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Chapter 2
Mathematical Activity 
and the Transformations of Semiotic 
Representations

The different notions of signs and representations are misleading because they seem 
to reduce them to simple phenomena of cross-reference to the objects, which signs 
and representations stand for. The signs and representations would mainly fulfill 
this function: “evoke what is absent” or “communicate” a thought that is not obvi-
ous to others. And, then, we would be dealing with objects rather than with the signs 
or representations. However, in mathematics, this function is secondary. What mat-
ters with semiotic representations is first their intrinsic potential for their transfor-
mation into other semiotic representations new and equivalent. This is because the 
power of calculation in development, control of reasoning and the creativity of the 
mathematical visualization depend on the potential of semiotic systems developed 
in mathematics and not on the represented objects. In fact, the necessity of semiotic 
representations in mathematical knowledge covers two very different problems, the 
non-perceptive access to the mathematical objects and the transformation of semi-
otic representations into others new but keeping the same denotation.

The first problem is epistemological. Would we have a concrete perception of 
numbers, functions, etc. or, on the contrary, would the access to them go through, 
necessarily and immediately, the mobilization of semiotic representations? To sup-
port the first hypothesis, the examples of integers and simple 2D geometrical shapes 
with their topological properties are often put forward. Then, the use of semiotic 
representations would only become necessary when the magnitude or complexity of 
these mathematical objects were beyond our limited capacity for intuition or imme-
diate memory, or when we leave the field of the finite and discrete. To support the 
second hypothesis, there is the fact that this distinction between what would be 
directly intuitive and what exceeds the limited capacity of our mind is at least fluent 
and fictitious. In fact, this is based on extremely partial observations.

The second problem is cognitive. It concerns the nature of the mathematical 
work and, more deeply, the way in which the mathematical thinking functions. Does 
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it consist of the mobilization of “concepts” and the use of common reasoning abili-
ties or, on the contrary, it depends on mobilized semiotic representation systems and 
the stages of specific thought of mathematics? This issue is cognitive and not 
mathematical. The difference appears clearly in the analysis of what is called very 
generally “problem-solving”. From a mathematical viewpoint, what we analyze is 
always the resolution of a given problem and therefore, we start from its solution to 
explicit the mathematical properties that lead to its solution. The analysis is, there-
fore, retroactive and proper the particular problem that is given or selected, but we 
can only assume that students will be able to solve all the others problems that are 
similar. From the cognitive viewpoint, what we analyse is the process that allow us 
to recognize the mathematical knowledge to be used in the context of the given 
problem, whatever it may be. For there is no point in explaining the solution to stu-
dents if each of them cannot see how he/she could have recognized by his/her own 
the properties to be used. In other words, the cognitive issue is about the intellectual 
gestures specific to the mathematical work, even before we have any idea of the 
solution.

The question about the nature of mathematical work is not just a cognitive issue. 
It is also a methodological issue. What kind of observations need to be made and 
data to be collected for analyzing the cognitive processes of mathematical 
activity?

–– the way students understand or misunderstand the mathematical concepts to be 
used for solving the given problem? But this remains within the range of mental 
representations. We cannot read in the mind of the others. We only interpret ver-
bal, graphical or gestural expressions, which are very often more allusive than 
explicit and their interpretation and cannot be checked.

–– the semiotic representations, considered under the only aspect or their “reference 
to an object”? But, this leads to subordinate them to hypothetical mental repre-
sentations, which would be the important ones.

We will examine separately the two problems that the mathematical activity 
raises, the mode of access to mathematical objects and the transformations of semi-
otic representations. To the epistemological problem, we will present a test about 
the basic requirement of never confusing the objects with their representations. Is it 
as clear in mathematics as in the perception of real things? To the cognitive prob-
lem, we will see why and how the mathematical way of working must be analyzed 
in terms of transformation of semiotic representations. Semiosis is at the center of 
the cognitive processes of mathematical thinking through two kinds of transforma-
tions of semiotic representation. There is no noesis without semiosis, no mathemati-
cal thinking without transformation of semiotic representations whatever they are. 
That is the answer to the true question for everybody who is not a mathematician: 
“To do maths, what is it”?

2  Mathematical Activity and the Transformations of Semiotic Representations



23

2.1  �Two Epistemological Situations, One Irreducible 
to the Other, in the Access to Objects of Knowledge

It is generally claimed that the way of accessing objects of knowledge would be 
fundamentally the same for all fields of knowledge: first, the experience with the 
material objects themselves and their iconic representations, followed by the devel-
opment of their first mental representations and conceptualization. And from this 
viewpoint, the access to objects in mathematics learning and understanding would 
be the same than for learning and understanding in botany, chemistry, astronomy, 
etc. All general cognitive models and some semiotic approaches were built on this 
assumption.

To check the validity of this assumption we can make a juxtaposition test. It 
enables to answer two very simple questions.

(Q.1)	 Can we juxtapose the object itself and its representations?

This seems natural since it amounts to comparing a representation with the object it 
represents.

(Q.2)	 When we juxtapose different representations can we recognize whether 
they are representations of the same object or not?

This means presenting different representations at the same time or in parallel, as 
we see in encyclopedias, magazines, textbooks, and web pages that sometimes 
practice this up to kaleidoscopic vertigo.

We can do this test first with material objects and elementary mathematical 
objects. Would the results be the same to the first question in both cases?

2.1.1  �The Juxtaposition Test with a Material Object: 
The Photo Montage of Kosuth

Look at this photograph taken by Kosuth, in 1965 (Fig. 2.1).
It is the result of two successive pictures. The first picture is that of a chair on 

which we can sit. This picture is then fixed to the wall, next to the chair and, on the 
other side, a post explaining the word “chair” is fixed on the wall. The second photo 
shows this montage. It creates an effect of placing in abyss (mise en abyme) the 
iconic representation of the chair.

The paradox of this photo is that, somehow, it erases any distinction between 
representation and object, placing the object and its various representations on the 
same plane, as it is indicated in the caption of this photo: “One and three chairs”. 
This paradox goes against the example considered by Plato to highlight the episte-
mological requirement on which all knowledge is based on: do not confuse the 
object and its representation. For trees by a river and their reflections in the water 
remain separated and quite different as two pages of an open book and, unless we 

2.1  Two Epistemological Situations, One Irreducible to the Other, in the Access…
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are not fully aware, we do not confuse any real thing with its images. However, on 
the photo of Kosuth the real chair does not overlap completely with its representa-
tions because it is in the center, and it is the first element of a setting that falls into 
the abyss.

The main interest in this photo resides in the fact that it juxtaposes a non-semiotic 
with a semiotic representation, i.e., a photo and text describing what a “chair” is. We 
could indeed join other possible semiotic representations in this setting. For exam-
ple, the mounting template of free chair kits, the arrows to be drawn to connect the 
different representations between them and the material chair placed against the 
wall. We may have then “one and n chairs” (Fig. 2.2).

First, Kosuth’s photo montage illustrates perfectly the two characteristics of the 
representations (P1) and (P2) we saw in the previous chapter. There are many pos-
sible representations of the same object, and the diversity of representations depends 
on the systems that allow their production.

It is observed that for material objects, there is a direct and immediate access to 
the objects themselves, and we can juxtapose them with their different possible 
representations.

The classic cognitive models, as well as the didactic sequence organizations, 
start from this empirical epistemological situation. They explain in which order the 
transition activities between the different types of representation must be organized 
from direct experience of the objects themselves, in order to make students “con-
struct scientific concepts”.

Fig. 2.1  “One and three chairs”: the juxtaposition of the real chair and its representations

2  Mathematical Activity and the Transformations of Semiotic Representations
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2.1.2  �The Juxtaposition Test with the Natural Numbers

Let us now consider a natural number. The question here is whether the first natural 
are perceptually accessible, unlike larger ones that are only be accessible by using 
semiotic number systems. Let us taken again the example of integer representation 
given in the preceding chapter (Chap. 1, Fig. 1.7). We can add the mother tongue 
words designating integers to the units marks and decimal system. So get the fol-
lowing justaposition (Fig. 2.3).

In this juxtaposition of eight “presentations” of the same number, which one 
constitutes the perception of the number itself and which presentations would be 
only representations?

JUXTAPOSED ELEMENTS EPISTEMOLOGICAL VALUE  of the juxtaposed elements

1. A chair against a wall. (1) The object itself to which we have access independent of its 
representations.

2.   A photograph of this chair.

3. A text from the dictionary
     explaining the word "chair."
4. The drawings are showing 

how to assemble the different 
parts of the chair.  

5. The arrows on the wall are 
establishing the connections 
between {1. 2. 3. 4.}.

and its different representations 

NON SEMIOTIC                        or                       SEMIOTIC

(2) An image produced physically 
by a photographic camera.  

(3)   A verbal description

(4) Another type of image, produced by 
drawing traces.

(5) A scheme (of the "conceptual 
network" type?).

Fig. 2.2  The juxtaposition test for a material object

Free arrangements of unit 
marks into spatial configura-
tions: MATERIALS OR DRAWN 

ITEMS (PSEUDO-OBJECTS)

Verbal denomination of 
numbers in mother tongue: 

ORAL (MENTAL)
PRODUCTION OF WORDS

Double internal organization: 
position and base: invention of “0”.

WRITTEN FORM OF EXPRESSIONS 
COMBINING DIGITS

Lexicon varies 
considerably according 

mother tongues

verbal denomination of 
numbers 

in the decimal system : 4 “four »

”0” is not pronouced in the

in the binary system: 100

in a fraction form of
the decimal system:    64/16

Fig. 2.3  Juxtaposition of “presentations” of an integer

2.1  Two Epistemological Situations, One Irreducible to the Other, in the Access…
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Husserl and Wittgenstein consider that clusters of unit marks are the first percep-
tion or intuition of numbers or at least their “proper” representations.1 Nevertheless, 
it is difficult to consider the clusters of unit marks as numbers. They only represent 
numbers for those who can perform a counting operation. This operation is com-
plex. It requires some specific conditions:

•	 discerning separately and successively each element of the cluster,
•	 matching each of all the elements with one word of a sequence of words always 

spoken in the same order,
•	 attributing to the cluster of marks the value of the last term enumerated, which 

means, according the counting context, either the ordinal or the cardinal.

The unit marks, which can be stones or fingers, take the place of any material 
object. In other words, the counting operation mobilizes THE COORDINATION 
OF TWO DIFFERENT REPRESENTATIONS: for any cluster of marks units a set 
of verbal denominations and/or written expressions combining digits. The unit 
marks fulfill only two functions. They constitute a kind of external memory of the 
counting, and they provides an immediate synthetic apprehension of the collection 
of counted material units.

In summary, the first natural numbers are given as objects only in a counting 
activity of unit marks, which requires an explicit or implicit semiotic production. 
None of these kinds of representation alone can be considered the natural numbers 
themselves. The next chapter shows that the same thing happens with the simplest 
geometric objects. They are not given perceptually but require specific operations, 
which, to be carried out, go against the intuitive operation of the perceptual Gestalt 
recognition.

The answer to the first question of the juxtaposition test is problematic. Because 
the access to the numbers is not direct, but must go through extremely varied semi-
otic representations, ranging from the most rudimentary verbal descriptions to more 
complex semiotic systems. This epistemological situation of empirical inaccessibil-
ity of mathematical objects is radically different from the epistemological situation 
of access to all the other objects of scientific knowledge. There is no surprise here, 
because mathematics begins when we do not limit ourselves to what is given con-
cretely or physically any longer, but when we put it in the framework of what we can 
conceive as possible.

The second question concerns the recognition of the same object in very different 
representations (Q.2). Does this recognition depend on the same processes in both 
epistemological situations? In other words, can we still apply the empirical analysis 
models of knowledge acquisition to the mathematical objects, whose accessibility is 
semiotic and not empirical? This question is not theoretical. Any organization of a 
sequence of activities for student’s learning involves, implicitly or explicitly, an 
answer to that question.

1 Husserl, E. (1891). La philosophie de l’arithmétique. Trad. J.  English. Paris: PUF, 1972. 
Wittgenstein, L. (1983). Remarques sur les fondements des mathématiques. Paris: Gallimard, 
1983, p. 138–145.

2  Mathematical Activity and the Transformations of Semiotic Representations
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2.1.3  �How to Recognize the Same Object in Different 
Representations?

This question translates to the cognitive level the fundamental epistemological 
requirement of never confusing the representation of the object with the represented 
object. Two different semiotic representations of the same object can always be 
taken for representations of two different objects because their respective contents 
are quite different or, on the contrary, two representations of two differents objects 
for representations of the same object because their contents are similar. How can 
we know, then, when we are facing two representations whether they are representa-
tions of two separate things or of one and same thing?

The cognitive difficulty results from the fact that two different representations do 
not have or do not explicitly present the same features of the object they represent. 
Because even for images, the representation can have been produced as if the object 
was seen from the front, profile, back, etc. And we know that in the schematics 
produced for scientific observation purposes, for example, in anatomy or geology, 
the drawings of the same object can appear to have nothing in common. Instead of 
images, Frege used as an example the completely different symbolic expressions of 
the same number.2 In other words, when we talk about representations, we speak of 
this complex relationship in which the content of the representation depends on both 
the kind of the representation used and the represented object used:

{{CONTENT of representation, SYSTEM of semiotic representation} repre-
sented OBJECT}.3

In the empirical accessibility situation, this cognitive difficulty is easily over-
come because the object itself is always accessible outside its representations. 
Therefore, we can juxtapose it, i.e., associate it with each of the representations 
that we can produce. Thus, in anatomy and geology, we can always present a speci-
men of what is represented, i.e., a material object to associate to the different 
images (Fig. 2.4, left column). There is no more difficulty to recognize it in the 
different schemes or cuts. The association between the representations and the 
object itself, the words and the designated things, a work and its model etc., appear 

2 We quote two very clear passages from Frege. The first is taken from the article ‘Fonction et 
concept’, published in 1891. “The difference of the designations is not a different reason to be dif-
ferent from the designated … This tendency to not recognize as object what is not perceived by the 
meaning has as consequence to mistake the signs of the numbers for the numbers themselves, for 
the true objects of research, in which case 7 and 5 + 2 would be different.” The second is taken 
from the article “Sens et denotation ‘, published in 1892.” We would only know how to distinguish 
a = a and a = b if the difference of signs corresponded to a difference in the way the designated 
object is given” (Frege, G. (1971). Ecrits logiques et philosophiques. 1 Trad. Imbert. Paris: Seuil, 
1971, p. 81, 103).
3 Duval, R. (2008). Eight problems for a semiotic approach in Mathematics Education. In: Radford, 
L.; Schubring, G.; Seeger, F. (Eds.). Semiotics in Mathematics Education; epistemology, history, 
classroom and culture. Sense Publishers, p. 39–61.

2.1  Two Epistemological Situations, One Irreducible to the Other, in the Access…
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as the fundamental cognitive process to “make sense” and to verify, and hence, 
acquire new knowledge.

This cognitive operation is not possible in the special epistemological situation 
of non-empirical access to mathematical objects. We can only juxtapose representa-
tions, but never an object and its representation, because the objects of knowledge 
are not accessible outside the semiotic representations. Also, we need to have a 
second representation whose content is different from the one of the first, so we can 
no longer confuse the mathematical object and its representation. But, the question 
that arises is how can we recognize the same object in two representations whose 
contents have nothing in common (Fig. 2.4, right column)?

There is, evidently, a local response based, for example, on an operation. To find 
out whether “3/4” is the same number as “0.75” it is sufficient to divide 3 by 4. But 
this may be less obvious while finding the corresponding fractional writing to 
“0.76”. However, everything changes when there is no more calculation operation 
to switch from one representation to another. This is the case when two representa-
tions are semiotically heterogeneous, when their respective contents mobilize units 
of meaning of different kinds (words, symbols, 1D and 2D shapes) and/or when the 
organization of these units of meanings are of different natures (based either on 
syntagmatic combinations, or spatial relations and positions). We shall see the 
importance of these two criteria in the classification of representation registers 
(Chap. 4). In this situation, the recognition of a single object represented by two 
representations, A and B is based on a one-to-one mapping between the respective 
meaning units of the two representations.

Take for example a graduated straight line. It has at least three types of visual 
units: two kinds of marks corresponding to two scales of magnitude—the first is the 
division into units, the second is the first division of each unit—and the intervals 
between the marks for each division scale. We can thus realize an one-to-one map-
ping between the end of each interval and the sequence of digits 1, 2, 3, … or 0.1, 
0.2, 0.3 … We shall see that realizing such an one-to-one mapping between the 
“number line” and the relative numbers is more complex than is generally assumed. 
In other words, realizing a one-to-one mapping between the meaning units, which 

CONTENT of
representation 

A 

CONTENT OF a
representation 

A’
AN OBJECT

ACCESSIBLE

perceptibly  
or 

Instrumentally

association a 
?    
   ? 

TWO
OBJECTS or
THE SAME?

An OBJECT 

INACCESSIBLE

perceptibly  
or 

Instrumentally
association b CONTENT of a

representation 
B 

CONTENT OF a
representation 

B’

Fig. 2.4  Recognition of the same object in two epistemologically opposite situations

2  Mathematical Activity and the Transformations of Semiotic Representations



29

constitute the respective contents of two different representations, is the cognitive 
condition to be able to recognize the same object in these two representations.

Two questions appear cognitively crucial so that the students understand and 
acquire the mathematical way of thinking.

(Q.3)	 How to make one learn to DISCRIMINATE THE UNITS OF MEANING 
RELEVANT IN THE DIVERSITY OF SEMIOTIC REPRESENTATIONS that are 
mobilized in mathematics?

(Q.4)	 How make one become aware of the central role of the one-to-one map-
ping operation between the meaning units discriminated in two different 
representations?

Contrary to what has been always postulated in mathematics education, dis-
crimination of the relevant units of meaning in different representations does not 
result from the acquisition of concepts, but it is the prerequisite for this acquisition. 
Similarly, the search for the “right” representation or even the juxtaposition of 
multiple representations are only a misleading help. The “right” representations 
cannot be associated with the mathematical objects they represent because these 
are not directly or empirically accessible. The only possible means to access 
empirically inaccessible objects is to realize the one-to-one mapping cognitive 
operation between meaning units of the semiotic representations used, whatever 
they may be.

2.1.4  �A Fundamental Cognitive Operation in Mathematics: 
One-to-One Mapping

We don’t have paid sufficient attention to the central role played by the one-to-one 
mapping elements between meaning units of two different semiotic representations. 
This operation is the only one that is crucial from both the mathematical and cogni-
tive viewpoints.

The importance of this operation in mathematics appeared with the semiotic 
revolution, especially with the development of the Analysis of the notion of func-
tion. But to illustrate this two-sided operation, we shall consider the simplest and 
most spectacular example, the historically famous question: are there more natural 
than even numbers or as many even as many natural numbers? This question seems 
absurd to most educated people, the inclusion of the even numbers seems so con-
ceptually evident.

The mathematical response consists of one-to-one mapping between natural and 
even numbers, by paralleling them over two lines to remove the obstacle of the 
inclusion of even numbers. But this raises the visual obstacle of a twofold occur-
rence of some objects: any even number occurs in both sequences! It was when they 
became aware of COUNTING ONLY THE COLUMNS AS MEANING UNITS 
(indicated by the arrows) that the students (12–13 years old) had the insight of the 

2.1  Two Epistemological Situations, One Irreducible to the Other, in the Access…
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one-to-one mapping.4 We can analyze this discovery as a twofold one-to-one map-
ping between two kinds of semiotic representation:

•	 a mathematical one, which leads to the notion of infinity as a set equipotent with 
one of its own parts,

•	 a cognitive one, which leaves no trace because it is made orally or even just 
“mentally” (Fig. 2.5)

Of course, from a mathematical point of view, the first correspondence is the 
only thing that matters because it breaks the inclusion linked to the representation 
of the sequence of natural numbers. But, from the cognitive point of view, the sec-
ond is the crucial one. Without an explicit or implicit counting of the new meaning 
units shown by the arrows, the mathematical one-to-one mapping between one nat-
ural and one even number cannot be understood.

The only cognitive operation for making out new properties, or giving access to 
mathematical objects is the one-to-one mapping meaning units from two semiotic 
representations differing from each other by their respective contents. The central 
character of this operation is always ignored because the classical explanation of 
the formation of concepts based on the perception of material objects, and there-
fore on the differences or similarities of sense data, seems the most obvious acqui-
sition processes for common knowledge. Piaget’s analysis of the genesis of the 
number for the child was the seminal pattern. Although it resorted to this cognitive 
operation to prepare the famous proof test of the acquisition of number notion, this 
reduced its importance in two ways. First, the operation is limited to the one-to-one 
mapping of two rows of pearls, whose spacing of one can vary noticeably (Fig. 2.3, 
column 1). The invariance of the answers is criterion for the acquisition of the 
cardinal number notion. And above all, one-to-one mapping has no role in this 
acquisition, which is explained by two other operations: classification and 
seriation.

4 Duval, R. (1983). L’obstacle du dédoublement des objets mathématiques. Educational Studies in 
Mathematics, 14, p. 385–414.

oral or mute 
verbalization 

DISCURSIVE ONE -TO -ONE
MAPPING  by counting the

new meaning units  One two three four ….. 

Paralleling of two 
sequences of numbers to 

create new meaning 
units: the vertical 

associations of two 
numbers 

VISUAL ONE -TO -ONE
MAPPING  between
the units of each

sequence

1 2 3 4 ….

2 4 6 8 …. 

Fig. 2.5  Twofold one-to-one mapping between two kinds of semiotic representation
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The mathematical and cognitive operations are related to the elements of the 
respective contents of two semiotic representations. But, the cognitive operation 
diverges from the mathematical operation in that it cannot objectively defined once 
and for all, because there are multiple ways to discriminate the meaning units, 
which make up the content of the semiotic representations. Its outcome is the recog-
nition of the object represented by two different representations.

2.2  �The Transformation of Semiotic Representations 
at the Heart of the Mathematical Way of Working

In general, the answer to the question—what does it mean “to do math?” is: “solve 
problems”. Solving problems is, therefore, placed in the forefront of organizing 
classroom activities. However, this response is in reality vague. It does not say 
anything about the mathematical way of working that should enable anybody to 
solve problems. Thus, the didactic analysis of solving problems is local and mostly 
retrospective. It starts from the mathematical solution of a problem posed to explain 
all the properties that must be discovered and used during the research phase. But, 
the steps to be performed during this stage are still a black box for many students. 
To understand the solution when it is explained by the teacher or another student 
does not allow us to grasp how we should have handled the problem in order to 
solve it by ourselves. Why be surprised then that many students find themselves 
back in the same situation of incomprehension or mental block when they face a 
problem previously explained, but whose the context or one of its conditions has 
been changed?

The key feature of mathematical of the mathematical work consists of 
TRANSFORMING THE SEMIOTIC REPRESENTATIONS, given or obtained in 
the context of a proposed problem, into other semiotic representations. This is 
where mathematical activity differs from other sciences such as physics, astronomy, 
biology or geology, etc. This explains why, in mathematics, a semiotic representa-
tion is only interesting insofar as it can transformed into another representation, 
and not first because the object it represents. This key feature of the mathematical 
work involves a complete reversal of the common cognitive viewpoint about the 
representations and particularly about the semiotic representations. Semiotic repre-
sentations are not only useful for working with or about the objects. If we want to 
describe, from a cognitive point of view, the mathematical way of working in math-
ematics, we must focus on the transformations of semiotic representations and ana-
lyze the different kinds of transformation.

2.2  The Transformation of Semiotic Representations at the Heart of the Mathematical…
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2.2.1  �Description of an Elementary Mathematical Activity: 
The Development of Polygonal Unit Marks 
Configuration

The representations produced only with only unit marks offer no restrictions to any 
spatial arrangements we want to organize (Fig. 2.3, column 1). Starting with a sim-
ple rule, one can with a token, for example, add other tokens to mark the vertices of 
a square and reiterate … We immediately see that there are two possible mathemati-
cal descriptions of polygonal configurations we have produced: one that is the num-
ber of elements of each configuration and another, the evolution of the configuration 
sequences thus generated. Of course, using a literal notation, we can generalize the 
successive numerical descriptions into a formula.

Here we will limit ourselves to the analysis of the transformations of representa-
tions that are involved in a single numerical description activity of polygonal con-
figuration. We will modify slightly an elementary classical situation, by changing 
the development procedure first, and, then, the shape of the polygonal configuration 
(Fig. 2.6).

DEVELOPMENT 
PROCEDURE of a given 
polygonal configuration

Numerical description of 
EACH CONFIGURATION

Numerical description of 
SUCCESSIVE INCREASES

1

1

4 9 

+ 3 +5

Fig. 2.6  Double numerical description of the development of a polygonal configuration

In the first description, the counted units are the unit marks of each figure. In the 
second, the counted units are those we need to join in the penultimate figure to 
obtain the last, i.e., the difference of the unit marks between two successive figures 
(the white tokens on the figures above). So we have two numerical descriptions pos-
sible according to whether one-to-one mapping is made with the square or only two 
sides of the new square obtained.

We can make a first observation regarding the description of the successive 
increases. To carry out this activity with a material, we need to have tokens of two 
different colors, one color for the already placed tokens and another for those placed 
later. If the tokens are of the same color, we must distinguish the tokens added from 
the previously placed in each successive configurations. The tokens of the same 
color hide the successive increases rather than show them. We need, therefore, to 
keep in mind the visual memories of the previous configuration in order to compare 
it with the new configuration now perceived on the desk, i.e. to shift the focus of 
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attention from any configuration to the successive increases! This forces us to won-
der about the value of the help that many of the proposed material handlings 
contribute.

We change now very slightly the transformation procedure. Will the description 
of the successive increases also be simple? And is it still the same type of problem? 
(Fig. 2.7).

The counting activity requires to focus on the figural units, i.e., the triangular 
sub-configurations of tokens instead of the only tokens. But, here, a perceptual con-
flict arises regarding the recognition of the shape of the figural units to be counted. 
We need to use as figural units the triangular sub-configurations while the dominant 
overall shape is a square. We therefore cannot count the two sides of the new square 
as in Fig. 2.6.

This first variation of the task allows an important observation. Each polygonal 
configuration is suitable for the distinction of QUITE DIFFERENT FIGURAL 
UNITS POSSIBLE, but recognizing some of them excludes the correlative recogni-
tion of others. The question is, then, to know which will allow to choose from 
among the many possible figural units, those that are relevant to the task. It is clear 
that the knowledge of the geometrical properties of the square and triangles cannot 
help to discern and choose.

Let us apply now this transformation procedure by “successive encircling” by 
using regular hexagons instead of tokens. As this new task is very complex to carry 
out without using software, we replace the hexagons by points. We then have a 

A variant of the previous procedure: 
an "encircling"

Numerical description of EACH 
CONFIGURATION

(1 x 8) + 1 (3 x 8 ) +1

8 triangular sub-reconfigurations to 
distinguish by the conversion into a 

numerical description

Transformation of the TRIANGULAR 
SUB-RECONFIGURATIONS of each 

increase.

Numerical description OF THE 
SUCCESSIVE INCREASES (3 x 8) +1 (6 x 8) +1

Fig. 2.7  First variant of the development of the polygonal configurations
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variant of the previous task (Fig. 2.8). From a cognitive point of view, is this still the 
same task?5

Here, the cognitive activity required by this task presents an important difference 
compared with the preceding variant. First, it is necessary to introduce a transitional 
auxiliary representation, that of a tree to see how one-to-one mapping between the 
numerical description and the successive encircling procedure by regular hexagons 
is possible. It is no longer a “geometric” reconfiguration, because it is not the polyg-
onal configuration and sub-configuration shapes that matter now, but the points of 
branching and the number of branches of each point instead.

The comparison of these three development situations of polygonal configura-
tions shows that a very slight modification of a mathematical task at hand leads to 
important differences in the cognitive activity required to carry out the task. In the 
three situations the task is based on the same operation of one-to-mapping (red 
arrows) between tokens or figural units and numerical expressions. However two 
basic kinds of semiotic transformation are required in the variant situations. The 
first is the need of an internal shape transformation of the geometrical configuration 
(Fig.  2.7, dark dotted arrows) before performing the one-to-one mapping (red 
arrows). The second is the need of introduce quite different representations (Fig. 2.8, 
blue arrows). Thus, in both variants, two operations of one-to-one mapping, one 
internal shape transformation (Fig.  2.7) are required to find out the numerical 

5 Sabatin, A. (2004). L’âme de géomètre des abeilles. Les formes de la vie. Dossier pour la Science, 
44, 72–77

paving a disk (or the cells of a beehive)
(Sabatin, 2004)

Figural units to discriminates the successive
increases : the branching of tree

(the points of the branches correspond to the
hexagons)

Numerical description of the successives 
increases.

“Encircling”
(1)
(2)
(3)
(4)

Number of branches
0

(1 ¥ 6)
(2 ¥ 6)
(3 ¥ 6)

Fig. 2.8  Second variant of the development situation of polygonal configurations
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description of the given polygonal configuration development. The initial task (Fig. 
2.6.) is more simple because none of these two kinds of semiotic transformation 
(dark dotted arrows and blue arrows) is required, even if the numerical description 
asked requires an one-to-one mapping with real objects or marks units (Figs. 2.3 
and 2.6).

Whether blue, dark or red (change of the kind of representation, internal transfor-
mation of representation, one-to-one mapping between meaning units from two rep-
resentation contents), all the arrows mark the cognitive activity that a student must 
use, either to be able to succeed when solving a mathematical task or to understand 
the solution. The first question we ask is whether students facing semiotic represen-
tations, whatever they may be, can discriminate the different units of meaning that 
form the contents of each representation, in order to recognize the different possible 
one-to-one mapping with other quite different representations and whether when 
looking at figures, diagrams, they can see other spatial organizations besides those 
imposed by the given configuration. Such transformations of semiotic representa-
tions are only required in mathematics and can be truly practiced only in 
mathematics.

The mathematical way of working can be analyzed here like the transformations, 
in parallel, of at least two kinds of semiotic representations of numbers, each fulfill-
ing a role different from the other. Some have the heuristic role of exploitation, or 
intuitive role, in relation to the other, the latter having a description role. But in real-
ity, to make these transformations, we must implicitly or explicitly go back and forth 
constantly between the two kinds of representations. Therefore, they can all perform 
locally a function of anticipation or control, without the possibility of attributing 
these cognitive functions, respectively, to configurations of token units or numerical 
descriptions. At later stages of the mathematical work, it is the numerical descrip-
tion that will be privileged and will allow another kind of transformation: using 
letters to condense a sequence of local numerical descriptions into a general 
description.

Is it possible to generalize this analysis based on the variation of a mathematical 
activities? The two kinds of representations required by the mathematical tasks of 
polygonal configuration development may seem too narrow. Suppose we no longer 
practice spatial arrangements about unit marks, but about the signs of decimal num-
bers. We then have the famous Triangle of Pascal or the Gauss’ solution for the sum 
of natural numbers, with a figural unit count activity that allow a more direct pas-
sage to the formulas. And, in the field of combinatorics, we find the same semio-
cognitive gestures of the mathematical work. Of course, there is a limitation, we are 
in the discrete and countable field. As we move to the magnitudes, measurements or 
the mathematical continuity, do we find the same semio-cognitive gestures? 
Mathematics mobilizes many other types of semiotic representations. Before study-
ing them, we must revisit the question of the relationship between the semiotic 
transformations and mathematical activity from another angle.
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2.2.2  �Representational Transformations Specific to each Kind 
of Semiotic Representation: The Case of Representation 
of Numbers

We just saw that the mathematical activity is the transformation of semiotic repre-
sentations. But, we also found that the mathematical activity can mobilize very 
different semiotic representations to represent the same objects. We can then ask 
ourselves if, in fact, we perform the same operations with the different semiotic 
representations or, on the contrary, we perform different operations. The question 
arises when we switch the kind of semiotic representation (Figs. 2.6, 2.7, and 2.8, 
blue arrows).

To answer this question, take the example of the representation of numbers, 
because there is no notion of number without notion of operation that can be carried 
out on the numbers. Do we make the same calculations when we switch the repre-
sentation of numbers? This question is only interesting in the elementary situations 
where the answer is not obvious: the first natural numbers that we can represent 
either by the unit marks or decimal number system, and the operations with the rela-
tive integers.

2.2.2.1  �Operations with Small Natural Numbers

There is a fundamental difference between the representations using unit marks and 
those produced with either the decimal or any other base n system.

Representations by unit marks are only a support for operations that are external 
to the unit marks: regroup them or separate them into clusters, arrange them accord-
ing to the polygonal configuration (Fig. 2.3), or order them at regular intervals over 

Two representations of 
numbers by unit marks 

Three operations to carry out  addition or 
subtraction 

Symbolic writing of 
the operations in 
decimal number 

system 

II  III IIIII
successive counting of each one of three 
clusters of unit marks 

The inversion of the counting order differentiates 
addition and subtraction

2 + 3 = 5 

1 2 
Two types of significant 
visual meaning units:  

POSITIONS and
INTERVALS

3 4 5

Reading the digit at the starting position, after 
counting the intervals (or the steps to perform 
ahead), and finally reading the result at the 
arriving position 

For the subtractioon: reading the position of the  
first digit, after counting the number of intervals  
indicated by the second digit, and reading the 
result at arriving position 

5 - 3  = 2 

Fig. 2.9  The additive operations with unit marks
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a straight line and encode them, that is, to fix a counting (Fig. 2.9). As either unit 
marks or digits are used, we do not perform the same external operations to add or 
subtract two natural numbers from one another.

To add and subtract with representations using unit marks, there are three opera-
tions, which are not the same whether the unit marks are associated with digits or 
not (Fig. 2.9 column 1). And in the case of the number line, the numbers are repre-
sented by two kinds of visual meaning units. But in both cases the calculation is not 
based on any change in the representation of numbers.

However, with the representation of the numbers in the decimal system, the oper-
ations become intrinsic to the representation system and are carried out by transfor-
mations of the digital expressions of numbers. This appears when we consider the 
numbers that exceed the base system and, therefore, require two digits or more. The 
limit of the base is marked by this sign that does not refer to a number: “0”. 
Calculation operations rest on the transformation of two digital expressions that 
take into account the limits of the base and the position of digits in order to get a 
third digital expression: 13 + 18 = 31. More generally, a semiotic system of repre-
sentation of numbers is characterized by its calculation power. The calculation algo-
rithms are related to the operations intrinsic to each system of representations of 
numbers.

From the representations of numbers by unit marks to the true use of the decimal 
system, there is the counter-intuitive semiotic threshold of ‘zero’. An always hidden 
threshold and whose difficulty is underestimated. It resurges when it is asked to 
multiplying or dividing a number by a factor of 10 or a factor of 100 etc. It is useful 
to remember that multiplication, division or square root operations cannot be made 
with the unit marks, but require a representation system involving a double organi-
zation (Fig. 2.3).

Therefore, there is a small overlapping zone in which the operations appear to be 
the same, whether we use a representation of the numbers by the unit marks or a 
decimal representation of numbers. It concerns the natural numbers that can be 
represented above the threshold of ‘zero’, i.e., whenever it is not needed to mobilize 
the calculation possibilities provided by of the decimal system. As if, for example, 
we would drive a Ferrari only in first gear and just touch the accelerator. For all the 
numbers in that zone, there is not only a perfect congruence, i.e., complete transpar-
ency between the different representations of numbers, but the additive operations 
may be the same whatever the representation is used. Can we then speak of the 
intuitive or concrete character of the first numbers and oppose it to the symbolic 
nature of the knowledge of other numbers, as was done by Leibniz and Husserl, or 
as it is still done in some didactic approaches? To think so is to forget two essential 
things. The first concerns the semiotic representation of numbers. The zero thresh-
old varies according to the adopted system. Why, then, a base ten would be more 
intuitive than a base two, a base seven or a base twelve? The second concerns what 
cognitively we consider intuition. Simultaneous visual perception of unit marks? 
But then, can the number vary considerably depending on its disposition or the dis-
tance that separates them? The visual perception of a successive series of unit 
marks? We fall back on the issue of the capacity of short memory, essential for the 
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perception of successive meaning units when listening to a sentence or a phone 
number for example. There is nothing more uncertain and more variable than the 
dividing line between what is intuitive and what is not, between what is concrete 
and what is not.

2.2.2.2  �Operations with Relative Integers

The extension of the set of natural numbers to the relative integers requires to 
encode the decimal notation. It consists of using the operation symbols “−” and “+” 
for each natural number. This encoding introduces a new dimension to the value of 
the opposing sign numbers. For example, “+1” is not just the opposite of the nine 
other digits that can be used instead of it, but gets a supplementary value, totally 
different, that of the opposite to “−1”. This opposition is equivalent to reversing the 
order of unit marks on a straight line, as an image in a mirror (Fig. 2.10).

Of course, this dual representation of the relative integers may seem incomplete. 
The “0” is missing, which brings together the two representations to constitue what 
is called the “number line”. So the symbols “+” or “−” mean respectively the posi-
tion value “to the right” or “to the left” of the origin “0”. But, would it be that 
simple? We cannot forget that the number representations are only interesting inso-
far as they allow calculation. The question is whether the calculation process is the 
same with each of these two representations, the number line and the encoded digits 
of the decimal system, or not.

The operations of addition and subtraction of positive integers remain the same 
as those described above in Fig. 2.9: they corresponds respectively to “steps for-
ward” and “steps backward” (Fig. 2.10, horizontal arrows). It is the reverse for the 
addition and substraction of negative integers. But, in both cases we do not get over 
the barrier of “zero“. Also, introducing here the “0″ origin to merge the two repre-
sentations into the “number line” is a cognitive jump that complicates the under-
standing of these operations.

The numerical line is necessary only when we want to add or subtract a positive 
integer and a negative integer since it is necessary to overcome the barrier or limit 
of “zero“. But here everything gets complicated because we fall into complete semi-
otic ambiguity, as we can see it comparing the below calculations (Fig. 2.11).

The semiotic ambiguity is between the position value and the interval value for 
the numbers, and between the encoding of the decimal numbers and the operations 

Negative integers

-5 -4 -3 -2 -1 1

Positive integers 

2 3 4 5

Fig. 2.10  The negative integers as a reverse mirror of positive integers

2  Mathematical Activity and the Transformations of Semiotic Representations



39

steps forwards or backwards for the two symbols “+” and “−” . To add, it is neces-
sary to start from the position of the positive number and moving as many steps 
backwards as indicated by the negative number. The result is the number of the 
interval between the respective end positions of the two opposite arrows. To sub-
tract, it is necessary to start from the position of the negative number and moving as 
many steps forwards as indicated by this negative number. The result is number of 
intervals between the positions of the negative number and positive number. It is 
also necessary to take into account the fact that intervals are oriented. So, if we had 
considered the operations

	
-( ) + =¼ -( ) +( ) =¼3 2 3 2, and

	

the orientation of the interval is translated as positive or negative number. For addi-
tion, it depends on its position on the right or on the left side of the origin “0”. For 
subtraction operation, the value of the interval is always a positive number. Thus, we 
see the double semiotic ambiguity that the number line arises compared to all other 
representations.

Let us now look at the symbolic writing of operations. We see, immediately, an 
increase and diversification of the possible numerical expressions for these two 
operations with the relative integers. Two factors explain them. First, the operation 
(addition or subtraction) and second, the fact that the operation concerns two inte-
gers, both positive or both negative or one positive and one negative. We therefore 
get eight different numerical expressions possible, that we can represent in a table. 
To construct such a table it is necessary not to change the absolute value of the num-
bers and keep them in the eight possible numerical expressions (here |3| and |2|). It 
is the condition to compare the different possible numerical expressions of the oper-
ations and their results (Fig. 2.12).

Two observations are obvious on this table.
First, we obtain the same result in two different ways for each line (A1 and C1, 

etc.) whether performing an addition or subtraction. The comparison of two numerical 

Position

Position

3 – (–2)   = 5 (interval)

3 + (–2)    =   1 (interval)

 interval

Interval  

Position

position

3 4 5210-1-2-3-4-5

Fig. 2.11  Elementary, my dear student!
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expressions on every line of the table shows that subtracting a number is the same 
as adding its opposite, thus (C1 and A1, A2 and C2, etc.). It is, of course, AN 
IMPORTANT POINT FOR LEARNING ALGEBRA, since it is this transformation of 
expression that allows changing the term of an equation from one side to the other. 
We may also add a third column to the table in which the two numerical equalities 
of each line are changed into a third. For example, for the first line and the second 
line:

	 3 3 ( )+ = - -2 2 	

	
3 2 3 2- = + -( ) 	

So, we have here an example of the transformation mechanism of semiotic rep-
resentations described by Frege as characteristic of mathematical thinking. Two 
expressions whose content meanings are different can be substituted one for another. 
On each line of the table, the numerical expressions are obviously different, since 
they do not use the same symbols of operation and nor does the same relative inte-
gers, but they both refer to the same number. We can replace one for the other in any 
equation in which one of the two expressions occurs.

Second, the two columns correspond to the cognitive jump from the visual rep-
resentation of the half-lines to the number line. There is no observable difference 
between the numerical expressions of the columns. But if we look at their respective 
visual representation support we observe that the visualization of the additive opera-
tions with the relative integers becomes very complex. We face a semiotic overload 
of arrows above the numerical line to indicate the position of numbers, the direction 
of the steps to be done that is always the same as direction indicated par the symbol 
of the operation to be done, the interval value (Fig. 2.11). This semiotic overload is 
too often ignored in the didactical use of the number line. Didactic use of number 
line is so simplified that most arrows needed for indicating all the cognitive opera-
tions involved in its support use are missing. Beyond this specific case it raises an 
important question about the teaching and use of didactic or pedagogical tools: can 
we use different kinds of representations without blurring the means of visualiza-
tion or expression transformation specific to each kind, and without short-circuiting 

Operations convertible into 

steps whether on the positive 

half  line, or on the negative

Operations convertible into 

steps on the numerical line by 

overcoming the barrier of "zero"

A1    3 + 2 =  5 
A2    3 – 2 =  1

C1    3 – (–2) =  5
C2    3 + (–2) =  1

B1    (–3) + (–2) =  (–5) 
B2    (–3) – (–2) =  (–1)

C3    (–3) – 2 =  (–5) 
C4    (–3) + 2 =  (–1)

Fig. 2.12  The variations in writing to represent the addition operations with relative integers
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the necessary realization of the one-to-one mapping between the meaning units 
from two representation contents?

2.2.2.3  �The Operations with Rational Numbers

There is an important semiocognitive gap between operations performed with the 
means of transformation of numerical expressions, which decimal number system 
provides and the ones provided by a graduated line, i.e., by mark units ordered on a 
straight line from the origin “0”. This gap increases as we move from operations 
with relative integers to operations with rational numbers.

R. Adjiage showed that, to carry out operations with rational numbers, one must 
use TWO GRADUATED STRAIGHT LINES with different scales of graduation: the 
one-to-one mapping between the position of the unit marks on one straight line and 
their positions on the other depends on the ratio of intervals of the two graduations.6 
What is essential is that the two graduations will be chosen independently of each 
other, without keeping the same ratio, as in the recurrent division of an interval. 
Changing the ratio is here the key point for the organization of learning situations, 
because fractions are the appropriate numerical expressions for the one-to-one map-
ping between the position of the unit marks on one straight line and their positions 
on the other. Thus, for a fixed graduation on the first straight line we may have 
several other lines each with different ratios and, for the position of an unit mark on 
this first line, we get different fractions indicating its corresponding position on the 
other lines 1/2, 3/5 or 5/7 according to the ratio of the graduations. So these different 
fractions can be compared without calculation, only by relating them to the first 
graduated straight line taken as a reference. Then we can see whether a fraction is 
greater or smaller than the unit interval of the first straight line, i.e., greater or 
smaller than “1” and also any other fraction. That does not only define the additive 
operations, but also the multiplicative ones, which are different from those that can 
be carried out with the fractional or the decimal writing.

2.3  �Conclusion: The Cognitive Analysis of the Mathematical 
Activity and the Functioning of the Mathematical 
Thinking

The cognitive analysis of mathematical activity focuses on the problems and the 
processes of mathematical understanding. But, the comprehension criteria are not 
exactly the same from the cognitive view point as from the mathematical one. From 
the mathematical viewpoint, comprehension begins with what is called 

6 Adjiage, R.; Pluvinage, F. (2000). Un registre géométrique unidimensionnel pour l’expression des 
rationnels. Recherches en Didactique des Mathématiques, 20(1), 41–88.
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“validation”, “justification”, “validation”, “demonstration”, according to the level 
of requirement. From the cognitive viewpoint, two essential conditions are neces-
sary so that we can speak of comprehension. First, FAST RECOGNITION  of the 
objects themselves through their multiple representations possible, and second, 
SELF-CONFIDENCE to begin exploring one one’s own possible ways in any new 
task and check their relevance. As long as these two cognitive conditions are not 
met, whatever is done or explained in mathematics remains for the students a bit like 
“dark matter”. There are therefore two key issues for the cognitive analysis of math-
ematical activity and the functioning of the mathematical thinking.

The first concerns the access mode to mathematical objects. In this chapter, we 
took the example of the numbers, but we could have also used the simpler geometric 
objects such as the elementary figures of Euclidean geometry, or functions etc. This 
issue is, first of all, epistemological. And, on this point, there is a misunderstanding. 
When we speak of epistemology, we think of intra-mathematical epistemology, 
essentially focused on the historical stages of the discovery and development of 
mathematical objects. There are thus epistemological studies of the different kind of 
numbers, functions, vectors, etc. But, here, it is not what this is about. The episte-
mological issue is not intra-mathematical but scientific, i.e., about the scientific 
knowledge in the heterogeneous range of its areas and methods. It is whether we 
have access to mathematical objects, whatever they are, in the same way as phenom-
ena and objects studied in physics, chemistry, geology, astronomy, or biology. In 
other words, it involves the implicit or explicit choice of a cognitive model of the 
functioning of thought. Can we use general cognitive models based on an empirical, 
direct or instrumental, access to the objects of knowledge to analyze the questions 
regarding mathematics understanding and learning, whereas access to mathematical 
objects is not empirical, but only semiotic? As the search for examples and counter-
examples shows, the criterion of reality in mathematics is not what is empirically 
given, but all possible cases that can semiotically represented or constructed. This 
issue has nothing theoretical. We have only to observe a student who should succes-
sively move from one 50 min session of geography to another of mathematics and 
then to another of geology or physics, etc. all this within the same day! Not only the 
objects of study are different, but also and more importantly, the ways of thinking 
and working.

The second key issue concerns the nature of mathematical activity, whatever the 
objects, areas or mathematical frameworks. What are we doing when we do math? 
Obviously to say “we are solving problems” does not answer the question, because 
this really means “solving mathematically problems”, which are mathematical 
problems even if they are presented as real-life problems! In fact, the crucial point 
is whether an objective description of mathematical activity is possible or not, 
regardless any claim based on the unverifiable obviousness of introspection. We can 
formulate it in two ways. What characteristics are observable? Or, what are the 
intellectual gestures that make you able to work mathematically?

We have seen that the transformation of semiotic representations is the process 
we find in all forms of mathematical activity. Whether to explore situations, solve 
problems or demonstrate conjectures, this drives the mathematical activity. The 
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development of mathematical activity depends on two factors: the variety of semi-
otic representations that can be used, and the need to produce and consider, alter-
nately or in parallel, explicitly or implicitly two quite different representations of 
the same object.

Taking as an example the most immediately accessible natural numbers, we have 
highlighted the need to take into account, as a priority, these two factors in order to 
analyze the cognitive processes underlying mathematical activity.

•	 the one-to one mapping between meaning units from two semiotic representa-
tions differing from each other by their respective contents ist the cognitive pre-
requisite condition to recognize whether two semiotic representations represent 
the same object or not.

•	 We cannot isolate directly the meanings units which make up the content of 
semiotic representations, and therefore, there are different ways to discriminate 
them. This depends on the organizational level on which it is focused.

•	 Some semiotic representations are mixed representations. They result from the 
superposition or fusion of two kinds of representations, the straight line and the 
unit marks for a numerical encoding of only some points on the line. We obtain 
thus many mixed representations: the number line, the graduated straight line (to 
measure), the real line. In this example, the mixed representations lead to con-
fuse contiguity (adjacency), consecution, visual continuum and mathematical 
continuum.

•	 In any semiotic transformation, it is necessary to distinguish the starting repre-
sentation and new representation produced, i.e. the arrival representation. This 
raises the question of whether the inverse transformation is cognitively equiva-
lent to the direct transformation, that is, whether semiotic transformations are 
reversible or not.

•	 There are two kinds of cognitive tasks in mathematical activity. Two semiotic 
representations differing each other by their respective contents are given or 
directly juxtaposed. Then you have to RECOGNIZE whether they are two repre-
sentations of the same object, or not. On the contrary, the semiotic representa-
tions that are given do not differ in kind: verbal statements or symbolic 
expressions, or geometrical figures, etc. Then you have to PRODUCE NEW rep-
resentations of the same object in another kind of representation. Solving prob-
lem always involves, explicitly or implicitly this cognitive task more or less 
complex.

These key points raise, of course, three questions. What kinds of semiotic repre-
sentations are used or can be used in mathematics? Do the two factors of semiotic 
transformations that are at the core of mathematical activity correspond to central 
processes of the cognitive functioning of thought? What method of analysis (both 
for the organization of observations and the interpretations of data collected) allows 
to study the cognitive phenomena related to mathematical understanding and learn-
ing? These three questions will be addressed in the following chapters.

2.3  Conclusion: The Cognitive Analysis of the Mathematical Activity…
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