Simplicial Topological Coding and Homology
of Spin Networks

Vesna Berec

Abstract We study the commutation of the stabilizer generators embedded in the
q-representation of higher dimensional simplicial complex. The specific geometric
structure and topological characteristics of 1-simplex connectivity are generalized to
higher dimensional structure of spin networks encoded in ordered complex via com-
binatorial optimization of a closed compact space. Obtained results of a consistent
homology-chain basis are used to define connectivity and dynamical self organization
of spin network system via continuous sequences of simplicial maps.

Keywords Spin network -+ Simplicial complex - Graph state - Combinatorial
optimization + Quantum code

1 Introduction

Spin networks [1-6] can be presented by purely combinatorial structures: one-
dimensional simplicial complexes with edges labeled by numbers j =0, 1/2, 1,
3/2, etc. These numbers stand for total angular momentum or “spin”. The imposed
condition is that three edges meet at each vertex, with the corresponding spins:
Jis J2, J3, adding up to an even integer and satisfying the triangle inequality. These
rules are motivated by the quantum properties of angular momentum: if we combine
a component with spin j; and a component with spin j,, the spin j3 of the unit system
satisfies exactly latter constraint. In such setting, given that I is a general field, a spin
network represents quantum states of F-geometry on d = 3 + 1 dimensional space
defined by tensor product states

4
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where {J} runs over the set of ordered 4-tuples of integers or half-integers such that
H {Oj} is nonempty complex obtained from the n-skeleton H", constructed from H"~!
by attaching n-simplexes viamaps ¢ : K"~! — H"~!.Inthe PR model [1] a partition
function is defined for a given three-dimensional simplicial complex [by deforming
SU(2) to a quantum group [4], where the partition function depends only on the
topology of the manifold which is triangulated by the simplicial complex] by means
of the following: to each edge of the complex is associated a spin [i.e., an irreducible
unitary SU(2) representation, determined only by its dimension d = 2j + 1].

In particular case, we are interested in the homomorphisms of the simplicial g-th
homology group which represents the free abelian group generated by the g-cycles,
and their induced mapping on the stabilizer group (S ) basis. Assuming that I" and S
are free abelian groups withbases g1, ..., go and ¢}, ..., g,,, respectively,if f : I’ —
S is a homomorphism, then f (gj) =>", (—=1)\;g; for unique integers \;;,
where the parity of any transposition is — 1. More general, giving that K is a simplicial
complex, and S is an abelian group, then for non-negative integer ¢, to each (¢ + 1)-
tuple (xo, X1, ..., Xy) of vertices spanning a simplex o, (K), there corresponds an
element a(xo, x1, . . ., x4) of Si defining ahomomorphism « : C,(K) — Sg, where
C,(K) denotes the corresponding chain group, i.e., finitely generated abelian group
on the oriented simplices.

This paper is organized as follows. After introducing basic concepts, in Sect. 3 we
present a realization of the spin networks in terms of simplicial manifolds, associated
with the properties of the fundamental groups. A distinctive feature of these groups
is that they are topological invariant, i.e., topological spaces of the same homotopy
description have the same fundamental group, and a loop differentiable property [7].
Details of the stabilizer formalism with the implementation to spin network unit on
graph state are discussed in Sect.4.

2 Preliminaries

2.1 Simplicial Complexes

Let xo, ..., x, be points geometrically independent in R™ where m > g. The g-
simplex o, = (xo, e, xq) is a compact (bounded and closed) subset of R, given
by
q q
0,1=[veRm|v=Zcix,~,c,~20,2@:1]. 2)
i=0 i=0

For an integer n such that 0 <n < ¢, n+ 1 points define a n-simplex o, =
<x,-0, e, x,-n) denoted as n-face of o,,. In particular, K represent a set of finite number
of simplexes in R” called simplicial complex [8, 9] if

eocckKando <o,theno' € K.
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e 0,0’ € K, then the intersection o N ¢’ is either empty set or a common face of o
and o/, i.e., eitherc No’ =PoroNo’' <o,andoNo’ <o

Leto, = [xo, e, xq] (¢ > 0) denote an oriented g-simplex, then the boundary d, o,
of 0, is an (¢ — 1)-chain where 9, called boundary operator, defines a homomor-
phismmap J, : C, (K) — C,—; (K). For K representing the n-dimensional simpli-
cial complex, there exists a sequence of free Abelian groups and homomorphisms,
called chain complex [10, 11]:

05, k)2 (k)2 B e k) D co k) B0, where i
0— C,(K).

Let K be a finite simplicial complex, where || represents the union of all the
simplices 0 € K. A topological space X which is homemeomorphic to |/C| repre-
sents a polyhedron where K is a triangulation of X. If X and K, € K are simplicial
complexes, a morphism ¢ : K — K is a function ¢ : K(0p) — K,(00), where oy
denotes 0-simplexes or vertices, such that if o, € K is a g-simplex spanned by the
affinely independent set xo, ..., x, of (g + 1) points, then the elements of the set
@(x0), ..., ¢(x,) form an affinely independent set of points spanning a simplex
¢s € K, where dim ¢, < dim 0. In particular, a morphism ¢ :  — K, of simpli-
cial complexes for distinct elements x; — ¢ (x;) determines a unique map of the
simplex o to ¢,, by generating a piecewise-affine map of spaces |¢| : || — |Kq ,
where |-| is a functor from the category K of simplicial complexes to the category TOP
of topological spaces. Considering X as a topological space and assigning a base point
[12]xp € X,aloopestablishedat pisapatha : [0, 1] - X witha (0) = a (1) = p.
Thenamap: P : [0, 11> — X with P (,0) = a (¢), P (t,1) = 3(t)and P (0, 7) =
P{1,7)=p, Y(,7) € [0, 1] determines two homotopic loops «, § which can be
deformed one from other via other loops on the set of common paths, defining an
equivalence relation. The homotopy class of « loop is denoted as [«]. In particular,
two loops «, § are denoted with the homotopy classes [a] [3] = « * 3 for the path

Fig. 1 Spin network represented via subgraph X € G, is a maximal tree which is homotopy equiv-
alent to a wedge of circles
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that goes twice around «, then around (3, such that a % 5 () = o (2¢) , 1 < 1 / 2 and
BRt—1),t<1 / 2, see Fig. 1. right, which illustrates the wedge of six circles gen-
erated by gluing together a collection of spaces at a base point twice around loops

a, B.

3 Homotopy of Spin Networks Embeded in Simplicial
Complex

Let V be the vertex set and ey, e, .. ., e, be the sequence of edges on V x V, con-
nected along a path from a point a to a point b on the surface S, givenby: e; = P; P4y,
P, = a, P, = b, where distinct edges possess orientation which coincides with the
path direction. Then the path can be associated to the 1-chain: e; + e - - - + ¢,. Alin-
ear transformation of the 1-chain module is associated by each group element action
g € I which permutes the edges in either the successive mirror or the dual tiling,
defining: aje; + azer + - - - e, = age; + anges + - - - o, gey,. In general, the -
action commutes with the boundary operator, i.e., dgn = gOn for every chain, where

9Z, (S;R) = Z, (S;R) =kerd, : C, (S; R) = C,—1 (S; R),
9B, (§;R) = B, (S;R) =imJ, : Cyy1 (S;R) — C, (S5 R),

resulting that distinct elements of I" map homology classes to homology classes,
yielding alinear actionof " on H, (S; R) = g ggi . Then, a corresponding vertex set
V represents a submodule for V € H, (S; R) which is I"-invariant or a I"-submodule
if gV =V, Vg € I'. Such action of group I" on the homology chain is known as the
homology representation.

Let I" be a group, where S C I is a generator subset. Let S be a set of inverses of S

with A = S U S. Then, an underlying graph [12, 13] of spin network G = G (I, §) is

Xit1

Fig. 2 Construction of a spin network by the union of the set of flat connections which can be
defined over the multiply connected manifolds [14], given by unit intervals of a finite set of curves
crosshatching only at their endpoints of the metric space [15]
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established by connecting vertices g, h € Vg, where the set Vi C I', by establishing
edge in A under condition

1, ifg'heA

(g.h €Ve) = [O, otherwise. @)

That is, for distinct g € I" and a € A there is an edge relating g to ga. In particular,
the directed edge from g to ga is defined as the element a.

Given any g, h C I', let & € V;; be a geodesic connecting ga to a point hb, by

selecting a sequence of points, ga = xg, X1, ..., X, = hb, see Fig.2, along «, such

thatd (x;, x;41) < 1, Vi.Foreachi, g; € Vg are selected so that « : [a, b] — [0, 1].

Definition 1 Given a metric space (M, d), let I C R be an interval. A path which
denotes unit interval (geodesic) is
vyl > {M|d(y@),y()=It—r71|,V(,T)el}.

Assuming v : [a, b] — M is an arbitrary path, its length is represented as

sup (2. d (v (tim) Yy tiDla=1ty <ty <+ <1y =b}_ )

i=1

Theorem 1 Let X, and X, be subspaces of X such that the covering dimension
of simplexes o, o’ is maximal covering of X. Let ; : X500 — X, and v; : X, —
X be the inclusions, resulting that h., : T (Xh,,) — A are functors into a groupoid
defining commutativity relation h, 11 (i,) = h,I1 (i,), i.e., a different path v gives
the same result, where a unique functor )\ : I1 (X) — A is defined such that h, =
AT (jo) s he = Al (jo) as

(i)
—

I (XUJ’) I (XU)

M. | e )

n,) "0 meo

—_—

is a pushout in groupoid of the inclusions X, D X,o C Xy

Proof In particular, a path 7 : [a, b] — X represents a morphism [7] in IT (X)
from 7 (a) to ~y (b) if we arrange it with an increasing homeomorphism « : [a, b] —
[0,1].Ifa =1 <t <--- <t, = b then v establishes the composition of the mor-
phisms ['y [t,-,t,-+1]]. Let v:1 — X be a path and let o :{0,...,n} — {0, 1}
|y ([t,-, tiv1 ) C X(o;), then there exists a decomposition in affine space: 0 = #y <
ti < -+ <tyr = 1 suchthat: [y |[#, ti41]] C X(07), i =0, ..., n. The construc-
tion [ |[#. ti11] ] as path ~; in X, produces composition
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['7] =TI (0—7(11)) [’)/n] o---oll (0—7(0)) [70] . (6)

If subdivision A exists, then A [y] = Ay [Yu] 0 - - © hy0) [0] is inclined by the
homotopy composition of the path.

Let i : K — X be a homotopy of paths from a to b. We consider edge-paths in the
subsets of 3-simplex (/K3) which path-connect coordinates a = (000) and b = (111),
see Fig.3. These paths differ from /o) and h., by composition with a constant
interval. i generates two paths in /C, which give the same result since they differ by
a homotopy on subinterval which belongs to the subsets o; € K3, i =1,...,4. O

Given a topological space X representing the union of subsets X,, X,, general
properties of X encompassed from those of X,, X, and X,,» = X, N X, can be
inferred from the Theorem 2.

Theorem 2 [15, 16]. Let Ky and K| be subspaces of simplicial complex IC such that
the maximal dimension simplexes oy € Ky, 01 € Ky, represent covering of X. Con-
sidering vy; : Koy = Ko N Ky — K, and vy : K, — X as inclusions, in particular,
let Ky, K1, Ko1 be path connected with base % € K. Then Eq.(7)

¢ — 0 b
(000) |
P
T %
o, |

(111) L o,

Fig.3 Two different paths along arrows (marked by thin and thick black lines) induce the following
stabilizer generator sets on a base (a face) which belongs to incident simplexes (see Theorem 2 and
o1 Noy = {{a, b}} — {|000), |001), [110), — [111)},

o4 Noy = {{c,a}} — {|000), |101), |010), — |111)},
Sect.4): o3 Noy = {{a, b’'}} — {]000), [110),]001), —[111)},
oy Noz = {{c,all — {|000), |010), [101), —|111)}.
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1 (Kor, %) ) m (K7, *)

1 (i0+) 1 (J1x) (N
I

m (Ko, %) 20y (X, %)

is a pushout in topological space of the inclusions Ko O Ko; C K, representing a
fundamental group.

Proof Assuming that simplicial complex K is path connected and z € K, where z =
*, then r : IT (K) — m; (K, z) induces morphism compositions over the full subset
z. For each z € K exists a morphism such that u, = id, uyau;' where a: x — y,
represented by:

[T(Ko) <«— I (Ko)) — TI(K1)

lrl lrm lro )

1 (Ko, %) < 71 (Kop, *) = 1 (K, %).

Precisely, restriction of C to subcomplexes: K¢, Ko, K1, and X with a base point
z = *, yields a commutative relation where morphisms in IT (X) are respectively
assigned by the composition of morphisms in IT (K() and IT (K), likewise, the
group 7 (X, %) is formed by the images of jox and j;*. O

4 Application to Graph State and Spin Network

Graph state is represented in scope of the stabilizer formalism [17, 18] via tensor
products of Pauli operators oy and oz, whose composition and structure are based on
the complexity of the underlying graph which can be seen as one-dimensional sim-
plicial complex. The stabilizers establish a group (S¢) under multiplication, formed
from n generators g;, associated to a number of vertices x; of the graph [19]. In
particular, stabilizer generators are induced on the vertex set Vi of a graph G by
the bijective mapping (I" (Vi) , A) — (Sg, -), see Sect.3, Eq.(3). Graph state is
obtained by relating each vertex x; € Vi with a stabilizer generator g; = o',07;,
where g; |G) = |G), Vi = 1, ..., n. The stabilizer generators [20-22] g; for n graph
state generate the complete Abelian stabilizer group S of |G) with multiplication.
The group S¢ consists of 2" elements which uniquely represent a graph state

o
|G) = [;ai |xi) =Zai5ig |xi>vZ|ai|2 =1;. )
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The stabilizer group S is formed from a set of n — k generators g1, ..., gn—k,
which: (a) commute; (b) are unitary and Hermitian; and (c) 952 = I. Each ele-
ment of the stabilizer group Sg can be expressed as a product of the generators
as Sk =g\" g, Sk € Sg, ; €{0,1},i =1,...,n —k, where S € G, with
G, denoting a corresponding Pauli group for n qubit state.

Definition 2 Stabilizer code of length n is represented by the fixed point set [23]
Sy = {1, X, Y, Z} of Pauli operators:

01 (o1 {0 (10
I:(lo)’x=""_(10)’Y=UY_(1'0)’Z="Z_(0-1)’

k=1...,n suchthat S|, S,, ..., S are acting over n qubits (i.e., over ((Cz)®”).

When stabilizers S are composed of elements {o;};_y y 7 of {1, X}®*" and {0, },_x y.~
of {1, Z}®" itcanbeseenthat [0;0; | = 2ic;jx0r and {o;0;} = 26;;. Precisely, I rep-
resents the identity matrix of size 2, X denotes the Pauli matrix encoding the bit flip
error and Z denotes the Pauli matrix describing the phase error. The isomorphisms
between {/, X}, {I, Z} and the vector space F, makes possible establishing a con-
nection between classical and quantum codes. On the basis of these isomorphisms,
the stabilizers relate to binary vectors and the commutation relation corresponds to
the orthogonality relation in [F7.

Fig. 4 Stabilizer generators

for three-partite graph states . ¢
representing elementary
segment of spin network, see

Egs. (10, 11) Py PY
¢
a b
L ]
: ; /\o
PP

o

b b

(=]

b

i\
L.

[~]

c
Cc
c
b
c
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In particular, stabilizers of the graph state, given in Fig. 4, are represented by each
row of the binary matrix [24, 25]

0001000
100|001
010{001
001|110
110{000
101111
011111
111{110

(10)

where nodes of element of the spin network {a, b, ¢}, where: a +b > ¢ = 2k, a +
c>b =2k, b+ c > a =2k are encoded in the graph state (n = 3) establishing
incidence relations via following generators:

(D {a}, {b}, {c}} — {/000)},

(2) {{a}} — {1000) , |001), ]010) , — [011
(3) {{b}} — {1000}, [100), [001) , — 101
4) {{c}} — {]000) , |010) , [100) , — 110
(5) {{a, c}} — {]000) , [010) , [101) , [111
(6) {{b, c}} — {|000) , [100), [011), [111
(7) {{a, b}} — {|000) , [001) , [110), [111)},
(8){{a, b, c}} — {[100), |010), [001) , — [111)},

}s
}s
}s
) 1D
}

)

)

T — — ~ — —

where (5-7) represent standard three-qubit flip code on the code subspace: Vg =
{|000) , [111)} for stabilizer set S = {I, Z1Z,, Z>Z3, Z1Z3}, I = (Z]ZQ)Z.

5 Conclusion

We have analyzed and demonstrated implementation of graph states in composing
the spin networks architectures. The characterization of graph states is utilized via
the underlying graph construction defined in terms of affine simplexes with respect to
path-connection induced homeomorphisms and polytope construction herein. Future
outlook is implementation of higher dimensional homologies in order to establish a
self-correcting memory which allows secure data processing without continual active
error correction via stabilizer measurement.

Acknowledgements Author acknowledges the sponsorship provided through FP7 EU
Commission framework.
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