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Abstract. The engineering of cyber-physical systems (CPS) imposes a
huge challenge for today’s software engineering processes. Not only are
CPS very closely related to real objects and processes, also their internal
structures are more heterogeneous than classical information systems. In
this experience report, we account on a prototypical implementation for
an intersection management system on the basis of physical models in
the form of robotic cars. The steps to implement the working physical
prototype are described. Lessons learned during the implementation are
presented and observations compared against known software processes.
The insights gained are consolidated into the novel Double Twin Peaks
model. The latter extends the current software engineering viewpoints,
specifically taking CPS considerations into account.
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1 Introduction

Cyber-physical systems (CPS) are an emerging topic for research and enable
digital innovation in domains such as energy, health and transportation [13].
Equipped with computing power, networking and the ability to sense and actu-
ate real world processes, CPS enable ambient intelligence to conduct process
control. Furthermore, CPS may consist of heterogenous components unknown at
development time, thus allowing dynamic extension at runtime allowing greater
adaptability and the ability to cope with heterogeneous infrastructures. Being
defined as systems at the crossroad between physical processes and information
processing [12], CPS are vital for ambient intelligence.

CPS are key in the digital transformation – a development that brings the
software engineering and traditional engineering domains closer together and
creates new and interesting technical challenges and opportunities [14]. However,
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an often overlooked problem is the orchestration of experts to create CPS –
i.e. the engineering process itself. To date, to the best of our knowledge there
are no comprehensive accounts on the engineering methods for CPS. Thus, there
is an urgent need to explore similarities and differences between information
system engineering and engineering of CPS.

Road-going vehicles are currently undergoing a transformation to gradually
become networked and autonomous [7]. The anticipated impacts are profound:
greater individual productivity, less accidents and killings and new emerging
business models to name only a few. Notably, a directly affected aspect of this
transformation is traffic regulation.

Today, traffic signals and road signs are designed to be human-readable,
but in the near future there is potential to optimize traffic flow by directly
communicating with connected self-driving cars. While there are research groups
focussing on analyzing and improving intersections and traffic flows in general,
to the best of our knowledge, this is the first approach with a focus on the
engineering of such an intelligent system.

The example of a intersection management system seems appropriate to
study how CPS evolve as its engineering does not only concerns information
systems but also mechanical components, sensors and actuators. To this point
no general engineering process has emerged for CPS. Hence, we chose to investi-
gate and observe the process of building a physical prototype using the example
of an intersection with the aim to derive good practices that may be generalized
in future work.

The paper is organized as follows: in Sect. 2 we will review related work on
intersection simulation, physical prototyping and software engineering processes.
Sect. 3 presents the project approach and describes the work done in the respective
sprints. Section. 4 summarizes the results of the project in terms of intersection
management and technical challenges while Sect. 5 describes the software engi-
neering process which emerged from the development of the prototypical CPS.
Eventually Sect. 6 provides an outlook in terms of future research directions.

2 Related Work

2.1 Software Engineering Process

Traditional software engineering processes are not directly applicable to cyber-
physical systems due to the specific characteristics of CPS such as a close inter-
dependency between hard- and software, uncertainty during operation, as well
as the large scale, complexity and distribution of infrastructures [1,5]. As CPS
lie at the intersection of multiple disciplines such as mechanical engineering,
electrical engineering, control engineering, software engineering and physics, the
CPS engineering process is multidisciplinary as well [1,6,10].

Al-Jaroodi et al. [1] give an broad overview of the software engineering chal-
lenges imposed by CPS. One of their findings is that the complexity strongly
depends on the domain of the cyber-physical systems under development. While
mobility and power limitation might be issues for CPS in the automotive domain
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this restriction is different for CPS developed in a smart home context. Accord-
ing to Al-Jaroodi et al. all software engineering phases such as analysis, design,
implementation and testing need to be reconsidered and adapted when develop-
ing CPS [1]. Particularly during the analysis phase models and tools are required
that enable a coherent specification while capturing CPS characteristics. For
example Bures et al. consider the idea to use software architecture models that
are extended with knowledge and insights “such as electro-mechanical elements,
physical constraints and laws” from other areas [5].

The view from a software vendor is presented by Rüchardt and Bräuchle
[18]. Their experiences support the initial assumption of this paper that the
interdependency between hard- and software has a huge impact. The authors
explain that the business model is influenced as well: “experiences with enter-
prise systems can be extrapolated and transformed into a new model of sys-
tem operations, where product and service merge to form one common business
model.” [18].

Autonomous driving is currently gaining public interest and CPS are enabling
this trend. Therefore we have chosen the domain of automotive traffic coordina-
tion and aim at creating a small-scale physical intersection in order to examine
the software engineering process for CPS.

2.2 Simulating Intersections

There are several approaches working towards the future of intelligent trans-
portation systems in which vehicles cross intersections autonomously.

A first step towards making intersections more efficient is analyzing the
dilemma zone problem, which refers to the area in front of an intersection
that is approached during the yellow light phase and the driver being indeci-
sive about stopping or crossing the intersection. Petnga and Austin [17] describe
this dilemma as a set of conditions that represent an unsafe state and present a
simulation framework for implementing resolution algorithms. The authors con-
clude that for achieving a successful coordination it is necessary to consider cars
and traffic lights simultaneously, i.e. both spatial and temporal data is required
in order to prevent the system from reaching an unsafe state.

In a recent work from MIT the authors Tachet et al. examine slot-based sys-
tems known from aerial traffic coordination and present a framework to analyze
the performance of different algorithms for a slot-based intersection for vehi-
cles [20]. The common way of coordinating vehicles are traffic lights which grant
access to an intersection area (i.e., the shared resource) exclusively to one of the
traffic directions. In contrast to this approach, slot-based systems consider the
trajectory of multiple vehicles and prevent collisions by coordinating the time
slot in which the intersection can be crossed safely (simultaneously for multiple
traffic directions). Their work shows that by using a slot-based intersection the
capacity of an intersection can be doubled and delays significantly reduced.

Azimi et al. focus on Vehicle to Vehicle (V2V) communication in order to
coordinate the crossing of an intersection [3]. Their algorithm segments the inter-
section into a grid of 4 × 4 cells. Each vehicle calculates possible collisions with
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other vehicles based on their desired trajectory and its respective occupied cells
during the crossing. This communication process is triggered when approaching
the intersection. The authors experiment with different algorithms (“intersec-
tion protocols”) and compare the trip time and delay caused by crossing the
intersection. Their results show that by avoiding single colliding cells on vehicle
trajectories the delay caused by common traffic lights can be reduced from 48%
up to 85% due to lower waiting time and a more fine-grained planning.

Wuthishuwong and Traechtler use a Vehicle to Infrastructure (V2I) app-
roach in which a centralized system plans and coordinates the trajectories of
vehicles crossing an intersection [21]. Based on discretization of the vehicle’s two-
dimensional trajectory and considering time as the third dimension the authors
employ Dynamic Programming to calculate a collision-free route for each vehi-
cle. Compared to the aforementioned approach Wuthishuwong and Traechtler
achieve an even more fine-grained trajectory. Although the authors did not
carry out exhaustive experiments they state that their approach reduced delay
and supported an continuous flow of vehicles crossing an prototypical simulated
intersection.

2.3 Simulations and Physical Prototypes

The examples mentioned in Sect. 2.2 are all software-based and simulate vehicle
trajectories without any connection to physical devices.

The work by Paczesny et al. studies the link between simulation and pro-
totyping of cyber-physical systems [16]. By providing a middleware combining
aspects from both areas, it is possible during development to test and demon-
strate a CPS composed of virtual nodes (i.e., simulated elements) and real nodes
(e.g., objects and their sensors and actuators). This middleware also enables
hybrid approaches as combinations of virtual and real nodes on both the cyber
(i.e., software) and physical side.

Blech et al. call the combination of existing physical elements and software
simulation “cyber-virtual systems” [4]. The authors highlight the importance
of “visualization, simulation and validation of cyber-physical systems in indus-
trial automation during development, operation and maintenance” supported
by Hardware-in-the-Loop (HIL) approaches. HIL is known from the domain of
embedded systems where hardware “parts of a system are simulated in software
to test a distinct system component.”

Kim et al. argue that conventional HIL simulations are not suitable for CPS
as these simulations are usually built for specific systems in non-distributed envi-
ronments [11]. Therefore the authors propose a human-interactive HIL simula-
tion framework for CPS. It supports a fully distributed and scalable environment
that connects human-interactive (i.e., physical) devices for input, distributed
simulators and a physical system as the target to be tested.
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3 Project Approach

The idea of this project is to interweave aspects from the above mentioned
related work with an experimental setup while focussing on the primary goal
to learn about the engineering process of CPS. Following this idea, we aim to
develop problem solving techniques and guidance for work organization in CPS
development projects. The actual results of the implementation are secondary.
Therefore the following section is focussed on the work items and process and
leaves out some technical details of the solution.

3.1 Project Setup

The project team consisted of software engineers, mainly the authors and one stu-
dent who contributed to specific work items concerning simulation and intersec-
tion protocol algorithms. While high-level requirements were clearly set, detailed
analysis of the real requirements was not possible and hence the team followed an
agile approach [19, p. 57ff.] with weekly or bi-weekly meetings and an incremen-
tal development of features to explore technical boundaries (see Fig. 1). From
the beginning, it was clear that due to resource constraints, the intersection
needed to be modeled: no real cars, let alone a real intersection were available.
Lego Mindstorms was chosen as framework for the physical model and accord-
ingly the intersection needed to be built in a scaled-down indoor environment.
Benefits and disadvantages of this approach will be discussed in the course of
this chapter. The structure resembles the phases of the project and observations
and lessons learned are outlined in the context of the sprint phase where they
occurred.

3.2 First Sprint

The first sprint primarily served as a basis for subsequent work and guidance
for the team members. In this regard, the sprint was primarily composed of two
elementary tasks. First, the development hardware was examined and configured.
Second, concepts and models to digitize the physical components were created.

In terms of hardware, we started with NXT and EV3 robots from the Lego
Mindstorms series. The rationale behind this decision was that this is a proven
framework for experiments in robotics. For better control over the hardware
we used the LeJOS operating system [8], which allows execution of arbitrary
Java software as opposed to the original Lego OS. After the construction of
a prototypical vehicle, we started to implement the on-board software. In our
concept, the vehicles should communicate their location to a central server in
order to retrieve control information. The communication was to take place from
the vehicle to a computer via Bluetooth. On the computer, a bridge software
needed to be set up, which forwards the bluetooth communication via REST
calls to a server. The NXT controllers that were used do not have the capability
to implement IP-based communication themselves.
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Sprint 1

• hardware examination and configuration
• create digital models of physical objects
• basic client/server communication

Sprint 2

• graphical user interface for better understanding of 
physical values

• analyze physical values for plausability checks

Sprint 3

• digital simulation of real-world objects
• optimizing simulated objects by modeling them closer 
to their real counterpart

Sprint 4
• server architecture and design
• intersection algorithms

Sprint 5
• experiments
• improve algorithms and increase intersection capacity

Fig. 1. Sprint overview

A special conceptual and technical challenge was the localization of the vehi-
cles. As our experiment should be carried out indoor, GPS localization could not
be used – the necessary precision of two to five centimeter for the scaled down
car models cannot be achieved with normal GPS, especially not in an indoor
environment. Also radio-frequency beacons are able to provide this spatial res-
olution. Instead, we decided to divide the lanes into fields (approximately five
centimeter long), coded with different colors (see Fig. 2).

The unique color combination allowed localization of the vehicle across the
lane. To read the color code, vehicles were equipped with two downward-facing
color sensors whose values were sent to the server continuously. With that, the
server can detect the position of the vehicle by matching its color combination
and the color-coded model of the intersection.

The server component was implemented as Node.js server. In the first sprint,
the server does not control any of the vehicles. Instead, only the transfer of the
location from the vehicle to the server was implemented.

Lessons Learned: We learned that for the design decisions on how to abstract
reality to a model, the available sensors play an important role. The character-
istics and limitations of the sensors to be used need to be adequately studied
to ensure that all functions can be implemented later. The sensors’ specified
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capabilities are therefore a valid starting point for the model. However, the spec-
ification and documentation of the sensor must be read, tested and validated to
ensure they can be used in the scenario – we found our designated color-sensors
to massively underperform in the target environment. Also, we had to change
the physical mounting and adjust the height of the color sensors to reach a bet-
ter performance. Eventually the experimentation led to a reduced set of seven
identifiable colors which was fed back to the modeling task in order to color code
the intersection.

Fig. 2. Intersection prototype with robotic cars (Color figure online)

3.3 Second Sprint

In the second sprint, we focussed on creating a visualization to enable a more
productive development and testing. While the messaging of the detected vehicle
location to the server had already been implemented, it could only be written
out to the console – a not well-readable form of information that makes the
system difficult to debug. Thus, errors could not be detected directly, because
they were not obvious to the human eye – especially, if the incoming values
seemed plausible. To solve this problem, a graphical user interface (GUI) com-
ponent was implemented. The GUI should enable developers to visualize the
vehicle locations known by the server. Therefore, we constructed a digital twin
of the intersection. Technologically, the implementation of the GUI was done in
JavaScript to keep it close to the server codebase (especially for data structures
and related code). HTML and the canvas element were chosen as native visual-
ization means in this technology stack. As a result, movements on the physical
intersection could be compared to the information of the server which were visu-
alized on the screen. Each vehicle was represented by a simple rectangle in the
digital model. The shape contains vehicle information such as location (including
the color combination), speed, vehicle length, etc.
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Lessons Learned: First, we depicted real-world objects in a machine readable
format on the server. The problem here is that this model is not comprehensible
enough for human developers in order to detect errors at first sight. Therefore
we decided to visualize the created model as well. Even if this meant addi-
tional work, we invested the required time to accelerate the ongoing development
process. HTML canvas proved to be a capable and well-performing, however not
very comfortable option develop the GUI. Feedback from team members devel-
oping the intersection algorithms suggest that in fact identification of errors
and troubleshooting got more productive and effective. Hence, we conclude that
human readable models and visualizations help to structure the CPS develop-
ment process and to increase its efficiency.

3.4 Third Sprint

It quickly became clear that the development was slowed down by the exclusive
use of physical cars. The recurrent placement of vehicles increased the test effort
further and slowed down debugging. The team therefore decided to simulate
vehicles. Thus, this sprint focussed on developing a virtual car component. The
idea was that the virtual instance of the vehicle would use the same interfaces as
the physical robotic car. This way, the server does not know if a connected vehicle
is a real or virtual (it is a blackbox). Other than the robotic vehicle, the virtual
car component included the digital model of the intersection. To simulate driving
behavior, it sent messages to the server with color codes from the model in the
given order. Moreover, also the virtual vehicle could be controlled by commands
from the server. Same as the robot, it would react to target speeds set by the
server and behave accordingly. Effectively this meant that at higher speed, the
color combinations were sent at shorter intervals to the server. At the same
time, the experiments with robotic cars showed that the physical model needed
extension. In some situations, the server assumed that cars had already cleared
the intersection - but in reality they were still crossing. We speculated that the
robotic cars varied their speed based on battery charge and available voltage.
Thus we decided to add a color code to the lanes right after the intersection. By
passing this color combination, the cars could declare themselves clear off the
collision zone.

Lessons Learned: CPS focus on the interaction of physical objects, hard-
ware and software. Real-world objects are sensed and measured and the system
responds to their properties. Since the physical properties change constantly, sce-
narios are very difficult to reproduce. Furthermore, the continuous use of physical
objects in the development process creates an enormous test and debug workload
on software developers. The simulation of these objects can reduce the workload
and accelerate the development process. The fact that simulated components
are at work should be intransparent to other CPS components, otherwise the
validity of the simulation is at risk.
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3.5 Fourth Sprint

Once we were able to transmit the locations of real and virtual vehicles without
errors to the server, the performance of any intersection algorithm could digitally
be visualized on the screen. The next step was to deal with the control of the
vehicles. In our setup, the server stored all locations of all vehicles at all times.
This centralized server should now decide how fast each vehicle should move. The
primary goal of any intersection control should be that there are no collisions,
the secondary goal being optimal use of the road capacity. In this sprint, we
implemented two competing routing algorithms that pursued different strategies
in reaching the aforementioned goals.

The algorithms were designed as modules in the server, so that they could
easily be switched and compared. Both routing algorithms got access to the loca-
tion of all vehicles, their main task being the calculation of a target speed for
each vehicle. The server then sent this information to the vehicles that adjust
their speed accordingly. By using the virtual cars we were able to test the algo-
rithms with unlimited vehicles and observe the behavior. As stated before, the
main focus was to avoid collisions.

Lessons Learned: While implementing the routing algorithms, the virtual vehi-
cles were used successfully to simulate the intersection. We learned that without
simulations, no productive development is possible, as the iteration cycles between
implementation and testing are very frequent and short. Often, changing a piece
of code only took a few minutes to complete. Afterwards, a brief test needed to be
performed in each case. Doing these tests during implementation with real vehicles
is virtually impossible because this takes too much time and effort.

3.6 Fifth Sprint

In a final sprint we experimented with the different vehicles and tried to optimize
the functions of the system. Focus here was to increase the capacity of the
junction without causing collisions. To make the comparison more objective, a
collision counter was implemented together with the option to freeze the GUI
at the event of a collision. Prior to this, longterm testing was effectively useless
as collisions needed to be observed by a human. The routing algorithms’ code
was cleaned and partially rewritten. In the experiments we also tried to combine
real and virtual cars to observe if they behaved similarly and if the intersection
could handle this situation.

Lessons Learned: After we had reviewed much of the implementation using
virtual vehicles, we had to perform integration tests with real hardware. This
showed how important it was that the virtual vehicles act as precisely as pos-
sible like their physical counterpart. The test on real hardware was completed
quickly – only small changes to the code were necessary, e.g. to synchronize the
speed of virtual cars to real cars. The routing algorithms and server components
did not require further changes.
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4 Project Results and Critical Acclaim

The project ended with a successful test of the intersection with both robotic
and virtual cars, as well as a combination. At this stage the following artifacts
have been developed:

– Physical model of the intersection and three physical model cars
– Bluetooth bridge for cars connected to the server module
– Two intersection protocol implementations
– Digital model of the intersection and graphical user interface
– Virtual car simulation module

With this setup, different use cases are supported. The virtual components
together with the GUI proved very valuable to simulate behavior and visualize
problems. In this use case, the virtual cars are controlled by the server according
to the given protocol. Algorithms can be interchanged and collision numbers
compared. The same applies when physical cars are used. These also are con-
trolled through the server and the bluetooth bridge component. The latter being
necessary for coupling of devices and tunneling of IP-based communication with
the server component. Our experiments showed that the concept of indoor local-
ization with color coded lanes worked rather precisely. The physical robotic cars
worked well, although their physical properties in terms of speed and maneuver-
ing capabilities are certainly in need of improvement. Although our analysis lacks
detailed statistics, the results are promising as the throughput of the intersection
seems ample and collisions could not be observed.

One main limitation of the scenario is that cars do not change their direc-
tion, i.e. they do not turn. While it is certainly possible to build Lego cars and
software that enables precise turning maneuvers, we decided to not spend time
on this feature. Secondly, we did not use ultrasonic distance control, despite the
availability of the sensor in the Lego NXT framework. With this, it would have
been relatively easy to ensure that a certain safety distance is kept by cars. We
decided against this in order to focus on the algorithmic quality, however these
sensors are widely used today for park distance control and are also part of the
sensor package in autonomous vehicles. Another limitation is that we decided
not to use vehicle to vehicle (V2V) communication. V2V is speculated to be
a major feature of connected cars and enable better peer-to-peer coordination
(amongst other benefits). This also would make the algorithmic control problem
more interesting. While all these features would add realism and more complex-
ity to examine the algorithms, it would have been just more iterations through
physical and virtual models and software. Hence, we conclude these would not
have added value for our focus area: the engineering process.

5 Results on Methodology and Engineering Process

Our observations are presented in two steps. First we elaborate on the differences
between a CPS development process and an information system development
process. Then we take those differences and generate a preliminary model for a
CPS software engineering process and its phases.
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5.1 Observations on CPS-Specific Tasks

CPS-specific tasks are naturally connected to the physical aspects otherwise
missing in a software project.

The first step in our experiment was the construction of a viable physical
model. This is due to the design decision to use building blocks instead of more
integrated components. Certainly the idea to use Lego Mindstorms/NXT is a
compromise between fabricating a physical model from scratch and choosing a
fully integrated system like Anki Overdrive. As described, sensors and actua-
tors need special attention. To information system developers it may come as a
surprise that the sensor’s capabilities, to a large extent, dictate the data model
and even many functional aspects. In our case, the color sensor limitations influ-
enced not only the physical architecture of the car but also the model of the
intersection, such that localization was finally possible with the data generated.
These constraints can be interpreted as technical requirements, well known to
software engineers. However, their nature is different as they need to be devel-
oped and deducted from the physical processes in scope and are not given by
stakeholders during the classical requirements elicitation phase methods such as
interviews or scenarios [19, p. 99ff.]. This physical aspect is usually not present
in the construction of information systems. It creates a greater uncertainty in
the specification phase which leads to even more iterations between require-
ments and architecture. These iterations are similar to component tests, where
a subsystem is tested individually in a prototypical and explorative manner.

Second, after the physical model has been developed and translated into an
information and data model, the software implementation phase started to influ-
ence physical aspects again. When the first algorithm was tested with physical
cars, we found that cars would collide because the algorithm assumed they had
already cleared the intersection. So, in order to have a robust method to deter-
mine if the intersection was clear or not, it was decided to add a unique color code
after the intersection to each lane. Cars would send this marker to the server and
thereby declare that they leave the scope of control. Clearly, this measure could
have been foreseen at an earlier stage. But to us it only became apparent when
tested with physical model cars, that behaved physically correct. While it can be
credited to a lack of experience in building CPS, it does seem realistic to assume
that implementation aspects of CPS are likely to be overlooked until first tests
of the integrated system are conducted. While it is certainly desirable to follow a
holistic plan-driven approach in any safety-critical environment [19, p. 57] such
as traffic control, the heterogeneity of CPS might render this ambition unfeasi-
ble. Thus, the CPS engineering process must not prohibit later adjustments to
aspects of the system but rather enable change.

Third, the behavior of the physical cars was again modeled into a virtual
simulation component. This component acted like the physical car and commu-
nicated with exactly the same protocol reading color codes and processing speed
commands. As a result, it was not transparent for the server if a car was virtual
or real. Being able to instantiate an almost arbitrary amount of (virtual) cars
made testing and simulating the intersection algorithms a lot more convenient
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and productive. However, we found it difficult to recreate the exact physical
behavior of the cars in terms of acceleration and speed. The physical cars would
sometimes come off track or show faster or slower speeds (possibly due to higher
or lower battery charge states). Nonetheless, the virtual cars made it possible to
develop algorithms in a more reasonable time. Simulation is therefore both an
accelerator, as well as a threat to development process. The danger is mainly
rooted in the fact that a simulation can never fully account for the variability of
real world applications and therefor cannot guarantee faultless operation.

5.2 Preliminary Model of CPS Software Engineering Phases

Throughout the different phases of our development, we saw strong parallels to
the Twin Peaks model [15]. Twin Peaks emphasizes the interrelation of require-
ments and architecture, the notion being that there is a permanent exchange
of information between the two. Moreover, Twin Peaks conveys the idea that
one starts with a general understanding of requirements and architecture and
iteratively generates a detailed view.

Software

Hardware

Requirements Architecture

Level
of

Detail

Fig. 3. Double Twin Peaks overview

Based on our observations, we propose to add the notion of physical (real-
world) objects to this model. We found that often physical properties and con-
straints were only discovered when applying our architectural decisions. Therefore
the iterations are not purely software-based but clearly there is a hardware-related
loop to the CPS engineering process. As with Twin Peaks, this is a bidirectional
information gain: software needs to be adapted when physical aspects change and
the physical part of the CPS evolves when new software is implemented and tested.
For example the requirement to localize vehicles indoors led to the development
of a physical color-code schema. This in turn incurred that vehicles needed color
sensors. Experiments with the latter showed that the positioning of the sensors
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Software

Hardware

Requirements Architecture

Level
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Detail

Focus:
Sprint 1

Focus:
Sprint 2

Focus:
Sprint 3

Focus:
Sprint 4

Focus:
Sprint 5

Fig. 4. Illustration of the observation that focus areas of sprints alternated over the
course of engineering through different domains in Double Twin Peaks.

is crucial to obtain enough reliable data. The number of colors supported by the
sensor influenced the software data model, and so on. We think it is crucial to
understand that CPS components cannot be developed separately, but in fact the
development of cyber and physical parts are closely aligned and interdependent.
Therefore we present the Double Twin Peaks model, as shown in Fig. 3 below. In
the foreground, it depicts the Twin Peaks of software requirements and architec-
ture, adding a layer for the respective doubles in the physical domain – hardware
requirements and hardware architecture.

Double Twin Peaks emphasizes the strong influence of physical properties on
the design and development of CPS. As described in the original Twin Peaks
publication, similar attention needs to be put on software requirements, architec-
ture as well as hardware design and physical constraints. It can be hypothesized
that as with software there exist CPS-patterns, i.e. solutions that can be applied
in a range of similar problems. What can be said for sure is that a modular,
well-defined and reusable system architecture is desirable for CPS in order to
cope with complexity and shorten development cycles. However, this ambition is
challenged as the physical part of CPS tend to be specifically tailored to the phys-
ical environment and relevant constraints. As physical components influence the
software part, the entire CPS drifts towards a specific solution. Figure 4 depicts
the described development journey in the Double Twin Peaks model. Despite
the limited number of sprints, we experienced a constant interchange between
domains which did not follow the textbook approach in software engineering.

While Double Twin Peaks is a preliminary result and needs validation, the
generated insight might help developers aiming to build CPS to realize possible
faux pas such as strict separation of teams or lack of communication.
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6 Conclusion and Future Work

In this paper, we have described the development of a cyber-physical intersection
management system. Certainly the prototype was very simplified and spared
external factors such as pedestrian behavior, unexpected obstacles or human
driver behavior. However, our models first priority purpose was not to serve as
a realistic intersection simulation but rather generate initial insights into the
CPS engineering process, which to the best of our knowledge are otherwise not
available. The experience gathered led to the preliminary version of the Dou-
ble Twin Peaks model. Here, we argue that not only software requirements and
architecture influence one another but extend our view to the physical domain.
Hardware and physical environment impose constraints on CPS software. But
this is not a one-way road – for example, we have shown that design decisions in
the software domain may lead to new requirements for hardware components or
new ideas how to interact with the physical environment. We are currently devel-
oping a follow-up project. With this second generation prototype we would like
to validate the Double Twin Peaks development model presented previously. The
model should consistently be applicable throughout the phases of the CPS engi-
neering life cycle. The focus is requirements engineering, architectural design,
implementation and concurrent testing.

In this prototype setup we had used building blocks from the Lego NXT
robotics framework. From a functional perspective, it is desirable to move away
from this system as the NXT control units lack computing power and modern
communication. In addition, to improve the cars speed and precision of move-
ments, the mechanical design would need to be generally revised. Thus for the
following project, we aim to use Anki Overdrive [9].

Higher speed and greater flexibility are not the only changes compared to
NXTs – Anki vehicles are equipped with modern communication technology,
optical sensors and artificial intelligence. The cars are fully-integrated devices
whose software can not be customized [2]. Hence, a major benefit of using Anki
is that we are able to observe if our findings still hold true for a more integrated
platform, where most physical aspects are predetermined.

Thus, the focus of future research is no longer the software implementation
of the vehicle itself. Instead, we will concentrate on the network of vehicles and
the intelligent intersection control algorithm. With this slight change in focus,
we are keen to see if the hardware layer in the Double Twin Peaks model is still
relevant. Apart from that, Anki brings further possibilities to extent the project
scope: up to four vehicles can travel side by side on the track. The track could
therefore be divided into two tracks per direction, resulting in new possibilities
for the control system and more realism compared to real world traffic. Moreover,
we are planning turn maneuvers on the intersection to further increase the option
space for the prototype.
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