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Abstract In our paper, we consider the Cell Formation Problem in Group Tech-
nology with grouping efficiency as an objective function. We present a heuristic
approach for obtaining high-quality solutions of the CFP. The suggested heuristic
applies an improvement procedure to obtain solutions with high grouping efficiency.
This procedure is repeated many times for randomly generated cell configurations.
Our computational experiments are performed for popular benchmark instances taken
from the literature with sizes from 10 x 20 to 50 x 150. Better solutions unknown
before are found for 23 instances of the 24 considered. The preliminary results for
this paper are available in Bychkov et al. (Models, algorithms, and technologies for
network analysis, Springer, NY, vol. 59, pp. 43-69, 2013, [7]).

1 Introduction

Flanders [15] was the first who formulated the main ideas of the group technology.
The notion of the Group Technology was introduced in Russia by [30], though his
work was translated to English only in 1966 [31]. One of the main problems stated by
the Group Technology is the optimal formation of manufacturing cells, i.e., grouping
of machines and parts into cells such that for every machine in a cell the number of
the parts from this cell processed by this machine is maximized and the number of
the parts from other cells processed by this machine is minimized. In other words,
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the intra-cell loading of machines is maximized and simultaneously the inter-cell
movement of parts is minimized. This problem is called the Cell Formation Problem
(CFP). Burbidge [5] suggested his Product Flow Analysis (PFA) approach for the
CFP, and later popularized the Group Technology and the CFP in his book [6].

The CFP is NP-hard since it can be reduced to the clustering problem [16]. That
is why there is a great number of heuristic approaches for solving CFP and almost
no exact ones. The first algorithms for solving the CFP were different clustering
techniques. Array-based clustering methods find rows and columns permutations of
the machine-part matrix in order to form a block-diagonal structure. These meth-
ods include: Bond Energy Algorithm (BEA) of [29], Rank Order Clustering (ROC)
algorithm by [20], its improved version ROC2 by [21], Direct Clustering Algorithm
(DCA) of [12], Modified Rank Order Clustering (MODROC) algorithm by [9], the
Close Neighbor Algorithm (CAN) by [4]. Hierarchical clustering methods at first
form several big cells, then divide each cell into smaller ones and so on gradually
improving the value of the objective function. The most well-known methods are
Single Linkage [28], Average Linkage [39], and Complete Linkage [32] algorithms.
Nonbhierarchical clustering methods are iterative approaches which start from some
initial partition and improve it iteratively. The two most successful are GRAFICS
algorithm by [41] and ZODIAC algorithm by [10]. A number of works considered the
CFP as a graph partitioning problem, where machines are vertices of a graph. [37]
used clique partitioning of the machines graph. Askin and Chiu [2] implemented
a heuristic partitioning algorithm to solve CFP. Ng [35, 36] suggested an algo-
rithm based on the minimum spanning tree problem. Mathematical programming
approaches are also very popular for the CFP. Since the objective function of the
CFP is rather complicated from the mathematical programming point of view most
of the researchers use some approximation model which is then solved exactly for
small instances and heuristically for large. [25] formulated CFP via p-median model
and solved several small size CFP instances, [40] used Generalized Assignment
Problem as an approximation model, [44] proposed a simplified p-median model
for solving large CFP instances, [22] applied minimum k-cut problem to the CFP,
[17] used p-median approximation model and solved it exactly by means of their
pseudo-boolean approach including large CFP instances up to 50 x 150 instance.
A number of meta-heuristics have been applied recently to the CFP. Most of these
approaches can be related to genetic, simulated annealing, Tabu search, and neural
networks algorithms. Among them are works such as: [18, 26, 27, 45-47].

Our heuristic algorithm is based on sequential improvements of the solution. We
modify the cell configuration by enlarging one cell and reducing another. The basic
procedure of the algorithm has the following steps:

1. Generate a random cell configuration.

2. Improve the initial solution moving one row or column from one cell to another
until the grouping efficiency is increasing.

3. Repeat steps 1-2 a predefined number of times (we use 2000 times for computa-
tional experiments in this paper).

The paper is organized as follows. In the next section, we provide the Cell For-
mation Problem formulation. In Sect.3 we present our improvement heuristic that
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allows us to get good solutions by iterative modifications of cells which lead to
increasing of the objective function. In Sect.4 we report our computational results
and Sect. 5 concludes the paper with a short summary.

2 The Cell Formation Problem

The CFP consists in an optimal grouping of the given machines and parts into cells.
The input for this problem is given by m machines, p parts, and a rectangular
machine-part incidence matrix A = [a;;], where a;; = 1 if part j is processed on
machine i. The objective is to find an optimal number and configuration of rectan-
gular cells (diagonal blocks in the machine-part matrix) and optimal grouping of
rows (machines) and columns (parts) into these cells such that the number of zeros
inside the chosen cells (voids) and the number of ones outside these cells (exceptions)
are minimized. A concrete combination of rectangular cells in a solution (diagonal
blocks in the machine-part matrix) we will call a cells configuration. Since it is usu-
ally not possible to minimize these two values simultaneously there have appeared
a number of compound criteria trying to join it into one objective function. Some of
them are presented below.

For example, we are given the machine-part matrix [43] shown in Table 1. Two
different solutions for this CFP are shown in Tables 2 and 3. The left solution is better
because it has less voids (3 against 4) and exceptions (4 against 5) than the right one.
But one of its cells is a singleton—a cell which has less than two machines or parts.

Table 1 Machine-part 5 x 7 matrix from [43]

pP1r p2 p3 pa p5s Pe P71
mi| 1 0 0 0 1 1 1
my 0 1 1 1 1 0 0
my 0 0 1 1 1 1 0
me 1 1 1 1 0 0 0
ms] 0 1 0 1 1 1 0

Table 2 Solution with singletons

P71 P6 P1 P5 P3 P2 P4

m| 11 1 1 0 0 0
msl 00 1 0 1 1 1
my 001 0 1 1 0 1
my 00 0 1 1 1 1
msi 001 0 1 0 1 1
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Table 3 Solution without singletons

P71 P1 P6 P5 P4 pP3 P2

my| 1 1 1 1 0 0 O
my| O 0 0 1 1 1
my O O O 1 1 1 1
m3] 0 0 1 1 1 1 O
ms] 0 0 1 1 1 0 1

I. Bychkov et al.

In some CFP formulations singletons are not allowed, so in this case this solution is
not feasible. In this paper, we consider both the cases (with allowed singletons and
with not allowed) and when there is a solution with singletons found by the suggested

heuristic better than without singletons we present both the solutions.

There are anumber of different objective functions used for the CFP. The following

four functions are the most widely used:

1. Grouping efficiency suggested by [11]:

n=gqn +{—-qg)n,

where )
ny —ng n!
n, — ntlmt + nbn nin’
mp —ny —ny' ng
m = ; = s
mp —ny — né)n + nzlmt pout

(1

n—aratio showing the intra-cell loading of machines (or the ratio of the number

of ones in cells to the total number of elements in cells).

np—a ratio inverse to the inter-cell movement of parts (or the ratio of the number

of zeroes out of cells to the total number of elements out of cells).

q—a coefficient (0 < g < 1) reflecting the weights of the machine loading and
the inter-cell movement in the objective function. It is usually taken equal to 1,
which means that it is equally important to maximize the machine loading and

minimize the inter-cell movement.

n1—a number of ones in the machine-part matrix,
no—a number of zeroes in the machine-part matrix,
ni"—a number of elements inside the cells,

n°"'—a number of elements outside the cells,
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n'"—a number of ones inside the cells,
n‘l’“’ —a number of ones outside the cells,
nf)”—a number of zeroes inside the cells,
n{"'—a number of zeroes outside the cells.

2. Grouping efficacy suggested by [23]:

ny — nuut nin
_mom @)
ny +ny ny +ng
3. Group Capability Index (GCI) suggested by [19]:
nrl)ut ny — n(lmt
GCI=1- = — 3)
ni ni
4. Number of exceptions (ones outside cells) and voids (zeroes inside cells):
E+V =n"+n] 4)

The values of these objective functions for the solutions in Tables 2 and 3 are shown
below.

116 1 12 115 1 11
o 42 2 NT7960% == — 4~ — A T3.85%
"=3'1972 16 e TR IRT: ’

20—4 20-5
r= T N6957% = 2 ~62.50%
20 + 3 20 + 4

GCI—20_4~8000‘7 GCI—20_5~7500‘7
T U 20 V7

E+V=443=7 E+V=544=9

In this paper, we use the grouping efficiency measure and compare our computational
results with the results of [17, 47].

The mathematical programming model of the CFP with the grouping efficiency
objective function can be described using boolean variables x;; and y . Variable x;x
takes value 1 if machine i belongs to cell k£ and takes value O otherwise. Similarly
variable y;; takes value 1 if part j belongs to cell k and takes value O otherwise.
Machines index i takes values from 1 to m and parts index j - from 1 to p. Cells
index k takes values from 1 to ¢ = min(m, p) because every cell should contain
at least one machine and one part, and so the number of cells cannot be greater
than m and p. Note, that if a CFP solution has n cells then for k£ from n 4 1 to ¢ all
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variables x;i, y jx will be zero in this model. So, we can consider that the CFP solution
always has c cells, but some of them can be empty. The mathematical programming
formulation is as follows:

niln ngut
max (znin + S 2pout (5)
where
c m p
nit — Zz-xikyjkv oM — mp — nin
k=1 i=1 j=1
c m )4
n' = >3 agxuyi. ng" =no— (" —ni"
k=1 i=1 j=I
subject to
c
Dxx=1Viel ..m (6)
k=1
c
Zyjkzl Viel,.,p (7)
m 14 m
szlkyjk > Zx,-k Vkel,..c (8
i=1 j=I1 i=1
m P )4
szzkyjk = Zyjk Vkel,..c 9)
i=1 j=I1 j=1
xix €{0,1} Viel,..,m (10)
vik €{0,1} Vjel, ..,p (11)

The objective function (5) is the grouping efficiency in this model. Constraints (6)
and (7) impose that every machine and every part belongs to some cell. Constraints
(8) and (9) guarantee that every nonempty cell contains at least one machine and one
part. Note that if singleton cells are not allowed then the right sides of inequalities
(8) and (9) should have a coefficient of 2. All these constraints can be linearized in a
standard way, but the objective function will still be fractional. That is why the exact
solution of this problem presents considerable difficulties.
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A cells configuration in the mathematical model is described by the number of
machines m; and parts py in every cell k.

m p
myg = E Xik, Pk = E Yk
i=1 j=1

It is easy to see that when a cells configuration is fixed all the optimization criteria
(1)—(4) become equivalent (Proposition 1).
Proposition 1 [fa cells configuration is fixed then objective functions (1)—(4): n, t,

GCI, E + V become equivalent and reach the optimal value on the same solutions.

Proof When a cells configuration is fixed the following values are constant: my, py.
The values of 1 and ng are always constant. The values of n'" and n°*' are constant
sincen'” = Z;:l my pr and n®’ = mp — n'". So, if we maximize the number of ones

inside the cells n!" then simultaneously nj' = n'" — n" is minimized, nJ"' = no —

ny' is maximized, and n{"" = ny — n}" is minimized. This means that the grouping
in out in

efficiency n = qz—‘ + (1 - q)ZSu, is maximized, the grouping efficacy v = nlilng" is

maximized, the grouping capability index GCI =1 — %r is maximized, and the
1

number of exceptions plus voids E + V = n¢“ + ni" is minimized simultaneously

on the same optimal solution. U

3 Algorithm Description

The main function of our heuristic is presented by algorithm 1.

Algorithm 1 Main function

function SOLVE( )
FINDOPTIMALCELLRANGE(MinCells, MaxCells)
ConfigsNumber = 2000
AllConfigs = GENERATECONFIGS(MinCells, MaxCells, Configs Number)
return CMHEURISTIC(AllConfigs)
end function

First we call FINDOPTIMALCELLRANGE(MinCells, MaxCells) function that returns
apotentially optimal range of cells - from MinCells to MaxCells. Then these values
and Configs Number (the number of cell configurations to be generated) are passed
to GENERATECONFIGS(MinCells, MaxCells, Configs Number) function which
generates random cell configurations. The generated configurations AllConfigs are
passed to CMHEURISTIC(AllConfigs) function which finds a high-quality solution
for every cell configuration and then chooses the solution with the greatest efficiency
value.
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Algorithm 2 Procedure for finding the optimal cell range

function FINDOPTIMALCELLRANGE( MinCells, MaxCells)
if (m > p) then
minDimension = p
else
minDimension = m
end if
ConfigsNumber = 500
Configs = GENERATECONFIGS(2, min Dimension, Configs Number)
Solution = CMHEURISTIC(Configs)
BestCells = GETCELLSNUMBER(Solution)
MinCells = BestCells - [minDimension * 0,1 ] > [ ] - integer part
MaxCells = BestCells + [minDimension * 0,1 ]
end function

In function FINDOPTIMALCELLRANGE(MinCells, MaxCells) (Algorithm 2) we
look over all the possible number of cells from 2 to maximal possible number
of cells which is equal to min(m, p). For every number of cells in this interval,
we generate a fixed number of configurations (we use 500in this paper) call-
ing GENERATECONFIGS(2, min Dimension, Configs Number) and then use our
CMHEURISTIC(Configs) to obtain a potentially optimal number of cells. But we
consider not only one number of cells but together with its 10%-neighborhood
[MinCells, MaxCells].

Algorithm 3 Configurations generation

function GENERATECONFIGS(MinCells, MaxCells, Configs Number)
Configs =10
for cells = MinCell, MaxCells do
Generated = GENERATECONFIGS(cells, Configs Number)
Configs = Configs U Generated
return Configs
end for
end function

Function GENERATECONFIGS(MinCells, MaxCells, Configs Number) (Algo-
rithm 3) returns a set of randomly generated cell configurations with a number
of cells ranging from MinCells to MaxCells. We call GENERATECONFIGSUNI-
FORM(cells, Configs Number) function which randomly selects with uniform dis-
tribution Configs Number configurations from all possible cell configurations with
the specified number of cells. Note that mathematically a cell configuration with k
cells can be represented as an integer partition of m and p values into sums of k
summands. We form a set of configurations for every number of cells and then join
them.
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Algorithm 4 CMHeuristic

function CMHEURISTIC(Configs)
Best =0
for all config € Configs do
Solution = IMPROVESOLUTION(config)
if Solution > Best then
Best = Solution
end if
end for
return Best
end function

Function CMHEURISTIC(Configs) (Algorithm 4) gets a set of cell configurations
and for each configuration runs an improvement algorithm to obtain a good solution.
A solution includes a permuted machine-part matrix, a cell configuration, and the
corresponding grouping efficiency value. The function chooses the best solution and
returns it.

Improvement procedure IMPROVESOLUTION(config, Neyrrens) (Algorithm 5)
works as follows. We consider all the machines and the parts in order to know if
there is a machine or a part that we can move to another cell and improve the current
efficiency 79¢yrrens - First we consider moving of every part on all other cells and com-
pute how the efficiency value changes. Here 1,4+,c.i1 is the efficiency of the current
solution where the part with index part is moved to the cell with index cell. This
operation is performed for all the parts and the part with the maximum increase in
efficiency A 4,15 is chosen. Then we repeat the same operations for all the machines.
Finally, we compare the best part movement and the best machine movement and
choose the one with the highest efficiency. This procedure is performed until any
improvement is possible and after that we get the final solution.

The main idea of IMPROVESOLUTION(config, Neurrens) 18 illustrated on [39]
instance 8 x 12 (Table4). To compute the grouping efficiency for this solution, we
need to know the number of ones inside cells n"l”, the total number of elements inside

Table 4 [39] instance 8 x 12
2 3

o
[\

S o= |=m|l=|=lO|O|x
S|OoO|m|=|==O|O|©
— ==~
— =l OO0 OC|O| -

olol~I~r|l~|l=l~lclw
S|Io|IOoO|=|=mlOo=O|=

o|lo|o|o|o|= |~ |O|Wn
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Algorithm 5 Solution improvement procedure

function IMPROVESOLUTION(config, Neurrent)
Neurrent = GROUPINGEFFICIENCY (config)
repeat
PartFrom =0
PartTo =0
for part = 1, parts Number do
for cell = 1, cells Number do
if (npart,cell > ncurrent) then
Aparts = (npa)'t,cell — Neurrent)
PartFrom = Get PartCell(part)
PartTo = cell
end if
end for
end for
MachineFrom =0
MachineTo =0
for machine = 1, machines Number do
for cell = 1, cells Number do
if (Mmachine.cett > Neurrenr) then
Amachines = (nmachine,cell — Neurrent)
Machine From = GETMACHINECELL(machine)
MachineT o = cell
end if
end for
end for
if Apares > Amachines then
MOVEPART(Part From, PartT o)
else
MOVEMACHINE(M achine From, MachineT o)
end if
until A > 0
end function

cells n'”, the number of zeros outside cells ng'” , and the number of elements outside

cells n°"'. The grouping efficiency is then calculated by the following formula:

B n§"+(1 L1020 148
T=4a" i Do T3 33 T3 63 0T

Looking at this solution (Table 4) we can conclude that it is possible, for example,
to move part 4 from the second cell to the first one. And this way, the number of
zeros inside cells decreases by 3 and the number of ones outside cells also decreases

by 4. So, it is profitable to attach column 4 to the first cell as it is shown on Table 5.
For the modified cells configuration we have:

51
— ~75.32%

1 23 1
2 63

"Z3mT
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Table 5 Moving part 4 from cell 2 to cell 1

1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 0 0 0 0 0 0 0 0
2 1 0 1 1 1 1 1 0 0 1 0 0
3 0 0 1 1 1 1 1 1 1 0 0 0
4 0 0 0 0 0 1 1 1 1 1 0 0
5 0 0 0 0 0 0 1 1 1 1 0 0
6 0 0 0 0 0 0 1 1 1 0 1 0
7 0 0 0 0 0 0 0 0 0 0 1 1
8 0 0 0 0 0 0 0 0 0 0 1 1
Table 6 Maximal efficiency increase for each row
1 2 3 4 5 6 7 8 9 10 |11 |12
1 1 1 1 1 0 0 0 0 0 0 0 0 —6.94%
2 1 0 1 1 1 1 1 0 0 1 0 0 +1.32%
3 0 0 1 1 1 1 1 1 1 0 0 0 +7.99%
4 0 0 0 0 0 1 1 1 1 1 0 0 —0.07%
5 0 0 0 0 0 0 1 1 1 1 0 0 +0.77%
6 0 0 0 0 0 0 1 1 1 0 1 0 +0.77%
7 0 0 0 0 0 0 0 0 0 0 1 1 —4.62%
8 0 0 0 0 0 0 0 0 0 0 1 1 —4.62%

As a result the efficiency is increased almost for 7%. Computational results show
that using such modifications could considerably improve the solution. The idea is
to compute an increase in efficiency for each column and row when it is moved
to another cell and then perform the modification corresponding to the maximal
increase. For example, Table 6 shows the maximal possible increase in efficiency for
every row when it is moved to another cell.

4 Computational Results

In all the experiments for determining a potentially optimal range of cells we use
500 random cell configurations for each cells number, and for obtaining the final
solution we use 2000 random configurations. An Intel Core i7 machine with 2.20
GHz CPU and 8.00 Gb of memory is used in our experiments. We run our heuristic
on 24 CFP benchmark instances taken from the literature. The sizes of the considered
problems vary from 10 x 20 to 50 x 150. The computational results are presented in
Table 7. For every instance we make 50 algorithm runs and report minimum, average,
and maximum value of the grouping efficiency obtained by the suggested heuristic
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over these 50 runs. We compare our results with the best known values taken from
[3, 17]. We have found better solutions unknown before for 23 instances of the 24
considered. For CFP instance 6, we have found the same optimal solution with 100%
of grouping efficiency as in [17]. For CFP instance 1 the solution of [17] has some
mistake. For this instance having a small size of 10 x 20 it can be proved that our
solution is the global optimum applying an exact approach [14] for the grouping
efficiency objective and all the possible number of cells from 1 to 10.

5 Concluding Remarks

In this paper, we present a new heuristic algorithm for solving the CFP. The high
quality of the solutions is achieved due to the enumeration of different numbers
of cells and different cell configurations and applying our improvement procedure.
Since the suggested heuristic works fast (the solution for one cell configuration is
achieved in several milliseconds for any instance from 10 x 20 to 50 x 150), we apply
it for thousands of different configurations. Thus a big variety of good solutions is
covered by the algorithm and the best of them has high grouping efficiency.
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