
Preface

The best way to become acquainted with a subject is to write
a book about it.

—Benjamin Disraeli

Each problem that I solved became a rule, which served
afterwards to solve other problems.

—René Descartes

What is the Purpose of this Book?

There are many students and professionals in science and engineering, other than
those specifically interested in fields such as computer science or computer engi-
neering, who need to know how to solve computational problems on computers.
There are basically two approaches to meeting the needs of such people. One is to
rely on software applications such as spreadsheets, using built-in functions and
perhaps user-defined macros, without requiring any explicit understanding of the
principles on which programming languages are based.

A second approach is to learn a “traditional” programming language, for pre-
vious generations Fortran or Pascal, and more recently C, C++, or Java. These
languages are important for certain kinds of work, but they may be viewed, possibly
with good reason, as irrelevant by many students and professionals.

From a student’s point of view, there is no painless solution to this dilemma, but
in this book I assume that learning to solve computational problems in an online
environment using HTML and PHP will at least appear to be a more relevant
approach. HTML, Hyper Text Markup Language is universally used as the
foundation for online applications. HTML documents can be used as “data input
forms” for PHP—originated by Rasmus Lerdorf in the mid 1990s as “Personal
Home Page Tools,” but long since expanded as a comprehensive programming
language.

v



What separates PHP from an online development language such as JavaScript is
its support for accessing externally stored data files, which greatly extends the range
of science and engineering problems that can be addressed.

In some ways, an HTML/PHP environment is more difficult to learn than tra-
ditional and more “mature” (some might prefer “obsolete”) text-based program-
ming languages. C, for example, is a fairly small language with an unambiguous set
of syntax rules and a primitive text-based input/output interface. You can view the
limitations of C as either a blessing or a curse, depending on your needs. A major
advantage of C is that programs written in ANSI Standard C1 should work equally
well on any computer that has a C compiler, making the language inherently
platform-independent.

HTML, on the other hand, is an immature and developing programming lan-
guages (if we can agree to call HTML a “programming language”) that functions
within a constantly changing Web environment. It lacks a uniformly accepted set of
syntax rules. There are dialects of HTML that will work only on particular com-
puting platforms and the possibility exists for language “extensions” that may be
even more platform-dependent. PHP is still an evolving language whose standards
are set and maintained by a global user group—essentially by volunteers—but it
adheres to broadly understood programming language concepts and has
well-defined syntax rules.

Fortunately, it is possible to work with some core subsets of HTML which,
along with PHP, can be used to solve some of the same kinds of computational
problems that would be appropriate for a more traditional “scientific” programming
language such as C or C++. My motivation for writing this book and its prede-
cessors was to learn how to use HTML and PHP to create my own online appli-
cations, and I now use this environment for many tasks that I previously would
have undertaken in Fortran or C. Based on my own experience I have concluded
that, although it might not be accurate to define PHP as a “scientific” computing
language, it is nonetheless entirely reasonable to use HTML/PHP as a framework
for learning basic programming skills and creating a wide range of useful and
robust science and engineering applications.

Although this book is intended for “scientists and engineers,” as suggested by its
title, the content is not technically complex. The examples and exercises do not
require extensive science, engineering, or mathematics background and only rarely
is mathematics beyond basic algebra needed. So, I believe this book could serve as
a beginning programming text for undergraduates and even for high school
students.

1ANSI = American National Standards Institute, a voluntary standardization system in the United
States.

vi Preface



Learning by Example

It is well known that people learn new skills in different ways. Personally, I learn
best by having a specific goal and then studying examples that are related to that
goal. Once I understand those examples, I can incorporate them into my own work.
I have used that learning model in this book, which contains many complete
examples that can serve as starting points for your own work. (See the second
quotation at the beginning of this preface).

This model works particularly well in an online environment. The amount of
online information about HTML and PHP, including code samples, is so vast that it
is tempting to conclude that nobody writes original code anymore. If you have
trouble “learning by example,” you will have trouble learning these languages, not
just from this book, but in general because that is how most of the available
information is presented.

It is an inescapable fact that a great deal of the source code behind Web pages
involves nothing more (or less) than creative cutting, pasting, and tweaking of
existing code. Aside from the issues of plagiarism and intellectual dishonesty that
must be dealt with in an academic environment, there is also the practical matter of
an effective learning strategy. You cannot learn to solve your own computational
problems just by trying to paste together someone else’s work. (Believe me, I’ve
tried!) Until you develop your own independent skills, you will constantly be
frustrated because you will never find exactly what you need to copy and you will
be unable to synthesize what you need from what is available.

So, while you should expect to find yourself constantly recycling your own code
based on what you learn from this book, you need to make sure that you really
learn how to use these languages and don’t just learn to copy!

If you are reading this book, you almost certainly are not and do not aspire to be
a professional programmer. For a casual programmer from a scientific or technical
background, it can be very time consuming to cut through the clutter of online
information about these languages when the applications are not directly applicable
to the needs of scientists and engineers. In my own work, what I need over and over
again is some sample code that will jog my memory about how to approach
recurring programming problems—how to pass information from an HTML doc-
ument to a PHP application, how to extract information from a data file, how to
display data-based graphics, etc. Throughout the book, I have tried to give exam-
ples that serve this need, including an entire chapter devoted to PHP graphics.

The Origin and Uses of this Book

In 2007, Springer published my book, An Introduction to HTML and JavaScript for
Scientists and Engineers. This was followed in 2008 by An Introduction to PHP for
Scientists and Engineers: Beyond JavaScript and, in 2011, by Guide to HTML,

Preface vii



JavaScript and PHP. Those books followed the sequence in which I learned to use
HTML, JavaScript, and PHP in my own work. (See the first quotation at the
beginning of this preface.) Although I still use JavaScript for some applications,
I now rely mostly on an HTML/PHP environment in which an HTML document
serves as the input interface to a separate PHP application that performs the required
calculations and, as appropriate, generates graphics.

This book easily provides enough material for a one- or two-semester intro-
ductory programming course for science and engineering students because the
possibilities for PHP-based applications are limitless. Because of the book’s very
specific focus on science and engineering applications, I believe the book is also
particularly well suited for developing a working knowledge of HTML and PHP on
your own if you are a student or professional in any technical field.

Acknowledgements

I am indebted to Wayne Wheeler, Senior Editor for Computer Science at Springer,
and Simon Rees, Associate Editor for Computer Science at Springer for encour-
aging and supporting this project.

Eagleville, USA David R. Brooks

viii Preface



http://www.springer.com/978-3-319-56972-7


