The expression of markers in different types and grades of cancers 
might be a rational basis to design an effective adjuvant treatment strategy and to 
improve the overall survival of patients [89]. For example, colorectal cancers are 
frequently mutated in KRAS and consequently patients will not respond to epider-
mal growth factor receptor (EGFR)-based therapies [90]. In fact, KRAS represents 
the first biomarker routinely used in clinical practice [89].

Tumours are frequently altered for p53 activity and are thus resistant to several 
classes of conventional chemotherapy. A promising therapeutic strategy is to trigger 
the extrinsic apoptotic pathway using PARAs as therapeutic agents, since cell death 
induced via this route is independent from p53. Consequently, the successful appli-
cation of PARAs in tumour therapy requires plasma membrane expression of the 
respective death receptors in tumour cells and a functional downstream signalling 
network leading to the apoptotic machinery.

2.3.1  �Predictive and Prognostic Significance of TRAIL 
Receptor Expression

Quite a few studies analysed patient-derived tumour tissues from different cancer 
types and grades, treated or untreated, for cellular TRAIL receptor expression using 
conventional immunohistochemistry. In addition, reports on TRAIL receptor gene 
expression and mutational analysis are found in the literature. These studies focused 
on the expression profile of pro-apoptotic proteins including TRAIL-R1, TRAIL-R2, 
caspase-8 and TRAIL itself as well as anti-apoptotic proteins such as TRAIL-R3, 
TRAIL-R4, c-Flip and Bcl-2 family members. In general, TRAIL receptors are fre-
quently expressed in carcinomas from different origins as well as in the respective 
normal surrounding tissue [91–96]. Receptor expression was detected in various 
subcellular localizations, namely, the cytoplasm, the nucleus and membrane-bound. 
Interestingly, oncogenic mutations in the MAPK pathway, KRAS and/or BRAF, fre-
quently found in colorectal tumours, were linked to high TRAIL-R1 and TRAIL-R2 
expression [94].

Reports of genetic loss or mutation of TRAIL receptors have been also described, 
but were suggested to represent not a common event in cancer cells [97, 98]. 
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Polymorphisms in the TRAIL-R1 gene and a loss of function mutation of TRAIL-R2 
potentially increase the risk for development of head and neck cancer [99, 100].  
A polymorphism in the TRAIL-R4 gene appears to be associated with reduced breast 
cancer risk [101]. A recent study identified a single nucleotide polymorphism 
(SNP)-SNP interaction pair, located in the NF-kB pathway genes TRAF2 and 
TRAIL-R4, to be correlated with improved survival in breast cancer [102]. Notably, 
both NF-kB and TRAIL-R4 have been rather implicated in the protection from 
TRAIL-induced apoptosis although constitutive activation of NF-kB signalling is 
associated with tumour progression.

Both negative and positive correlations of the expression pattern with the grade 
of malignancy and other clinical features such as overall survival have been shown 
for TRAIL-R1 to TRAIL-R4. But it should be mentioned that there are also reports 
demonstrating no correlation of either TRAIL receptor expression with grade or 
survival [95, 103, 104]. High TRAIL-R1 expression is correlated with tumour grade 
in breast cancer patients with invasive ductal carcinoma and bladder cancer [105, 
106] and with an unfavourable overall survival in adjuvant treated stage III colon 
cancer [93]. High TRAIL-R2 expression was shown to be associated with a higher 
grade of malignancy in breast, bladder, hepatocellular, renal, head and neck carci-
nomas and with less differentiated areas of non-small cell lung cancer of different 
grades [92, 106–112]. Increased TRAIL-R2 expression also matched a larger 
tumour size in head and neck cancer tissues [113]. Accordingly, TRAIL-R2 was 
found to negatively correlate with overall survival in breast, renal and lung cancers. 
Conversely, TRAIL-R2 expression was significantly decreased in prostate cancer of 
higher tumour grade [114].

Reports on TRAIL receptor expression as positive prognostic markers can also 
be found. High TRAIL-R1 expression was correlated with well-differentiated 
tumours and with better prognosis in colorectal cancer patients [91, 115]. In cervi-
cal cancer, TRAIL-R1  in the nucleus might be a predictive biomarker for radio-
therapy [116]. In glioblastoma multiforme, a strong membrane staining for both 
TRAIL-R1 and TRAIL-R2 was correlated with better survival [117]. Since TRAIL 
exerts its bioactivity after binding to TRAIL receptors in the plasma membrane, loss 
of surface expression may explain tumour resistance to TRAIL-based therapies 
despite uniform cellular receptor expression. In fact, a poorer prognosis for patient 
survival was associated with loss of membrane staining for TRAIL-R2, but also 
TRAIL-R1, in early-stage colorectal carcinoma, breast cancer and pancreatic carci-
noma [96, 118, 119].

Quite unexpected, recent studies revealed evidence that the subcellular localiza-
tion of TRAIL receptors, in particular of TRAIL-R2, is an important determinant 
for the signalling outcome. Nuclear TRAIL-R2 was shown to inhibit microRNA 
maturation thereby enhancing malignancy of tumours, however, the functional role 
of cytoplasmic TRAIL receptors has not been addressed so far [5]. High cytoplas-
mic levels of TRAIL-R1 or TRAIL-R2 correlated with an improved recurrence-free 
rate for bladder cancer patients [106]. Accordingly, the differential distribution of 
the receptors in cellular compartments could be one reason for the inconsistent cor-
relation of receptor expression with prognosis in cancer.
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Most human cell lines co-express TRAIL-R3 and TRAIL-R4, albeit at comparably 
low levels. Accordingly, the expression of TRAIL-R3 and TRAIL-R4 was also eval-
uated for prognostic impact in several studies. TRAIL-R4 expression level is 
increased in prostate, pancreatic, breast, hepatocellular cancers and meningioma 
[107, 108, 120–122]. A strong correlation of its expression with higher tumour 
grades as well as poor clinical outcome and decreased survival has been demon-
strated. In colorectal carcinoma, high TRAIL-R3 expression, in combination with 
low TRAIL-R1, is linked to poor response to 5-fluorouracil and shorter progression-
free survival [123]. In head and neck cancer, TRAIL-R3 and TRAIL-R4 expressions 
were also significantly increased but did not correlate with tumour staging or prog-
nosis [110, 124].

Remarkably, a positive correlation was found between the expression levels of 
TRAIL death receptors and inhibitory receptors. TRAIL-R2 upregulation correlates 
with increased TRAIL-R4, as reported for meningioma, hepatocellular, pancreatic 
and head and neck cancers, however, without relevance for the overall patient sur-
vival [108, 122, 124]. In contrast, high TRAIL-R2 levels along with low TRAIL-R4 
expression were shown to be associated with higher grade of renal cell cancer and 
worse survival [109]. Similarly, high levels of TRAIL-R3 are associated with low 
TRAIL-R1 [123]. These data appear puzzling, more knowledge about the molecular 
mechanisms which control expression of the individual receptors could help to 
understand them better.

Interestingly, the ligand itself was highlighted as a prognostic marker. Patients 
newly diagnosed with acute myeloid or acute lymphoblastic leukaemia have signifi-
cantly lower serum concentrations of TRAIL compared to healthy volunteers [125, 
126]. Upon start of the therapy an increase of TRAIL expression resulting in higher 
serum concentrations was predictive of better overall patient survival [126]. Higher 
TRAIL expression was also associated with low tumour grade and better progression-
free survival in ovarian and renal cancer patients [95, 127]. Loss of TRAIL expres-
sion in oral and cervical carcinoma is an early event and is correlated with malignant 
progression [113, 116]. These results indicate that downregulation of TRAIL 
expression enables cancerous cells to evade apoptosis suggesting that TRAIL con-
tributes to a positive therapeutic response. On the other hand, a high level of TRAIL 
was associated with shorter survival for patients with renal and colorectal cancers 
[109, 128]. It was argued that high TRAIL expression may protect cancer cells from 
the immune system while promoting metastasis. TRAIL was also shown to have no 
prognostic value [91, 93] and there was no correlation between TRAIL expression 
and survival [117].

In summary, numerous studies have evaluated the prognostic relevance of the 
expression pattern of TRAIL and TRAIL receptors in tumour entities. The results 
are interesting, but also very conflicting. As most data have not been confirmed in 
larger validation studies, their clinical value remains limited [89]. Recently, it has 
become evident that the subcellular localization of TRAIL receptors may regulate 
specific functions and thus correlates with pro-apoptotic versus pro-survival signal-
ling. Accordingly, it will be necessary to carefully re-evaluate the pattern of TRAIL 
receptor staining in primary tissue to further analyse its significance on tumour 
growth and response to TRAIL-based therapeutics.
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2.3.2  �TRAIL Death Receptor Agonists

Shortly after its discovery in the late nineties, TRAIL was shown to represent a 
promising candidate in the battle against cancer since it selectively eliminates 
malignant cells while sparing normal tissue [4]. Although early reports claimed a 
cytotoxic effect of recombinant TRAIL in hepatocytes and cells in human brain 
slices, this was later shown to be caused by the protein’s affinity tags resulting in 
the formation of supramolecular aggregates [129]. However, despite that TRAIL is 
well tolerated in vivo and shows cytotoxicity against tumour cells in vitro, until 
today there is no TRAIL-based anti-tumour drug available on the market. The main 
reason might be that TRAIL receptor-directed clinical studies showed only moder-
ate effects.

Among all generated TRAIL death receptor agonists investigated so far, homotri-
meric recombinant TRAIL protein (dulanermin) was one of the first. In different 
phase I studies dulanermin proved to be well tolerated but did not reveal any signifi-
cant anti-tumour activities [129]. Likely explanations for this failure are the very 
short half-life of only 20 min of this molecule [4, 130] but also the fact that soluble 
TRAIL might only fully activate TRAIL-R1, but not TRAIL-R2 [3, 14]. To address 
this problem oligomerized derivatives have been produced by the addition of a leu-
cine or isoleucine zipper domain [4, 131] or a tenascin-c (TNC) domain [132]. 
Approaches to prolong the half-life in vivo include coupling of TRAIL with poly-
ethylene glycol or human serum albumin [129]. An interesting approach is the use 
of single-chain TRAIL (scTRAIL) which, in contrast to the classical homotrimeric 
TRAIL, is expressed as a single protein chain consisting of the three TRAIL “mono-
mers” covalently connected by short peptide linkers [133]. This molecule, possess-
ing only a single N- and C-terminus, has been further fused with the Fc portion of 
human IgG1 to obtain a hexameric molecule with enhanced bioactivity [134].

Beside the stability and half-life also the targeting of the molecule to cancer cells 
is of great interest. Fusing of the abovementioned TRAIL variants to single-chain 
variable fragment (scFv) domains specific for different tumour-expressed antigens 
such as EGFR, fibroblast activation protein, CD19, CD33, or CD20 enables target-
ing and enhances protein stability [129, 135]. In addition, as these constructs bind 
to cell surface antigens thereby increasing receptor cross linking they show enhanced 
bioactivities. In another approach, the TRAIL death receptor agonists were not tar-
geted to the tumour cells but to cells of the immune systems to enhance their tumour 
killing capacity [136–138].

Beside the large group of TRAIL fusion proteins also antibodies specific for 
either TRAIL-R1 or TRAIL-R2 have been developed like mapatumumab and lexa-
tumumab. All of them have been demonstrated to effectively kill tumour cells 
in vitro, but did not display compelling anti-tumour activity in clinical trials [139]. 
The reasons for this limited success might include insufficient receptor cross link-
ing, i.e., the need for molecules with higher affinity/avidity, problems to reach the 
tumour cells at sufficient concentration and the fact that cells in a solid tumour 
might show a relative TRAIL resistance as indicated by data from multicellular 
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tumour spheroids in vitro, where downregulation of TRAIL-R1 and TRAIL-R2 has 
been demonstrated [140, 141]. To increase the efficacy of PARAs it appears feasible 
to use sensitizing drugs, like bortezomib, doxorubicin, cisplatin and 5-fluorouracil, 
which all have been shown to enhance TRAIL-mediated apoptosis in vitro [142].

2.3.3  �The Role of TRAIL-R3 and TRAIL-R4 in Resistance 
to TRAIL-Mediated Apoptosis

A major hurdle in developing TRAIL-based therapies is the primary or acquired 
resistance to TRAIL, as it has been reported that around 50% of all cancer cell lines 
show resistance to TRAIL treatment [4]. Clearly, TRAIL resistance can be gener-
ated at multiple levels in the apoptotic signalling network, but the first control point 
exists at the membrane at the level of TRAIL receptors, e.g., by overexpression of 
decoy receptors or downregulation of death receptors. Initial studies have proposed 
that high expression of decoy receptors TRAIL-R3 and/or TRAIL-R4  in normal 
cells would cause protection against TRAIL-induced apoptosis [18, 30]. But later 
on it has been clarified that the situation is not that simple since inhibition of the 
decoy receptors does not necessarily result in a sensitization of normal cells to 
TRAIL. So, their functional role and mode of action are much more complicated 
than what initially was proposed. Nevertheless, a broad range of studies has shown 
that transformed cells can evade TRAIL-induced apoptosis by overexpression of 
decoy receptors [143–147].

2.3.3.1  �The Decoy Model for TRAIL-R3 and TRAIL-R4

Unlike other TNF receptor family members, TRAIL-R3 completely lacks a cyto-
plasmic domain as it is anchored in the plasma membrane by a GPI residue [27]. In 
contrast, TRAIL-R4 contains a cytoplasmic region representing only one-third of a 
typical DD and which is therefore considered to be non-functional [29]. However, 
the ECDs of all four membrane-bound receptors TRAIL-R1 to TRAIL-R4 show 
strong homologies in their structure and all consist of three CRDs. Since most of 
the cells simultaneously co-express both pro- and anti-apoptotic receptors on their 
surface, it was initially thought that TRAIL-R3 and TRAIL-R4 compete with 
TRAIL-R1 and TRAIL-R2 for binding of the ligand through their ECDs [148]. 
Consequently they were referred to as “decoy receptors”. In fact, various initial 
in vitro studies have linked a high expression level of decoy receptors with TRAIL 
resistance and vice versa [145, 149]. Sanlioglu and co-workers found that the 
TRAIL sensitive breast cancer cell line MDA-MB-231 expresses less TRAIL-R4 
on the cell surface as compared to the higher expression in the TRAIL resistant 
MCF7 cell line [144]. Further, enforced overexpression of TRAIL-R3 has been 
shown to inhibit TRAIL-mediated apoptosis induction in various cancer cells and 
this resistance could be abolished by cleavage of the GPI anchor to remove 
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TRAIL-R3 from the cell surface [150]. Although these and other studies linked the 
expression of the decoy receptors to TRAIL resistance, finally no significant cor-
relation was found between TRAIL sensitivity and the expression levels of 
TRAIL-R3 and/or TRAIL-R4 on tumour cells [151–153].

Clearly, the principle of the proposed decoy mechanism is functional, i.e., 
TRAIL-R3 and TRAIL-R4 consume ligand without induction of a resulting pro-
apoptotic signal, thereby reducing the ligand amount available for TRAIL-R1 and 
TRAIL-R2. But it is also obvious, that inhibition of TRAIL sensitivity by the decoy 
mechanism must be overcome when using extremely high concentrations of TRAIL 
which so far could not be demonstrated (Neumann, S., unpublished data). There 
exist some exceptional situations where one might expect the decoy mechanism to 
play a major role, for example in case of extremely high expression levels of these 
receptors and/or at very low ligand concentrations [154]. Alternatively, one might 
expect that the ligand binding affinity values of the decoy receptors should be sig-
nificantly higher compared to those of the death receptors. The first reports deter-
mining binding affinities suggested that all four receptors bind to TRAIL with 
comparable affinities [27, 30]. However, later investigations demonstrated that the 
death receptors possess somewhat higher binding affinity values at physiological 
temperature as compared to the decoy receptors [155, 156], arguing further against 
the importance of the decoy mechanism under (patho)physiological conditions 
in vivo. Together, the idea that the inhibitory effects of TRAIL-R3 and TRAIL-R4 
mainly depends on ligand consumption became hard to accept as a general and 
important mechanism.

2.3.3.2  �Formation of Heteromeric Complexes Affected in Signalling

A second possibility for TRAIL-R3 and TRAIL-R4 to interfere with TRAIL-
mediated apoptosis induction is the formation of heteromeric ligand/receptor com-
plexes. As mentioned TRAIL forms homotrimers capable to bind three receptor 
molecules in the clefts between the individual protomers [12]. In a cell co-expressing 
for example equal levels of TRAIL-R1 and TRAIL-R3, four different initial com-
plexes could be formed upon ligation: TRAIL-(R1)3, TRAIL-(R1)2R3, TRAIL-
R1(R3)2 and TRAIL-(R3)3. The potential signalling capabilities of the two mixed 
complexes are totally unclear, but if we assume that TRAIL-R3 is incapable to sig-
nal at all, we would end up in any case with a situation of partly inhibited apoptotic 
signalling as compared to a cell line expressing only TRAIL-R1, but no TRAIL-R3. 
Additional constraints exist, however, which could regulate the efficiency of forma-
tion of the different homomeric and heteromeric complexes. First, individual recep-
tors might be enriched in the cell membrane in different compartments, like the 
already mentioned cholesterol-rich microdomains. Taken as an extreme case, in our 
example above TRAIL-R1 and TRAIL-R3 could then be separated totally in dis-
tinct microdomains, which would not allow significant formation of heteromeric 
complexes upon ligand binding at all. Second, TRAIL receptors, like other mem-
bers of the TNF receptor family, possess a homophilic interaction domain allowing 
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homomultimer formation of the membrane-expressed receptors even in the absence 
of ligand, the PLAD. This domain is located at the membrane distal (partial) first 
CRD (CRD1) of the four TRAIL receptors. Moreover, in the TRAIL receptor sys-
tem, but e.g., not in the TNF receptor system, this domain allows the formation of 
heteromeres [154, 156–158]. The PLAD has been originally detected and described 
in the TNF and the Fas systems [159, 160]. The stoichiometry of PLAD-mediated 
multimer formation is not well defined. The group of Lenardo originally described 
TNF receptor and Fas homotrimers, whereas later studies using TNF receptor chi-
meras suggested homodimers [161]. More recently, we confirmed heteromeric 
TRAIL receptor interactions in the absence of ligand by acceptor photobleaching 
fluorescence resonance energy transfer (FRET) studies and also found predominant 
TRAIL receptor homodimer and heterodimer formation [154]. It cannot be excluded, 
however, that trimer vs. dimer formation might be regulated in a cell type-specific 
manner or is mainly attributable to the chemical cross linker used.

Convincing evidence exists that the PLAD not only serves to mediate multimer 
formation of receptors in the absence of ligand, but also after ligation. Accordingly, 
driven by two different interaction sites which do not sterically interfere with each 
other, the formation of large ligand/receptor clusters is allowed. Originally pro-
posed in the TNF system on the basis of studies with TNF receptor mutants [161], 
the group of Sachs later confirmed the formation of TRAIL-R2 dimers within high 
molecular weight ligand/receptor networks [158]. Further studies of this group with 
TNF-R1 and TRAIL-R2 resulted in an activation model for these receptors. 
According to this model unligated receptor homodimers are in an “OFF” stage 
when homodimerized via PLAD interaction, but are twisted to “ON” when becom-
ing incorporated in large ligand/receptor clusters [162, 163]. In the formation of 
these clusters the initial step is likely the binding of one TRAIL molecule with one 
of its three binding sites on the “back” of the homodimerized receptor molecules 
(Fig. 2.3a). Mathematical modelling studies suggest that the PLAD-PLAD interac-
tion of the receptor dimer then opens to allow binding of the second receptor to one 
of the two other binding sites of the TRAIL molecule as detailed in [164]. These 
initial complexes TRAIL-(TRAIL-R)2 would then further aggregate upon diffusion 
in the membrane.

Affinity data obtained from plasmon resonance studies of purified soluble ECDs 
from TRAIL receptors indicate comparable affinity values for homomeric and het-
eromeric PLAD-mediated interactions and were found to be in the micromolar 
range [165]. These low affinity values determined, however, cannot be taken for the 
“effective” PLAD affinities of membrane-expressed receptor molecules, because 
the latter are oriented and arranged in the cell membrane, whereas one binding part-
ner in the studies by Lee et al. freely diffused in solution, whereas the other partner 
was immobilized (for discussion of this point, see [154]). Notably, no measurable 
affinity values were found for the interaction between the ECD of TRAIL-R2 and 
those of the two decoy receptors. It is unlikely that some molecules in this study 
were simply misfolded, because proper interactions in all other eight ECD combi-
nations could be determined. These data indicate an interesting difference between 
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TRAIL-R1 and TRAIL-R2, the first capable to interact with all four receptors, 
whereas the latter can interact only with TRAIL-R1 and TRAIL-R2. However, in 
contrast to these data FRET and co-immunoprecipitation experiments suggested an 
interaction between TRAIL-R2 and TRAIL-R4 [154, 156]. Having all these facts in 
mind, we end up with a very complex situation: We have up to four different recep-
tors co-expressed in a single cell, which might form up to four different homodi-
mers and four or even five heterodimers (Fig.  2.2), which then react with the 
homotrimeric ligand TRAIL to finally produce large ligand/receptor clusters 
(Fig. 2.3).

2.3.3.3  �TRAIL-R3 and TRAIL-R4 Incorporation in Ligand Receptor 
Clusters

Based on initial PLAD data, Clancy and colleagues introduced a new term for 
TRAIL-R4, “regulatory receptor” instead of “decoy receptor”. They claimed that 
the inhibitory action of TRAIL-R4 does not entirely depend on the consumption of 
TRAIL, but is rather mediated by ligand independent formation of mixed com-
plexes with TRAIL-R2 [156]. However, there are conflicting results regarding the 
role of TRAIL in the formation of homomeric and heteromeric complexes, as 
Merino and colleagues concluded that this interaction between TRAIL-R4 and 
TRAIL-R2 is ligand dependent while other studies suggested a ligand independent 
process, mediated by the PLAD [156, 157].

Fig. 2.2  Homotypic and heterotypic interactions between TRAIL receptor dimers. TRAIL receptors 
on the plasma membrane exist as pre-formed dimers in the absence of ligand, although unligated 
receptor trimers have also been proposed. Dimerization is mediated by the PLAD and occurs either 
as a homotypic (left) or a heterotypic (right) interaction between individual TRAIL receptor mono-
mers. Note that TRAIL-R3 might be sequestered in cholesterol-rich membrane microdomains. 
Although heteromeric TRAIL-R3 interactions with TRAIL-R1 or TRAIL-R4 have been reported, 
their existence remains fairly speculative. Similarly, the heteromeric TRAIL-R2/TRAIL-R4 interac-
tion remains inconclusive (see text for detail)
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In a more recent work our group investigated the effects of TRAIL-R4 on 
TRAIL-R1 signalling in detail, aided by mathematical modelling [154]. As expected, 
the experimental data demonstrate that TRAIL-R4 effectively inhibited TRAIL-R1-
mediated apoptosis induction, but also non-apoptotic signalling like activation of 
NF-κB. Moreover, these effects were not mediated by the cytoplasmic domain of 
TRAIL-R4 (see Sect. 2.3.3.4), i.e., signalling crosstalk, because a cytoplasmatically 
truncated TRAIL-R4 mutant showed comparable effects. In addition, the results 
from mathematical modelling clearly showed that the classical decoy mechanism 
must be neglectable under the experimental conditions chosen. As both, intracellu-
lar signalling by TRAIL-R4 and the decoy mechanism could be ruled out to be 
effective, the formation of heteromeric complexes was proposed to cause the domi-
nant negative effects of TRAIL-R4 on TRAIL-R1 signalling (Fig. 2.3).

Fig. 2.3  Formation of heteromeric ligand-receptor clusters driven by PLAD-mediated receptor-
receptor and ligand-receptor interaction. According to the current model, binding of TRAIL mol-
ecules (blue) on the “back” of pre-ligated homomeric or heteromeric receptor dimers on the cell 
membrane induces conformational changes of the receptors, results in opening of the PLAD-
PLAD interaction and subsequent binding of a second TRAIL receptor dimer (a). Formation of 
large ligand-receptor clusters referred to as signalling protein oligomeric transduction structures 
(SPOTS) are shown in hexagonal arrangement. TRAIL-R3- and TRAIL-R4-mediated interference 
with death receptor signalling is based on the reduction of signalling-competent receptor com-
plexes (b)
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2.3.3.4  �Activation of Pro-Survival Pathways by TRAIL-R4

TRAIL and its receptors create a highly complex signalling system not only because 
of the presence of multiple receptors, but also caused by the fact that individual 
TRAIL receptors can not only induce apoptosis but are also known to initiate sur-
vival pathways. The induction of survival pathways, like e.g., the activation of 
NF-κB and Akt, has been suggested as an additional mechanism contributing to the 
inhibitory effects of TRAIL-R4, mediated by its truncated DD suggested to be 
incapable to induce apoptosis. There exist conflicting results regarding the role of 
TRAIL-R4 in activation of the transcription factor NF-κB, as initial studies by 
Marsters and colleagues showed that removal of the intracellular domain of 
TRAIL-R4 had no effects on TRAIL-mediated apoptosis induction and NF-κB 
activation. Accordingly, it was proposed that the truncated DD of TRAIL-R4 is not 
functional and does not play any role in the inhibitory function of this receptor [29]. 
However, another group reported that TRAIL-R4, alike TRAIL-R1/R2 is capable 
to activate the NF-κB pathway via its cytoplasmic domain although the precise 
molecular mechanism remained unclear [30]. It was therefore proposed that NF-κB 
activation and subsequent transcription of various anti-apoptotic proteins could 
play a role in TRAIL-R4-mediated resistance against TRAIL. In our experimental 
systems, however, TRAIL-R1-mediated phosphorylation of inhibitor of NF-κB 
(IκBα), a central step in the activation of the classical NF-κB pathway, was inhib-
ited by overexpression of both functional and cytoplasmatically deleted TRAIL-R4 
[154]. Although it is generally accepted that TRAIL is not a potent inducer of 
NF-κB activation, this signalling pathway may be controlled in a cell specific man-
ner similar to the activation of Akt where again conflicting results exist. TRAIL-R4 
expression in HeLa cells was shown to protect from TRAIL-induced apoptosis and 
enhanced cell proliferation and these effects could be reversed by inhibiting Akt 
phosphorylation [166]. Contrary to these results we could not observe any differ-
ence in the phosphorylation of Akt in HeLa cells overexpressing TRAIL-R4 [154].

More recent data open a new facet in the field of negative TRAIL receptor inter-
action. In most studies which have been investigated, the interference between 
apoptotic and non-apoptotic TRAIL receptors took only the amounts of membrane-
expressed receptor molecules into account. It is now clear, however, that TRAIL 
receptors including TRAIL-R3 and TRAIL-R4 also occur in intracellular compart-
ments and may act there in a still largely undefined manner [5, 96, 119, 167]. It is, 
therefore, possible that the ligand TRAIL may act also as a stimulus to induce a 
relocalization of receptors, thereby shifting their function. Further intricate studies 
will be necessary to verify this hypothesis.

Taken together, three possible mechanisms have been proposed up to now that 
may contribute to TRAIL-resistance being mediated by TRAIL-R3/TRAIL-R4. 
These are the classical decoy mechanism which does occur but has been convinc-
ingly shown to play no major role under typical experimental conditions. In special 
(patho)physiological situations this effect could be of significance. The formation 
of ligand/receptor signalling clusters comprising a mixture of signal competent 
and incompetent receptors (TRAIL-R1/R2 and TRAIL-R3/R4, respectively) as the 
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second proposed mechanism are believed to have a strong impact (Fig.  2.3). 
Molecular interactions and parameters guiding their formation are complex, 
however, including (co)expression levels, distribution in microdomains, PLAD-
mediated interaction and finally ligand/receptor interactions. The third possible 
mechanism, intracellular signal induction mediated by TRAIL-R3 and TRAIL-R4, 
is again believed to occur in a special context only. Whereas a signalling capacity 
by the GPI moiety-anchored TRAIL-R3 appears speculative, the biological func-
tion of the intracellular domain of TRAIL-R4 needs to be further investigated.

2.4  �Outlook

Coming to the insight that the TRAIL system is extremely complex and the role of 
TRAIL receptors and their crosstalk in cancer are highly undefined, it is evident that 
we still need much more data from experimental systems and from the clinic. 
Nevertheless, it appears to be a valuable therapeutic approach to induce apoptosis/
necroptosis in tumour cells upon stimulation of TRAIL-R1 and/or TRAIL-R2. To 
successfully follow this pathway, we need strong agonists like targeted, multimer-
ized TRAIL fusion proteins or receptor-specific agonistic antibody constructs. A 
multitude of such molecules has been already tested in animal models and clinical 
studies. In all these approaches it appears beneficial to spare the inhibitory receptors 
TRAIL-R3 and TRAIL-R4, which can be easily obtained using agonistic antibod-
ies, but also by the construction of receptor-selective mutants of TRAIL.
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