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Abstract. Comparative analysis of metagenomes can be used to detect
sub-metagenomes (species or gene sets) that are associated with spe-
cific phenotypes (e.g., host status). The typical workflow is to assemble
and annotate metagenomic datasets individually or as a whole, followed
by statistical tests to identify differentially abundant species/genes. We
previously developed subtractive assembly (SA), a de novo assembly
approach for comparative metagenomics that first detects differential
reads that distinguish between two groups of metagenomes and then
only assembles these reads. Application of SA to type 2 diabetes (T2D)
microbiomes revealed new microbial genes associated with T2D. Here we
further developed a Concurrent Subtractive Assembly (CoSA) approach,
which uses a Wilcoxon rank-sum (WRS) test to detect k-mers that are
differentially abundant between two groups of microbiomes (by contrast,
SA only checks ratios of k-mer counts in one pooled sample versus the
other). It then uses identified differential k-mers to extract reads that are
likely sequenced from the sub-metagenome with consistent abundance
differences between the groups of microbiomes. Further, CoSA attempts
to reduce the redundancy of reads (from abundant common species)
by excluding reads containing abundant k-mers. Using simulated micro-
biome datasets and T2D datasets, we show that CoSA achieves strik-
ingly better performance in detecting consistent changes than SA does,
and it enables the detection and assembly of genomes and genes with
minor abundance difference. A SVM classifier built upon the microbial
genes detected by CoSA from the T2D datasets can accurately discrimi-
nates patients from healthy controls, with an AUC of 0.94 (10-fold cross-
validation), and therefore these differential genes (207 genes) may serve
as potential microbial marker genes for T2D.

Keywords: Metagenome · Concurrent Subtractive Assembly ·
Wilcoxon rank-sum test · Comparative metagenomics

1 Introduction

The human body is host to trillions of bacteria cells, outnumbering human cells
by 1.3 to 1 (in contrast to the widely cited 10:1 ratio), according to a recent
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estimate [40]. Moreover, the genes encoded by human microbiome are hundreds
of times more than the human complement [47]. It has been reported that those
microorganisms are involved in ∼20% of human malignancies [6]. The gut micro-
biota has been linked to a variety of conditions including inflammatory bowel
disease [23], cardiovascular disease [19], rheumatoid arthritis [38], Parkinson’s
disease [37], autism spectrum disorder [16], colon cancer [9,39], and liver cirrhosis
[34], among others. However, only 10 microbes are designated to be carcinogenic
to human beings by the International Agency for Cancer Research (IACR) [6].
Therefore, it is intriguing to explore microbes that are directly related to the
development of human diseases.

The development of next generation sequencing has pushed the advancement
of metagenomics, which presents us a great opportunity to identify microorgan-
isms that are enriched or depleted during disease and explore possible mech-
anisms behind the association. The human microbiome project has shown the
association between the shifts in our microbiota and diseases such as obesity [17]
and periodontitis [15]. Although the change in identify of the species (or abun-
dance) does not ensure a causal role for the microbes, we can narrow down the
set of candidate genomes or genes by such studies. One new trend of microbiome
research is microbiome-wide association studies (MWAS), which are analogous
to genome-wide association studies (GWAS) [20]. MWAS may take a case-control
approach, revealing the association between microbiomes and human diseases.
However, the limitation of this approach is that it cannot distinguish whether
the microbiome drives the disease, the disease drives the microbiome, or both are
modified by confounding factors. On the other hand, longitudinal studies may
allow researchers to test whether changes in the microbiome precede or follow
the development of disease [5,11].

In the seeking of disease-associated microbes, we should note the signifi-
cant compositional variations of microbiota from individual to individual [10].
Regarding this interpatient variability, the correct strategy is to identify con-
served microbial community behaviors in microbiota-associated diseases [15].
Microbial marker gene surveys have been used extensively to reveal the associ-
ation of microbiota with diseases such as diabetes and Crohn’s disease [31]. For
instance, Qin et al. identified 15 optimal marker genes from the gut microbiome
in liver cirrhosis by comparing 98 patients and 83 healthy control individuals
[34]. Based on only the 15 biomarkers, they were able to construct a classifier
that can discriminate patients with a decent accuracy [34]. Similarly, gut micro-
biota was explored to detect colorectal cancer and a metagenomic classifier was
trained using the taxonomic abundances of 22 marker species [45]. The typical
workflow of these marker-gene surveys is to assemble the metagenomes and then
predict the genes, potential marker genes can then be identified by detecting sig-
nificant differences in their distribution across healthy and disease populations.
The analysis of differential abundance is critical for these surveys and computa-
tional tools have been developed for the analysis, including a recently developed
approach that relies on a novel normalization technique and a statistical model
accounting for undersampling [31].
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Due to the complexity of microbial communities, the de novo partition of
metagenomic space into specific biological entities remains to be difficult. To
address this problem, researchers have utilized various features, including com-
positional features such as tetra-nucleotide statistics [13] and coverage signals
of genetic sequences [1,44]. However, the assumptions of those methods are not
universally true. For example, the methods relying on abundances of genetic
sequences are admittedly weak in segregating taxonomically related organisms
[1]. In the process of exploring other features, it has been realized that utilizing
co-abundance across multiple samples improves the resolution of genome segre-
gation from metagenomic data sets [2,29,43]. Similarly, we should also utilize
information from multiple samples for the sake of identifying conserved differ-
ential patterns.

We have previously introduced a method called subtractive assembly (SA)
[42], which is a de novo method to compare metagenomes by identifying and
assembling the differential reads. We have demonstrated that SA can recover
the differential genomes by effectively extracting the differential reads based on
sequence signatures (frequencies of k-mers). Also, SA can improve the quality
of metagenomic assembly when only a subset of closely-related genomes change
in their abundances between the groups of samples in comparison. Application
of SA to gut metagenomes from women with type 2 diabetes (T2D) [17] reveals
compositional features and a large collection of unique or abundant genes in T2D
gut metagenomes (some of the genes identified by SA were otherwise missed by
direct assembly of the original datasets). SA utilizes both the compositional and
coverage features through the composition and frequency of k-mers, contribut-
ing to its superior performance. However, the SA method pools the samples for
each group before comparison and therefore loses power in detecting minor but
consistent changes without using information from individual samples. In addi-
tion, SA picks up genes in species which only appear in a few samples but with
high abundances, as a result, many of the “differential” genes assembled are
not actually consistently abundant across samples in the same group. Therefore
additional profiling of gene abundance is required in order to search for genes
consistently more abundant in one group versus the other.

In this paper, we further developed the subtractive assembly approach for the
detection of consistently differential genomes or genes by using k-mer frequencies
in individual samples (co-abundance). We adopted KMC 2 [7] for k-mer count-
ing in our implementation, since KMC 2 is one of the fastest k-mer counting
approaches, which was claimed to be twice faster than the strongest competi-
tors such as Jellyfish 2 [26]. Differential reads extracted from individual samples
were then pooled for assembly. We call our new method Concurrent Subtrac-
tive Assembly approach (CoSA). We observed that some reads are extremely
redundant (those sampled from abundant common species across samples). We
further developed a strategy to remove redundant reads based on k-mer counts:
only some of the reads that contain highly abundant k-mers are retained for
assembly. Using simulated datasets, we showed that CoSA achieves much better
performance in detecting consistent changes than the original subtractive assem-
bly (SA) approach. Moreover, we applied it to analyzing T2D gut metagenomes
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to identify microbial marker genes, based on which we built a classifier that
accurately discriminates patients from healthy controls.

2 Materials and Methods

2.1 Overview

Concurrent Subtractive Assembly (CoSA) is designed to identify the short reads
that make up the conserved/consistent compositional differences across mul-
tiple samples based on sequence signatures (k-mer frequencies), and then to
only assemble the differential reads, aiming to reveal the consistent differences
between two groups of metagenomic samples (e.g., metagenomes from cancer
patients vs. metagenomes from healthy controls).

2.2 k-mer Counting

CoSA is a k-mer-based method, and therefore the first step is the counting of
all k-mers in metagenomic samples. For comparative metagenomic studies, the
sheer size of the datasets is a fundamental challenge. We employed KMC 2 for
k-mer counting. We specified the maximal value of a count (the cs flag) as 65,536
instead of 255 by default. On one hand this helps identify the more frequently
observed differential k-mers by using a larger cut-off value; on the other hand we
can store each count using a 16-bit unsigned integer, which demands a reasonable
amount of memory or disk space when dealing with billions of k-mers. Meanwhile,
we exclude k-mers occurring less than two times by the ci option based on the
fact that a large number of singletons are products from sequencing errors, as
previously employed by both BFCounter [28] and khmer [46].

After k-mer counting with KMC 2, CoSA goes through the outputs of
KMC by using the KMC API and stores all observed k-mers in a hash table,
implemented using the libcuckoo library (downloaded from https://github.com/
efficient/libcuckoo). Libcuckoo [25] provides a high-performance concurrent hash
table, by which we can efficiently update the hash table using multiple threads.
With the k-mers in the hash table, CoSA accesses the outputs of KMC again
and writes to disk the counts of the k-mers based on their orders in the hash
table for every sample. By storing the counts on the disk, we can load the counts
of k-mers in batches and therefore significantly reduce the memory requirement
for recording the counts of all k-mers in every sample.

2.3 Identification of Differential k-mers Using Wilcoxon
Rank-Sum Test

CoSA by default loads 107 k-mers into a two-dimensional array each time and
iteratively tests if the frequencies of each k-mer are differential between the two
groups of samples. To compare k-mers in different metagenomic samples, we
calculate the frequency of each k-mer in each metagenomic sample. In case the

https://github.com/efficient/libcuckoo
https://github.com/efficient/libcuckoo


22 W. Han et al.

frequency of a rare k-mer is extremely small, we compute the frequency of a
k-mer as the number of occurrences per million k-mers. Then the normalized
frequencies are used for WRS test (a nonparametric test), for which we employ
the “mannwhitneyutest” function from ALGLIB (http://www.alglib.net). The
WRS test is used to detect k-mers that have different frequencies in one group
of the samples (e.g., the patient group) than the other group of samples (e.g.,
the healthy control) with statistical significance. The k-mers that pass the test
(p-value cut-off is set to 0.05 by default) are identified as differential k-mers.

We tested different k-mer sizes empirically. Bigger k-mer size increases the
memory assumption by CoSA, but has very little impact on the results of
extracted reads and downstream application of the reads. We therefore set the
default k-mer size to 23.

2.4 Identification of Differential Reads Based on Differential k-mers

Reads that are composed of differential k-mers tend to be from differential
genomes. Thus, we extract differential reads in each sample based on the dif-
ferential k-mers using a voting strategy. With the voting threshold as 0.5, for
example, a read is considered to be differential if 50% of its k-mers belong to
differential k-mers. We empirically tested the voting threshold and found a value
in the range of 0.3–0.8 gives a good balance between the number of extracted
reads and efficiency of the differential gene assembly. However, users may change
this parameter (−v) in their own applications of CoSA.

2.5 Reduction of Reads Redundancy

We noticed that some k-mers are extremely abundant in the extracted reads
file (these k-mers are likely from the reads sampled from abundant species that
are common across many samples). When the differential reads contain these
k-mers, the distribution of k-mers is skewed and this can challenge the assembly
algorithm. To address this issue, we reduced the reads redundancy by excluding
reads that contain highly abundant k-mers. The reads redundancy removal relies
on a list of highly abundant k-mers prepared based on k-mer counts. A read is
determined to be redundant if it contains many k-mers on the abundant k-mer
list. Specifically, for each read, the fraction of abundant k-mer (over all k-mers)
is computed and used for determining the fate of the read: if the fraction is
smaller than a random number between 0 and 1 generated by the program, the
read is retained; otherwise, it is discarded. In this way, a read that has a higher
ratio of abundant k-mers will have a higher chance to be discarded.

2.6 Assembly of Extracted Reads and Downstream Annotations

Following the read extraction, any metagenomic assembler can be employed in
subtractive assembly. Here, we used MegaHIT (with meta-large presets option)
[24] (version 1.0.2) to assemble the differential reads, to illustrate the usage

http://www.alglib.net
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of CoSA. For each group (e.g., T2D patients, or healthy controls), differential
reads extracted from individual samples were pooled and assembled together
by MegaHIT. We note that we only pooled reads from multiple samples in the
same group for assembly. We used MegaHIT as it is one of the recently developed
assemblers that are memory efficient and fast. But in principle, other assemblers
such as IDBA-UD [33] and metaSPAdes [3] can be used as well. In order to
identify differential genes, protein coding genes were predicted from the contigs
using FragGeneScan [35] (version 1.30).

To estimate the abundance of the genes, all the reads from each sample were
aligned against the gene set by using Bowtie 2 [22] (version 2.2.6). We counted a
gene’s abundance based on the counts of both uniquely and multiplely mapped
reads. The contribution of multiplely mapped reads to a gene was computed
according to the proportion of the multiplely mapped read counts divided by
the gene’s unique abundance [34]. The read counts were then normalized per
kilobase of gene per million of reads in each sample.

2.7 Building Classifiers

After the gene abundance profile was built, we attempted to build a classifier that
can discriminate patients from healthy controls. We first used L1-based feature
selection method in the “scikit learn” python package [32] to select genes. After
the feature selection, we built classifiers using Random Forest (RF) and Support
Vector Machine (SVM). We used RF as it has been shown to be a suitable
model for exploiting non-normal and dependent data such as metagenomic data
[18] and it was used for prediction of T2D in [17]. On the other hand, SVMs are
widely used in computational biology due to their high accuracy and their ability
to deal with high-dimensional and large datasets [4]. We used the SVM (linear
kernal) and RF (10 trees) in the “scikit learn” python package. We evaluated
the predictive power of a model as the Area Under Curve (AUC) using a tenfold
cross-validation method.

We tested different p-value cut-offs and voting thresholds used in CoSA for
evaluating their impact on the accuracy of the classifiers built from genes derived
by CoSA.

2.8 Simulated and Real Metagenome Datasets

To test the performance of CoSA in detecting minor effects, we first gener-
ated two groups of metagenomic datasets using five bacterial genomes from the
FAMeS dataset [27] by MetaSim [36], with each group representing a unique
population structure; and for each group, we simulated 10 samples.

As a showcase for CoSA, we further applied our method to the T2D cohort.
The T2D cohort was derived from two groups of 70-year-old European women,
one group of 50 with T2D and the other a matched group of healthy controls
(NGT group; 43 participants). We did not use 3 samples of T2D datasets that
were outliers based on neighbor-joining clustering using a dS2 dissimilarity mea-
sure for k = 9 [14]. We tested our original SA approach using the T2D cohort,
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and in this study, we focused on the comparison of CoSA with SA using the T2D
datasets. Table 1 summarizes the simulated datasets and the T2D microbiome
datasets we used for testing.

Table 1. Summary of the simulated and T2D datasets.

Simulated T2D and healthy

Number of datasets 20 93

Total bps 2.29 Gbp 225.30 Gbp

Number of k-mers 9,112,554 4,121,225,700

2.9 Availability of CoSA

We implemented CoSA in C++. Because CoSA employs k-mer frequencies from
individual samples, it introduces a new dimension for different samples and there-
fore increases the requirement of computational resources, especially for large
cohort of datasets such as the T2D datasets. To reduce the running time and
memory usage, we implemented CoSA with multiple threading. Also, counts of
k-mers are written to disk and then loaded back in batches for the detection of
differential k-mers (since it is impossible to load all k-mer counts into the mem-
ory at the same time). The software is available for download at sourceforge
(https://sourceforge.net/projects/concurrentsa/).

3 Results

We first report the results of CoSA using simulated datasets. We then report
the comparison of CoSA with our original SA method using the T2D cohort.
Finally we report the results of using CoSA for extracting and charactering
disease associated sub-microbiome using the T2D datasets.

3.1 Evaluation of CoSA Using Simulated Datasets

Instead of using fold change of k-mers, CoSA detects differential genomes by
testing k-mer frequencies with Wilcoxon rank-sum test. Also, it employs k-mer
frequencies concurrently from multiple samples for each group in comparison.
In theory CoSA has the capability of detecting minor but consistent changes
between groups of samples. To test the performance of CoSA in such case, we
simulated metagenomic samples using two population (community) structures
(Table 2). The Streptococcus thermophilus LMD-9 genome is two times more in
population one (P1) than in population two (P2) in terms of relative abundance.
Similarly, Prochlorococcus marinus NATL2A is the differential genome that is
two times more abundant in P2 than in P1. Since there is only a fold change of

https://sourceforge.net/projects/concurrentsa/
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two for the differential genomes, it is hard to detect the minor effects through
fold change of k-mers (as a result SA performed poorly on this simulated dataset;
see below).

We evaluated CoSA with different parameters, including p-value cut-off and
number of samples for each group in comparison. First, we compared the effi-
cacy of read extraction using either 5 or 10 samples for each population. The
results show that CoSA extracted more reads from the differential genomes by
using more samples (Fig. 1). For example, using a p-value cut-off of 0.005, CoSA
extracted 593,739 (99.98%) out of 593,858 short reads (expected) for the S. ther-
mophilus LMD-9 genome when 10 samples were used (see Table 2). When using

Fig. 1. CoSA effectively extracted reads from differential genomes. The upper and lower
subfigures refer to read extraction for one of the samples of population 1 and 2, respec-
tively. The x-axis shows the 5 different species; fac: Ferroplasma acidarmanus fer1, lga:
Lactobacillus gasseri ATCC 33323, ppe: Pediococcus pentosaceus ATCC 25745, pmn:
Prochlorococcus marinus NATL2A, ste: Streptococcus thermophilus LMD-9. Bars of
different colours (purple, yellow, cyan) indicate separate runs of CoSA using different
parameters or different number of samples while the grey bars indicate simulated reads
for each genome. The y-axis shows the number of reads extracted (or expected shown
in gray bars).
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only 5 samples for each population, CoSA could only extract 471,786 (79.44%)
reads. Meanwhile, CoSA extracted very few reads from the non-differential
genomes in both cases. Using a lower p-value cut-off of 0.001 (see Table 2 for
the results) reduced the number of extracted reads from both differential and
non-differential genomes. But CoSA still extracted most of the reads from the
differential genomes. In conclusion, CoSA effectively extracted reads from dif-
ferential genomes with a minor fold change whereas a minimal number of reads
were extracted from non-differential genomes. We note that a very stringent p-
value cut-off (e.g., 0.001) works well for this simulated case; however, for real
microbiome datasets that have more complex population structure, a less strin-
gent p-value cut-off might be needed for differential reads extraction (because
of the sharing of k-mers among species) as shown in the application of CoSA to
the T2D microbiomes (see below).

Table 2. Evaluation of CoSA using simulated datasets: community structure and reads
extraction.

Population Reads extracted/simulated

P1a P2 P1 P2

Ferroplasma acidarmanus fer1 1b 1 0/38,568c 19/38,569

Lactobacillus gasseri ATCC 33323 2 2 122/75,528 77/76,152

Pediococcus pentosaceus ATCC 25745 4 4 178/146,787 25/147,199

Prochlorococcus marinus NATL2A 8 16 8/295,230 587,980/588,579

Streptococcus thermophilus LMD-9 16 8 590,820/593,858 0/297,227
a: simulated population 1; b: relative abundance of the F. acidarmanus genome in popu-
lation 1; c: 0 reads were extracted out of 38,568 reads from the F. acidarmanus genome
in P1.

We further compared the assembly quality for the differential genomes with
different number of samples, with the help of QUAST [12] and MUMer [21]. For
the S. thermophilus LMD-9 genome in the same sample as above, we recovered
95.76% of the reference genome when 10 samples per population were used;
but only 73.32% of the genome were assembled when we used 5 samples for
each group (see Fig. 2 for the comparison). Not only we assembled a higher
fraction of the genome for the differential genomes, but also we obtained fewer
but longer contigs. We produced 84 contigs with N50 of 51,061 using 10 samples
and 1,280 contigs with N50 of 1,180 using 5 samples. With more samples, CoSA
is capable of better assembling the differential genomes. By contrast, our original
SA approach relies on ratios of k-mers to detect differential reads and only a small
fraction (19.64%) of the genome can be assembled using the reads it extracted.

3.2 Evaluation of CoSA Using the T2D Microbiomes

As shown in the above, CoSA was able to detect minor, but conserved differential
genomes using the simulated datasets. Here we applied CoSA to the T2D micro-
biome cohort. As shown in Table 3, CoSA has resulted in a greater reduction of
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Fig. 2. Evaluation of the assembly quality of the differential genomes. The results indi-
cate that CoSA outperforms SA for detecting minor but consistent effect when multiple
samples are used, and that using more samples by CoSA results in better assembly of
the differential genomes (CoSA-10, 10 samples were used; CoSA-5, 5 samples were
used).

the sequencing data (retaining 8.99% of the total bases) than the original SA
reads (which retained 17.59% of the original sequencing data). Extracted reads
were then used for assembly and gene annotation. Although reads extraction by
CoSA resulted in a smaller collection of microbial genes than the SA approach
(since CoSA retained much fewer reads than SA), genes from CoSA tend to be
more consistently differential across the samples between the groups. We pooled
the genes derived from CoSA (1,008,068 genes) and SA (1,648,016 genes), result-
ing a collection of 2,656,084 genes, and further quantified the abundances of the
genes in this collection. The gene abundance profile was then used for WRS test
between the patient and the healthy control groups, with correcting for multi-
ple testing using false discovery rate (q-value) computed by the tail area-based
method of the R fdrtool package [41]. Table 3 summaries the test results, indi-
cating that CoSA produced more significantly differential genes than SA. We
note that none of the genes derived by SA had q-value less than 0.05. Sequences
and annotations of the 357,591 genes assembled by CoSA (with q-value ≤ 0.05)
are available for download at the CoSA sourceforge project page.

3.3 Prediction of T2D Using Microbial Genes

It has been shown that metagenomes can be used for classification and prediction
of diabetes status [17]. Karlssons and colleagues trained a Random Forest (RF)
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Table 3. Summary of subtractive assembly results of the T2D datasets.

CoSA∗ SA

Total base pair in extracted reads 11.59 Gbp (8.99%) 22.68 Gbp (17.59%)

# of predicted genesa 1,008,068 1,648,016

# of significant genes (q-value ≤ 0.07) 563,743 285,666

# of significant genes (q-value ≤ 0.05) 357,591 0
∗: p-value = 0.2 and voting threshold = 0.8 were used for reads extraction; a: only counted
genes assembled from extracted reads from patients (but not healthy individuals).

model based on a training set of the NGT and T2D subjects using the profiles
of species and MGCs (megenomic gene clusters), and evaluated its performance
using a tenfold cross-validation approach and calculated the predictive power
as the area under the ROC curve (AUC). Their results showed that T2D was
identified more accurately with MGCs (highest AUC = 0.83) than with micro-
bial species (highest AUC = 0.71), suggesting that the functional composition
of the microbiota determined by MGCs correlates better with diabetes than
the species composition. We applied CoSA to T2D datasets (including datasets
from patients and healthy individuals) using different settings of parameters and
compared the performance of classifiers built from the assembled microbial genes
(from both T2D patients and healthy-controls). Table 4 summarizes the results.
We used two different classify algorithms, one is SVM with linear kernel and the
other is RF whose forest includes 10 trees.

Using p-value of 0.05 and voting threshold of 0.3 (called Normal in Table 4)
for reads extraction in CoSA followed by assembly and abundance quantification,
we derived 296,979 genes. Our collection of genes resulted in a SVM that achieved
a prediction accuracy of 0.94 (AUC), a significant improvement in the prediction
accuracy as compared to the AUC reported in [17] (AUC = 0.83).

We also tested CoSA using more stringent parameters for reads extraction (p-
value = 0.001 and voting threshold = 0.5). The reads extraction only resulted
in a small reads file with 19.13 Mbp in total. Not surprisingly we were only
able to assemble and predict 249 genes from this small collection of sequencing
reads. Interestingly, a RF model (without using feature selection) built from this
small set of microbial genes achieved an AUC of 0.79. This accuracy is worse
than our best model (AUC = 0.94), and Karlsson’s RF model based on MGC
(AUC = 0.83), but it is much better than Karlsson’s RF model based on bacterial
species (AUC = 0.71). The advantage of using this setting (we called it Strict)
is that only a small number of reads were extracted and only a small number of
genes need to be quantified and used for building classifiers, and it still achieves
reasonable prediction accuracy.

On the other hand, a much larger collection of microbial genes may make
feature selection a more serious problem for building predictors, and therefore
compromise the accuracy of predictors trained using these microbial genes. For
example, we applied CoSA using a looser setting (p-value = 0.2 and voting-
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threshold = 0.8; called Loose in Table 4), which resulted in the extraction of many
more reads. Not surprisingly, many more genes can be assembled. However, more
genes to start with doesn’t necessarily result in a better classifier for prediction.
The best classier built using this larger collection of genes achieved an AUC of
only 0.89. Similarly, using our original subtractive assembly approach (SA), an
even greater collection of microbial genes can be assembled. However, the best
predictor built using this larger collection of genes only achieved an AUC of 0.85.

Sequences and annotations (by myRAST [30] and hmmscan [8]) of the 207
differential genes that resulted in the highest prediction accuracy (AUC = 0.94)
are available for download at the CoSA sourceforge project website. Some of
the functions and associated pathways are consistent with what we observed
based on SA [42], including murein hydrolases (protein ID: k87 534 1 134 +)
and multidrug resistance efflux pumps (protein ID: k87 34893 1 275 −).

Table 4. Comparison of the accuracy of T2D prediction using microbial genes derived
by CoSA and SA.

CoSA

Strict Normal Loose SA

Reads extraction P-value cut-off 0.001 0.05 0.2 -a

Voting threshold 0.5 0.3 0.8 0.5

Total base pair 19.13 Mbp 6.08 Gbp 19.23 Gbp 36.26 Gbp

Classification # of genes 249 296,979 1,741,472 2,098,590

# of genes selectedb 249c 207 230 210

Classifier RF SVM SVM SVM

AUCd 0.79 0.94 0.89 0.85
a: SA uses ratios of k-mer counts to determine differential k-mers; b: genes were selected
using L1-based feature selection method; c: no feature selection was applied for this case;
d: average accuracy using 10-fold cross-validation.

4 Discussion

We developed a pipeline based on CoSA, which efficiently extracts reads that are
likely sequenced from differential genes across samples for the identification of
conserved microbial marker genes. Considering the heterogeneity nature of the
microbiomes across human subjects, it is important to have a method that can
detect disease-associated features that are consistent across samples. Tests of
our approach using both simulated and real microbiomes show the importance
of using multiple samples for such purposes.

The time and space complexity of CoSA is related to the number of datasets
and the size of each dataset. The running time and memory cost is small for small
datasets such as the simulated microbiome datasets. However, the computational
time and memory usage can be substantial for large cohorts of datasets such as
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the T2D datasets. The total running time of CoSA for the simulated datasets
was 44 min (38 min for k-mer counting and 6 min for the detection of differential
k-mers and therefore differential reads), and the peak memory usage was 2G.
However, for the large T2D cohort, the running time for k-mer counting was
6.9 h and the next step of detecting differential k-mers and reads took 27.5 h.
The peak memory usage for the T2D datasets was also substantial, which was
229 Gb. Considering the increasing capacity of sequencing technologies, we will
further investigate other strategies to reduce the memory usage and running
time of CoSA.

In the current implementation of CoSA, WRS test is applied to k-mer counts
normalized by the total k-mers (which is equivalent to the total reads) in each
sample, for the detection of k-mers with differential abundances across healthy-
controls and patients. This choice is mostly driven by the practical conveniency.
Our results showed that this simple strategy of normalization worked well in
practice. However, it has been shown that such a normalization approach may
have limitations for applications in detecting metagenome-wise marker-gene sur-
veys [31]. We will explore the possibility of using other normalization techniques
such as the cumulative-sum scaling approach in CoSA.
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