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Human Gesture Recognition on Product
Manifolds

Yui Man Lui

Abstract Action videos are multidimensional data and can be naturally represented
as data tensors. While tensor computing is widely used in computer vision, the
geometry of tensor space is often ignored. The aim of this paper is to demonstrate
the importance of the intrinsic geometry of tensor space which yields a very discrim-
inating structure for action recognition. We characterize data tensors as points on
a product manifold and model it statistically using least squares regression. To this
aim, we factorize a data tensor relating to each order of the tensor using higher order
singular value decomposition (HOSVD) and then impose each factorized element
on a Grassmann manifold. Furthermore, we account for underlying geometry on
manifolds and formulate least squares regression as a composite function. This gives
a natural extension from Euclidean space to manifolds. Consequently, classification
is performed using geodesic distance on a product manifold where each factor mani-
fold is Grassmannian. Ourmethod exploits appearance andmotionwithout explicitly
modeling the shapes and dynamics. We assess the proposed method using three ges-
ture databases, namely the Cambridge hand-gesture, the UMD Keck body-gesture,
and the CHALEARNgesture challenge data sets. Experimental results reveal that not
only does the proposed method perform well on the standard benchmark data sets,
but also it generalizes well on the one-shot-learning gesture challenge. Furthermore,
it is based on a simple statistical model and the intrinsic geometry of tensor space.
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2.1 Introduction

Human gestures/actions are the natural way for expressing intentions and can be
instantly recognized by people. We use gestures to depict sign language to deaf peo-
ple, convey messages in noisy environments, and interface with computer games.
Having automated gesture-based communication would broaden the horizon of
human-computer interaction and enrich our daily lives. In recent years, many gesture
recognition algorithms have been proposed (Mitra and Acharya 2007; Wang et al.
2009; Bilinski and Bremond 2011). However, reliable gesture recognition remains a
challenging area due in part to the complexity of human movements. To champion
the recognition performance, models are often complicated, causing difficulty for
generalization. Consequently, heavy-duty models may not have substantial gains in
overall gesture recognition problems.

In this paper, we propose a new representation to gesture recognition based upon
tensors and the geometry of product manifolds. Since human actions are expressed
as a sequence of video frames, an action video may be characterized as a third order
data tensor. Themathematical framework for working with high order tensors is mul-
tilinear algebra which is a useful tool for characterizing multiple factor interactions.
Tensor computing has been successfully applied to many computer vision appli-
cations such as face recognition (Vasilescu and Terzopoulos 2002), visual tracking
(Li et al. 2007), and action classification (Vasilescu 2002; Kim and Cipolla 2009).
However, the geometrical aspect of data tensors remains unexamined. The goal of
this paper is to demonstrate the importance of the intrinsic geometry of tensor space
where it provides a very discriminating structure for action recognition.

Notably, several recent efforts (Lui 2012a) have been inspired by the character-
istics of space and the associated construction of classifiers based upon the intrinsic
geometry inherent in particular manifolds. Veeraraghavan et al. (2005) modeled
human shapes from a shape manifold and expressed the dynamics of human silhou-
ettes using an autoregressive (AR)model on the tangent space. Turaga and Chellappa
(2009) extended this framework and represented the trajectories on a Grassmann
manifold for activity classification. The use of tangent bundles on special mani-
folds was investigated by Lui (2012b) where a set of tangent spaces was exploited
for action recognition. Age estimation was also studied using Grassmann manifolds
(Turaga et al. 2010). The geodesic velocity from an average face to the given face
was employed for age estimation where the space of landmarks was interpreted as
a Grassmann manifold. Lui and Beveridge (2008) characterized tangent spaces of
a registration manifold as elements on a Grassmann manifold for face recognition.
The importance of the ordering on Stiefel manifolds was demonstrated by Lui et al.
(2009) and an illumination model was applied to synthesize such elements for face
recognition. These successes motivate the exploration of the underlying geometry of
tensor space.

The method proposed in this paper characterizes action videos as data tensors and
demonstrates their association with a product manifold. We focus attention on the
intrinsic geometry of tensor space, and draw upon the fact that the geodesic on a
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product manifold is equivalent to the Cartesian product of geodesics from multiple
factor manifolds. In other words, elements of a product manifold are the set of all
elements inherited from factor manifolds. Thus, in our approach, action videos are
factorized to three factor elements using higher order singular value decomposition
(HOSVD) in which the factor elements give rise to three factor manifolds.We further
extend the product manifold representation to least squares regression. In doing so,
we consider the underlying geometry and formulate least squares regression as a
composite function. As such, we ensure that both the domain values and the range
values reside on a manifold through the regression process. This yields a natural
extension from Euclidean space to manifolds. The least squares fitted elements from
a training set can then be exploited for gesture recognition where the similarity is
expressed in terms of the geodesic distance on a product manifold associated with
fitted elements from factor manifolds.

We demonstrate the merits of our method on three gesture recognition problems
including hand gestures, body gestures, and gestures collected from the Microsoft
Kinect TM camera for the one-shot-learning CHALEARN gesture challenge. Our
experimental results reveal that our method is competitive to the state-of-the-art
methods and generalizes well to the one-shot-learning scheme, yet is based on a
simple statistical model. The key contributions of the proposed work are summarized
as follows:

• A new way of relating tensors on a product manifold to action recognition.
• A novel formulation for least squares regression on manifolds.
• The use of appearance andmotionwithout explicitlymodeling shapes or dynamics.
• A simple pixel-based representation (no silhouette or skeleton extraction).
• No extensive training and parameter tuning.
• No explicit assumption on action data.
• Competitive performance on gesture recognition.
• Applicable to other visual applications.

The rest of this paper is organized as follows: Related work is summarized in
Sect. 2.2. Tensor algebra, orthogonal groups, and Grassmannmanifolds are reviewed
in Sect. 2.3. The formulation of the proposed product manifold is presented in
Sect. 2.4 and is further elaborated with examples in Sect. 2.5. The statistical mod-
eling on manifolds is introduced in Sect. 2.6. Section 2.7 reports our experimental
results. Section 2.8 discusses the effect of using raw pixels for action recognition.
Finally, we conclude this paper in Sect. 2.9.

2.2 Related Work

Many researchers have proposed a variety of techniques for action recognition in
recent years. We highlight some of this work here, including bag-of-features mod-
els, autoregressive models, 3D Fourier transforms, tensor frameworks, and product
spaces.
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In the context of action recognition, bag-of-features models (Dollar et al. 2005;
Wang et al. 2009; Bilinski and Bremond 2011) may be among the most popular
methods wherein visual vocabularies are learned from feature descriptors and spa-
tiotemporal features are typically represented by a normalized histogram. While
encouraging results have been achieved, bag-of-featuresmethods have heavy training
loads prior to classification. In particular, feature detection and codebook generation
can consume tremendous amounts of time if the number of training samples is large.
Recently, Wang et al. (2009) have evaluated a number of feature descriptors and
bag-of-features models for action recognition. This study concluded that different
sampling strategies and feature descriptors were needed to achieve the best results
on alternative action data sets. Similar conclusions were also found by Bilinski and
Bremond (2011) where various sizes of codebooks are needed for different data sets
in order to obtain peak performances.

Another school of thought for action classification is using an autoregressive (AR)
model. Some of the earliest works involved dynamic texture recognition (Saisan et al.
2001) and human gait recognition (Bissacco et al. 2001). These works represented
actions using AR models. The authors found that the most effective way to compare
dynamics was by computing the Martin distance between AR models. Veeraragha-
van et al. (2005) modeled human silhouettes based on Kendall’s theory of shape
(Kendall 1984) where shapes were expressed on a shape manifold. This method
modeled the dynamics of human silhouettes using an ARmodel on the tangent space
of the shape manifold. The sequences of human shapes were compared by comput-
ing the distance between the AR models. Turaga and Chellappa (2009) investigated
statistical modeling with AR models for human activity analysis. In their work, tra-
jectories were considered a sequence of subspaces represented by AR models on a
Grassmann manifold. As such, the dynamics were learned and kernel density func-
tions with Procrustes representation were applied to density estimation.

Three-dimensional Fourier transform has been demonstrated as a valuable tool in
action classification. Weinland et al. (2006) employed Fourier magnitudes and cylin-
drical coordinates to represent motion templates. Consequently, the action matching
was invariant to translations and rotations around the z-axis. Although this method
was view invariant, the training videos needed to be acquired from multiple cam-
eras. Rodriguez et al. (2008) synthesized a filter respond using the Clifford Fourier
transform for action recognition. The feature representation was computed using
spatiotemporal regularity flow from the xy-parallel component. The advantage of
using Clifford algebra is the direct use of vector fields to Fourier transform.

Data tensors are the multidimensional generalizations to matrices. Vasilescu
(2002) modeled the joint angle trajectories on human motion as a set of factor-
ized matrices from a data tensor. Signatures corresponding to motion and identity
were then extracted using PCA for person identification. Kim and Cipolla (2009)
extended canonical correlation analysis to the tensor framework by developing a
Tensor Canonical Correlation Algorithm (TCCA). This method factorized data ten-
sors to a set of matrices and learned a set of projection matrices maximizing the
canonical correlations. The inner product was employed to compute the similarity
between two data tensors. The use of SIFT features with CCA was also considered
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for gesture recognition by Kim and Cipolla (2007). Recently, nonnegative tensor
factorization has been exploited for action recognition by Krausz and Bauckhage
(2010) where action videos were factorized using a gradient descent method and
represented as the sum of rank-1 tensors associated with a weighting factor. As
a result, the appearance was captured by the basis images and the dynamics was
encoded with the weighting factor.

Product spaces have received attention in applications related to spatiotemporal
interactions. Datta et al. (2009) modeled the motion manifold as a collection of
local linear models. This method learned a selection of mappings to encode the
motion manifold from a product space. Lin et al. (2009) proposed a probabilistic
framework for action recognition using prototype trees. Shape and motion were
explicitly learned and characterized via hierarchical K-means clustering. The joint
likelihood framework was employed to model the joint shape-motion space. Li and
Chellappa (2010) investigated the product space of spatial and temporal submanifolds
for action alignment. Sequential importance sampling was then used to find the
optimal alignment. Despite these efforts, the geometry of the product space has not
been directly considered and the geodesic nature on the product manifold remains
unexamined.

2.3 Mathematical Background

In this section, we briefly review the background mathematics used in this paper.
Particularly, we focus on the elements of tensor algebra, orthogonal groups, Stiefel
manifolds, and Grassmann manifolds.

2.3.1 Tensor Representation

Tensors provide a natural representation for high dimensional data. We consider a
video as a third order data tensor ∈ R

X×Y×T where X , Y , and T are the image width,
image height, and video length, respectively. High order data tensors can be regarded
as a multilinear mapping over a set of vector spaces. Generally, useful information
can be extracted using tensor decompositions. In particular, a Higher Order Singular
Value Decomposition (HOSVD) (De Lathauwer et al. 2000) is considered in this
paper because the data tensor can be factorized in a closed-form. A recent review
paper on tensor decompositions can be found in Kolda and Bader (2009). Before we
describe HOSVD, we illustrate a building block operation called matrix unfolding.
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Fig. 2.1 An example of matrix unfolding for a third order tensor. The illustration is for a video
action sequence with two spatial dimensions X and Y and a temporal dimension T

2.3.1.1 Matrix Unfolding

LetA be an order N data tensor ∈R
I1×I2×···×IN . The data tensorA can be converted

to a set of matrices via a matrix unfolding operation. Matrix unfolding maps a tensor
A to a set of matrices A(1), A(2), . . ., A(N ), where A(k) ∈ R

Ik×(I1×···×Ik−1×Ik+1···×IN )

is a mode-k matrix of A . An example of matrix unfolding of a third order, that is,
N = 3, tensor is given in Fig. 2.1. As Fig. 2.1 shows, we can slice a third order
tensor in three different ways along each axis and concatenate these slices into three
different matrices A(1), A(2), and A(3) where the rows of an unfolded matrix are
represented by a single variation of the tensor and the columns are composed by two
variations of the tensor.

2.3.1.2 Higher Order Singular Value Decomposition

Just as a data matrix can be factorized using a singular value decomposition (SVD),
a data tensor can also be factorized using higher order singular value decomposi-
tion (HOSVD), also known as multilinear SVD. HOSVD operates on the unfolded
matrices A(k), and each unfolded matrix may be factored using SVD as follows:

A(k) = U (k)�(k)V (k)T (2.1)

where �(k) is a diagonal matrix, U (k) is an orthogonal matrix spanning the column
space of A(k) associated with nonzero singular values, and V (k) is an orthogonal
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matrix spanning the row space of A(k) associated with nonzero singular values. Then,
an N order tensor can be decomposed using HOSVD as follows:

A = S ×1 U (1)×2 U (2) · · · ×n U (N )

where S ∈ R
(I1×I2×···×IN ) is a core tensor, U (1), U (2), . . ., U (N ) are orthogonal

matrices spanning the column space described in (2.1), and ×k denotes mode-k
multiplication. The core tensor signifies the interaction of mode matrices and is
generally not diagonal when the tensor order is greater than two.

2.3.2 Orthogonal Groups

Matrix Lie groups arise in various kinds of non-Euclidean geometry (Belinfante and
Kolman 1972). The General Linear Group1 GL (n) is a set of nonsingular n × n
matrices defined as:

GL (n) = {Y ∈ R
n×n : det(Y ) �= 0}.

The GL (n) is closed under a group operation, that is, matrix multiplication. This is
because the product of two nonsingular matrices is a nonsingular matrix. Of practical
importance here is the fact that elements of GL (n) are full rank and thus their row
and column spaces span R

n . A further subgroup of GL (n) is the orthogonal group
denoted as:

O(n) = {Y ∈ R
n×n : Y T Y = I }.

It is known that the determinants of orthogonal matrices can be either +1 or −1
where the matrices with the determinant of 1 are rotation matrices and the matrices
with the determinant of −1 are reflection matrices.

2.3.3 Stiefel Manifolds

The Stiefel manifold Vn,p is a set of n × p orthonormal matrices defined as:

Vn,p = {Y ∈ R
n×p : Y T Y = I }.

The Stiefel manifoldVn,p can be considered a quotient space ofO(n) so we can iden-

tify an isotropy subgroup H of O(n) expressed as
{[

Ip 0
0 Qn−p

]
: Qn−p ∈ O(n − p)

}

1In this paper, we are only interested in the field of real numberR. Unitary groupsmay be considered
in other contexts.
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where the isotropy subgroup leaves the element unchanged. Thus, the Stiefel mani-
fold can be expressed as Vn,p =O(n) /O(n − p). From a group theory point of view,
O(n) is a Lie group andO(n − p) is its subgroup so thatO(n) /O(n − p) represents
the orbit space. In other words, Vn,p is the quotient group of O(n) by O(n − p).

2.3.4 Grassmann Manifolds

When we impose a group action of O(n) onto the Stiefel manifold, this gives rise
to the equivalence relation between orthogonal matrices so that the elements of
Stiefel manifolds are rotation and reflection invariant. In other words, elements are
considered being equivalent if there exists a p × p orthogonal matrix Qp which
maps one point into the other. This equivalence relation can be written as:

�Y � = {Y Qp : Qp ∈ O(n)} (2.2)

where �Y � is an element on the Grassmann manifold. Therefore, the Grassmann
manifold Gn,p is a set of p-dimensional linear subspaces of Rn and its isotropy

subgroup composes all elements of
{[

Qp 0
0 Qn−p

]
: Qp ∈ O(p) , Qn−p ∈ O(n − p)

}
.

The quotient representation of Grassmann manifolds is expressed as Gn,p = O(n)

/ (O(p) × O(n − p)) = Vn,p / O(p). As such, the element of the Grassmann mani-
fold represents the orbit of a Stiefel manifold under the group action of orthogonal
groups. More details on the treatment of Grassmann manifolds can be found in
Edelman et al. (1998) and Absil et al. (2008).

2.4 Elements of Product Manifolds

This section discusses the elements of product manifolds in the context of gesture
recognition. We illustrate the essence of product manifolds and the factorization of
action videos. Further, we describe the realization of geodesic distance on the product
manifold and its use for action classification.

2.4.1 Product Manifolds

A product manifold can be recognized as a complex compound object in a high
dimensional space composed by a set of lower dimensional objects. For example,
the product of a line with elements y in R

1 and a solid circle with elements x in R
2

becomes a cylinder with elements (x , y) in R
3 as shown in Fig. 2.2. Formally, this

product topology can be expressed as:
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Fig. 2.2 An example of a
product manifold: a cylinder
is a cross product of a circle
and an interval

I = {y ∈ R : |y| < 1},
D2 = {x ∈ R

2 : |x | < 1},
D2 × I = {(x, y) ∈ R

2 × R : |x | < 1 and |y| < 1}

where D2 and I are viewed as topological spaces.
The cylinder may be equally well interpreted as either a circle of intervals or an

interval of circles. In general, a product manifold may be viewed as the cross section
of lower dimensional objects. Formally, letM1,M2, . . . ,Mq be a set of manifolds.
The set M1 × M2 × · · · × Mq is called the product of the manifolds where the
manifold topology is equivalent to the product topology. Hence, a product manifold
is defined as:

M = M1 × M2 × · · · × Mq

= {(x1, x2, . . . , xq) : x1 ∈ M1, x2 ∈ M2, . . . , xq ∈ Mq}

where × denotes the Cartesian product, Mk represents a factor manifold (a topo-
logical space), and xk is an element in Mk . Note that the dimension of a product
manifold is the sum of all factor manifolds (Lee 2003).

The product manifold naturally expresses a compound topological space associ-
ated with a number of factor manifolds. For action video classification, third order
data tensors are manifested as elements on three factor manifolds. As such, video
data can be abstracted as points and classified on a product manifold.

2.4.2 Factorization in Product Spaces

As discussed in Sect. 2.3, HOSVD operates on the unfolded matrices (modes) via
matrix unfolding in which the variation of each mode is captured by HOSVD. How-
ever, the traditional definition of HOSVD does not lead to a well-defined product
manifold in the context of action recognition.

We observe that the column of every unfoldedmatrix A(k) is composed bymultiple
orders from the original data tensorA ∈R

I1×I2×···×IN . This fact can also be observed
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in Fig. 2.1. Letm be the dimension of the columns, I1 × I2 × · · · × Ik−1 × Ik+1 · · · ×
IN , and p be the dimension of the rows, Ik , for an unfolded matrix A(k). We can then
assume that the dimension of the columns is greater than the dimension of the rows
due to the nature of matrix unfolding for action videos, that is, m > p. This implies
that the unfolded matrix A(k) only spans p dimensions.

Alternatively, one can factorize the data tensor using the right orthogonal matrices
(Lui et al. 2010). From the context of action videos, the HOSVD can be expressed
as:

A = Ŝ ×1 V (1)
horizontal-motion×2 V (2)

vertical-motion×3 V (3)
appearance

where Ŝ is a core tensor, V (k) are the orthogonal matrices spanning the row space
with the first p rows associated with non-zero singular values from the unfolded
matrices, respectively. Because we are performing action recognition on videos,
the orthogonal matrices, V (1)

horizontal-motion, V
(2)
vertical-motion, and V (3)

appearance, correspond to
horizontal motion, vertical motion, and appearance. Figure2.3 shows some examples
from the action decomposition.

From the factorization of HOSVD, each V (k) is a tall orthogonal matrix, thus it is
an element on a Stiefel manifold. When we impose a group action of the orthogonal
group, elements on the Stiefel manifold become rotation and reflection invariant. In
other words, they are elements on the Grassmann manifold described in (2.2). As
such, the action data are represented as the orbit of elements on the Stiefel manifold
under the rotation and reflection actions with respect to appearance and dynamics.
Section 2.5 will discuss how we benefit from imposing such a group action on the
Stiefel manifold.

2.4.3 Geodesic Distance on Product Manifolds

The geodesic in a product manifoldM is the product of geodesics inM1,M2, . . . ,
Mq (Ma et al. 1998; Begelfor andWerman 2006). Hence, for any differentiable curve
γ parametrized by t , we have γ (t) = (γi (t), γ j (t)) where γ is the geodesic on the
product manifoldM , and γi and γ j are the geodesics on the factor manifoldMi and
M j respectively. From this observation, the geodesic distance on a product manifold
may be expressed as a Cartesian product of canonical angles computed by factor
manifolds.

Just as there are alternatives to induce ametric on aGrassmannmanifold (Edelman
et al. 1998) using canonical angles, the geodesic distance on a product manifold
could also be defined in different ways. One possible choice is the chordal distance
that approximates the geodesic via a projection embedding (Conway et al. 1996).
Consequently, we define the geodesic distance on a product manifold as:

dM (A ,B) =‖ sin� ‖2 (2.3)
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where A andB are the N order data tensors, � = (θ1, θ2, . . . , θN ), and θk ∈ Gk is a
set of canonical angles (Björck and Golub 1973) computed independently from each
factor (Grassmann) manifold.

This development of geodesic distance on the product manifold can be related
back to our cylinder example where a circle in R

2 and a line in R
1 form a cylinder

in R
3 where R3 is the product space. Recall that a Grassmann manifold is a set of

p-dimensional linear subspaces. In analogous fashion, the product of a set of p1, p2,
. . . , pN linear subspaces forms a set of product subspaces whose dimension is (p1 +
p2 + · · · + pN ). The product subspaces are the elements on a product manifold. This
observation is consistent with the � in (2.3) where the number of canonical angles
agrees with the dimension of product subspaces on the product manifold.

Note that canonical angles θk are measured between V (k)
A and V (k)

B where each
is an orthogonal matrix spanning the row space associated with nonzero singular
values from a mode-k unfolded matrix. As such, an N order tensor in R

I1×I2×···×IN

would span N row spaces in I1, I2, . . . , IN , respectively, and the dimension of a
product manifold is the sum of each order of a data tensor, that is, (

∑N
i=1 = I1 +

I2 + · · · + IN ).

2.5 The Product Manifold Representation

The tensor representation on a product manifold models the variations in both space
and time for action videos. Specifically, the product manifold captures the individual
characteristics of spatial and temporal evolution through three factor manifolds. As
such, one factor manifold is acquiring the change in time, resulting in the appearance
(XY) component, while the other two capture the variations in horizontal and verti-
cal directions, demonstrating the horizontal motion (YT) and vertical motion (XT).
Putting all these representations together, geodesic distance on the product manifold
measures the changes in both appearance and dynamics.

The aim of this section is to illustrate how the product manifold characterizes
appearance and dynamics from action videos. To visualize the product manifold
representation, let us consider the example given in Fig. 2.3 where the first row
expresses the pairs of overlay appearance (XY) canonical variates, the second and
third rows reveal the pairs of overlay horizontalmotion (YT) and verticalmotion (XT)
canonical variates, and the bottom row gives the sum of canonical angles computed
from the pairs of canonical variates. Note that the canonical variates are elements on
Stiefel manifolds. In the first column, two distinct actions are factorized to canonical
variates. We can see that all canonical variates exhibit very different characteristics
in both appearance and motions. On the contrary, the second column shows the same
action performed by different actors and the canonical variates aremuchmore similar
than the first column, resulting in smaller canonical angles overall.

One of the advantages of the product manifold representation is that actions do not
need to be aligned in temporal space. To demonstrate thismerit, we permute the frame
order from action 3 denoted as action 4 and match it to action 1. Figure2.4 shows the
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Fig. 2.3 Examples of appearance andmotion changeswhere the first rowis the overlay appearances,
the second and third rows are the overlay horizontal motion and vertical motion, and the bottom
row gives the sum of canonical angles computed from each factorization of the pairs of canonical
variates

pairs of canonical variates between actions (1, 3) and actions (1, 4). We should first
note that the appearance (XY) of action 3 and action 4 span the same space despite
the visual differences resulting in the identical sum of canonical angles 38.15. This
is because elements on the Grassmann manifold are rotation and reflection invariant
from elements of the Stiefel manifold. This important concept is illustrated in Fig. 2.5
where the exchange matrix O(p) maps the appearance of action 4 to the appearance
of action 3.

In the example given in Fig. 2.4, themost prominent change is related to themotion
in vertical directions (XT) between action 3 and action 4. This arises from the fact
that the change ofmotionmostly occurs in the vertical directionwhenwe permute the
order of the video frames from action 3. Consequently, the sum of canonical angles
in XT varies from 33.58 to 38.16which is less similar to action 1.Whenwe identify a
waving hand moving from top to bottom and from bottom to top, the vertical motion
is the key feature. Otherwise, a simple cyclical search can compensate such variation.
As a result, the product manifold representation is resilient to misregistration in the
temporal space for appearance while keeping the dynamics intact.

Another intriguing attribute of the product manifold representation is its ability
to capture the rate of motion, which is useful in identifying some particular actions.
Figure2.6 shows the pairs of canonical variates of two similar actions—walking and
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Fig. 2.4 Examples of appearance and motion changes where Action 4 is a permuted version of
Action 3. The canonical angles for the appearance indicates that the action is not affected by the
frame order

Fig. 2.5 The characterization of the Grassmann manifold where a point is mapped to another point
on the Stiefel manifold via an exchanged matrix. The group action is (X, Q) �−→ XQ where X ∈
Vn,p and Q ∈ O(p) so that elements on the Grassmann manifold are closed under the orthogonal
matrix multiplication

running. First,wenote that there is little information from theverticalmotion since the
movements of walking and running occur horizontally. The appearance differences
between walking and running are not substantial, which is shown in the first column
of Fig. 2.6. The key information between walking and running is embedded in the
horizontal motion (YT). While the structure of horizontal motion between walking
and running is similar exhibiting a line-like pattern, they have very distinct slopes
shown in the horizontal motion column of Fig. 2.6. These slopes characterize the rate
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Fig. 2.6 Illustration of capturing the rate of actions. The first column shows the change of appear-
ance while the second column reveals the change of horizontal motion where the slopes exhibit the
rate of motion

of motion and are the key factors in recognizing these types of actions. In particular,
when walking and running are compared depicted in the third row of Fig. 2.6, the
idiosyncratic aspect is captured by the rate of horizontal motion. In general, it is
possible to see the rate of motion through both motion representations depending on
the type of actions.

2.6 Statistical Modeling

Least squares regression is one of the fundamental techniques in statistical analysis.
It is simple and often outperforms complicated models when the number of training
samples is small (Hastie et al. 2001). Since video data do not reside in Euclidean
space, we pay attention to the manifold structure. Here, we introduce a nonlinear
regression framework in non-Euclidean space for gesture recognition. We formulate
least squares regression as a composite function; as such, both domain and range
values are constrained on amanifold through the regression process. The least squares
fitted elements from a training set can then be exploited for gesture recognition.

2.6.1 Linear Least Squares Regression

Before we discuss the geometric extension, we will first review the standard form
of least squares fitting. We consider a regression problem y = Aβ where y ∈ R

n is
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the regression value, A([a1|a2| · · · |ak]) ∈ R
n×k is the training set, and β ∈ R

k is the
fitting parameter. The residual sum-of-squares can be written as:

R(β) =‖ y − Aβ ‖2 (2.4)

and the fitting parameter β can be obtained by minimizing the residual sum-of-
squares error from (2.4). Then, we have

β̂ = (AT A)−1AT y.

The regressed pattern from the training set has the following form

ŷ = Aβ̂ = A(AT A)−1AT y. (2.5)

The key advantage of least squares fitting is its simplicity and it intuitively measures
the best fit of the data.

2.6.2 Least Squares Regression on Manifolds

Non-Euclidean geometry often arises in computer vision applications. We consider
the nonlinear nature of space and introduce a geometric framework for least squares
regression. First, we extend the linear least squares regression from (2.5) to a non-
linear form by incorporating a kernel function shown in the following

A(A � A)−1(A � y)

where � is a nonlinear similarity operator. Obviously, � is equal to xT y in the linear
case. In this paper, we employ the RBF kernel given as:

x � y = exp

(
−

∑
k θk

σ

)
(2.6)

where x and y are the elements on a factor manifold, θk is the canonical angle
computed from the factor manifold, and σ is set to 2 in all our experiments. While
other kernel functions can be considered, our goal is to demonstrate our geometric
framework and choose a commonly used RBF kernel operator.

Considering the similarity measure given in (2.6), the regression model becomes
three sub-regression estimators given by

ψ(k)(y) = A(k)(A(k) � A(k))−1(A(k) � y(k)) (2.7)

where k denotes themode of unfolding, A(k) is a set of orthogonal matrices factorized
from HOSVD, and y(k) is an orthogonal matrix from the unfolded matrix.
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To gain a better insight on the regression model, we explore the geometrical
interpretation from (2.7). Given p training instances, the first element, A(k), is a set
of factorized training samples residing on a manifold. Furthermore, (A(k) � A(k))−1

produces a p × p matrix from the training set and (A(k) � y(k)) would create a p × 1
vector. Therefore, the rest of the regressionprovides aweightingvector characterizing
the training data on a factor manifold as:

w = (A(k) � A(k))−1(A(k) � y(k))

where the weighting vector is in a vector space, that is, w ∈ V .
Now, we have a set of factorized training samples, A(k), on a manifold and a

weighting vector, w, in a vector space. To incorporate these two elements with the
least squares fitting given in (2.7), we make a simple modification and reformulate
the regression as follows


(k)(y) = A(k) • (A(k) � A(k))−1(A(k) � y(k)) (2.8)

where • is an operator mapping points from a vector space back to a factor manifold.
By introducing an additional operator, we ensure that both the domain values y(k)

and the range values 
k(y) reside on a manifold. From a function composition point
of view, the proposed regression technique can be viewed as a composition map
G ◦ H where H : M −→ V and G : V −→ M where M is a manifold and V
is a vector space.

One possibleway to realize the compositionmap,G ◦ H , is to employ the tangent
space and modify the Karcher mean (Karcher 1977). The computation of Karcher
mean considers the intrinsic geometry and iterativelyminimizes the distance between
the updatedmean and all data samples via the tangent space. Since w is the weighting
vector, it naturally produces the weight between training samples. All we need is to
apply the weighting vector to weight the training samples on a factor manifold. This
is equivalent to computing the weighted Karcher mean, which is an element of a
manifold.

Algorithm 1: Weighted Karcher Mean Computation

1 Initialize a base point μ on a manifold
2 while not converged do
3 Apply the logarithmic map to the training samples Yi to the base point μ
4 Compute the weighted average on the tangent space at the base point μ
5 Update the base point μ by applying the exponential map on the weighted average
6 end

So far, our geometric formulation on least squares regression is very general. To
make it specific for gesture recognition, we impose rotation and reflection invariance
to the factorized element V (k) such that they are elements on a Grassmann mani-
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Fig. 2.7 An illustration of
logarithmic and exponential
maps where Y and μ are
points on a manifold, � is
the tangent vector, and TμM
is the tangent space at μ

fold and the computation of the weighted Karcher mean can be realized. Here, we
sketch the pseudo-code in Algorithm 1. As Algorithm 1 illustrates, the first step is
to initialize a base point on a manifold. To do so, we compute the weighted average
from the training samples in Euclidean space and project it back to the Grassmann
manifold using QR factorization. Then, we iteratively update the base point on the
Grassmann manifold. The update procedure involves the standard logarithmic map
and the exponential map on Grassmann manifolds (Edelman et al. 1998) described
as follows

logμ(Yi ) = U1�1V
T
1

where μ is the base point for the tangent space, Yi is a training instance factorized
from the Grassmannmanifold,μ⊥μT

⊥Yi (μT Yi )−1 =U1�1V T
1 ,�1 = arctan(�1), and

μ⊥ is the orthogonal complement to μ.

expμ(�) = μV2 cos(�2) +U2 sin(�2)

where � is the weighted tangent vector at μ and � = U2�2V T
2 . From a geometric

point of view, the logarithmic operator maps a point on a manifold to a tangent
space whereas the exponential map projects a point in the tangent space back to the
manifold. A pictorial illustration is given in Fig. 2.7. In addition, the Karcher mean
calculation exhibits fast convergence (Absil et al. 2004). Typically, convergence can
be reached within 10 iterations in our experiments. A sample run is depicted in
Fig. 2.8 where expeditious reduction of residuals occurs in the first few iterations.

To perform gesture recognition, a set of training videos is collected. All videos are
normalized to a standard size. During the test phase, the category of a query video
is determined by

j∗ = argmin
j

D(Y, 
 j (Y ))

where Y is a query video, 
 j is the regression instance for the class j given in
(2.8), and D is a geodesic distance measure. Because the query gesture Y and the
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Fig. 2.8 The residual values
of tangent vectors

regression instance are realized as elements on a product manifold, we employ the
chordal distance given in (2.3) for gesture classification.

In summary, the least squares regression model applies HOSVD on a query
gesture Y and factorizes it to three sub-regression models (
(1)

j , 

(2)
j , 


(3)
j ) on

three Grassmann manifolds where regressions are performed. The distance between
the regression output and query is then characterized on a product manifold; ges-
ture recognition is achieved using the chordal distance. We note that our least
squares framework is applicable to many matrix manifolds as long as the logarith-
mic and exponential maps are well-defined. Furthermore, when the kernel operator is
� = xT y, logx (y) = y, and expx (�) = x + �, the regressionmodel in (2.8) becomes
the canonical least squares regression in Euclidean space.

When statistical models exhibit high variance, shrinkage techniques are often
applied (Hastie et al. 2001). We see that a simple regularization parameter turns least
squares regression into ridge regression. This observation can also be applied to our
non-Euclidean least squares regression framework.

2.7 Experimental Results

This section summarizes our empirical results and demonstrates the proficiency of
our framework on gesture recognition. To facilitate comparison, we first evaluate
our method using two publicly available gesture data sets namely Cambridge hand-
gesture (Kim and Cipolla 2009) and UMD Keck body-gesture (Lin et al. 2009).
We further extend our method to the one-shot-learning gesture challenge (Chalearn
2011). Our experiments reveal that not only does our method perform well on the
standard benchmark data sets, but also it generalizes well on the one-shot-learning
gesture challenge.
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2.7.1 Cambridge Hand-Gesture Data Set

Our first experiment is conducted using the Cambridge hand-gesture data set which
has 900 video sequences with nine different hand gestures (100 video sequences per
gesture class). The gesture data are collected from five different illumination sets
labeled as Set1, Set2, Set3, Set4, and Set5. Example gestures are shown in Fig. 2.9.

We follow the experimental protocol employed by Kim and Cipolla (2009) where
Set5 is the target set, and Set1, Set2, Set3, and Set4 are the test sets. The target Set5
is further partitioned into a training set and validation set (90 video sequences in the
training set and 90 video sequences in the validation set). We employ five random
trials in selecting the training and validation videos in Set5. The recognition results
are summarized in Table2.1 where the classification rates are the average accuracy
obtained from five trial runs followed by the standard deviation. As Table2.1 shows,
our method performs very well across all illumination sets obtaining 91.7% average
classification rate.

Fig. 2.9 Hand gesture samples. Flat-leftward, flat-rightward, flat-contract, spread-leftward, spread-
rightward, spread-contract, V-shape-leftward, V-shape-rightward, and V-shape-contract

Table 2.1 Recognition results on the Cambridge hand-gesture data set (five trial runs)

Method Set1 (%) Set2 (%) Set3 (%) Set4 (%) Total (%)

Graph
embedding
(Yuan et al.
2010)

– – – – 82

TCCA (Kim
and Cipolla
2009)

81 81 78 86 82 ± 3.5

DCCA +
SIFT (Kim
and Cipolla
2007)

– – – – 85 ± 2.8

RLPP
(Harandi et al.
2012)

86 86 85 88 86.3 ± 1.3

TB{Vn,p}
(Lui 2012b)

88 84 85 87 86 ± 3.0

PM 1-NN (Lui
et al. 2010)

89 86 89 87 88 ± 2.1

Our method 93 89 91 94 91.7 ± 2.3
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2.7.2 UMD Keck Body-Gesture Data Set

The UMD Keck body-gesture data set consists of 14 naval body gestures acquired
from both static and dynamic backgrounds. In the static background, the subjects and
the camera remain stationary whereas the subjects and the camera are moving in the
dynamic environment during the performance of the gesture. There are 126 videos
collected from the static scene and 168 videos taken from the dynamic environment.
Example gestures are given in Fig. 2.10.

We follow the experimental protocol proposed by Lin et al. (2009) for both static
and dynamic settings. The region of interest is tracked by a simple correlation filter. In
the static background, the protocol is leave-one-subject-out (LOSO) cross-validation.
As for the dynamic environment, the gestures acquired from the static scene are used
for training while the gestures collected from the dynamic environment are the test
videos. The recognition results for both static and dynamic backgrounds are reported
in Table2.2. We can see that our method is competitive to the current state-of-the-art
methods in both protocols. One of the key advantages of ourmethod is its direct use of
raw pixels while the prototype-tree (Lin et al. 2009), MMI-2+SIFT (Qiu et al. 2011),
and CC K-means (Jiang et al. 2012) methods operate on silhouette images which
require image segmentation prior to classification. This makes our representation
more generic.

Fig. 2.10 Bodygesture samples.First row turn left, turn right, attention left, attention right, attention
both, stop left, and stop right. Second row stop both, flap, start, go back, close distance, speed up,
and come near

Table 2.2 Recognition results on the UMD Keck body-gesture data set

Method Static setting (%) Dynamic setting (%)

HOG3D (Bilinski and Bremond 2011) – 53.6

Shape manifold (Abdelkadera et al. 2011) 82 –

MMI-2+SIFT (Qiu et al. 2011) 95 –

CC K-means (Jiang et al. 2012) – 92.9

Prototype-tree (Lin et al. 2009) 95.2 91.1

TB{Vn,p} (Lui 2012b) 92.1 91.1

PM 1-NN (Lui et al. 2010) 92.9 92.3

Our method 94.4 92.3
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2.7.3 One-Shot-Learning Gesture Challenge

Microsoft KinectTM has recently revolutionized gesture recognition by provid-
ing both RGB and depth images. To facilitate the adaptation to new gestures,
CHALEARN (Guyon et al. 2012) has organized a one-shot-learning challenge for
gesture recognition.

The key aspect of one-shot-learning is to perform machine learning on a single
training example. As such, intra-class variability needs to be modeled from a single
example or learned from different domains. While traditional machine learning tech-
niques require a large amount of training data to model the statistical distribution,
least squares regression appears to be more robust when the size of training samples
is limited (Hastie et al. 2001).We employ our least squares regression framework and
model the intra-class variability by synthesizing training examples from the original
training instance. Consequently, we apply the same regression framework on the
product manifold to the one-shot-learning gesture challenge.

One of the gesture variations is performing gesture positions. Our initial studies
for frame alignment did not yield positive results due in part to the incidental features
of the upper body. Since gesture positions are the key source of variations, we synthe-
size training examples for translational instances on bothRGBand depth images. The
synthesized examples are generated by shifting the entire action video horizontally
and vertically. Specifically, we synthesize two vertically (up/down) and four hori-
zontally (left/right) translated instances along with the original training example. As
such, we have seven training instances for RGB and depth images, respectively. We
stress that we do not apply any spatial segmentation or intensity normalization to
video data; alignment is the only variation that we synthesize for one-shot-learning.
Our experiments on the training batches indicate that there is about 2% gain by
introducing the translational variations.

We assess the effectiveness of the proposed framework on the development data
set for the one-shot-learning gesture challenge. The development data set consists
of 20 batches of gestures. Each batch is made of 47 gesture videos and split into a
training set and a test set. The training set includes a small set of vocabulary spanning
from 8 to 15 gestures. Every test video contains 1–5 gestures. Detailed descriptions
of the gesture data can be found in Guyon et al. (2012).

Since the number of gestures varies for test videos, we perform temporal seg-
mentation to localize each gesture segment. It is supposed that the actor will return
to the resting position before performing a new gesture. Thus, we employ the first
frame as a template and compute the correlation coefficient with subsequent frames.
We can then localize the gesture segments by identifying the peak locations from
the correlations; the number of gestures is the number of peaks + 1. An illustration
of temporal segmentation is given in Fig. 2.11 where the peak locations provide a
good indication for the resting frames. Furthermore, we fix the spatial dimension
to 32 × 32 and dynamically determine the number of frames by selecting 90% of
the PCA energy from each training batch. Linear interpolation is then applied to
normalize the video length.
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Fig. 2.11 An illustration of
temporal segmentation
where the dash lines indicate
the peak locations and the
resting frames from the
action sequence

The recognition performance is evaluated using the Levenshtein distance
(Levenshtein 1966), also known as edit distance. Table2.3 shows the average errors
over 20 batches. As Table2.3 reveals, our method significantly outperforms the base-
line algorithm (Chalearn 2011) and achieves 28.73% average Levenshtein distance
per gesture on the development data set. Our method also ranks among the top algo-
rithms in the gesture challenge (Guyon et al. 2012). This illustrates that our method
can be effectively adopted for one-shot-learning from the traditional supervised learn-
ing paradigm.

While our method performs well on the one-shot-learning gesture challenge, it is
not a complete system yet. There are three particular batches that cause difficulties for
our algorithm. These batches are devel03, devel10, and devel19 where the example
frames are shown in Fig. 2.12. These three batches share a common characteristic
that the gesture is only distinguishable by identifying the hand positions. Since we
do not have a hand detector, the gross motion dominates the whole action causing it
to be confused with other similar gestures.

Another source of errors is made by the temporal segmentation. While the actor
is supposed to return to the resting position before performing a new gesture, this
rule has not always been observed. As a result, such variation introduces a mismatch
between the template and subsequent frames resulting errors in partitioning the video
sequence. The large error in devel03 is caused by the need for hand positions and
temporal segmentation. Future work will focus on combining both appearance and
motion for temporal segmentation.

Nevertheless, the experimental results from the Cambridge hand-gesture and the
UMDKeck body-gesture data sets are encouraging. These findings illustrate that our
method is effective in both hand gestures and body gestures. Once we have a reliable
hand detector, we expect to further improve gesture recognition from a single training
example. Currently, the processing time on 20 batches (2000 gestures) including both
training and testing is about 2 hours with a non-optimizedMATLAB implementation
on a 2.5 GHz Intel Core i5 iMac.
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Table 2.3 Recognition results on the development data for the one-shot-learning challenge where
TeLev is the sum of the Levenshtein distance divided by the true number of gestures and TeLen is
the average error made on the number of gestures

Batch Baseline Our method

TeLev (%) TeLen (%) TeLev (%) TeLen (%)

devel01 53.33 12.22 13.33 4.44

devel02 68.89 16.67 35.56 14.44

devel03 77.17 5.43 71.74 20.65

devel04 52.22 30.00 10.00 2.22

devel05 43.48 10.87 9.78 7.61

devel06 66.67 17.78 37.78 14.44

devel07 81.32 19.78 18.68 3.30

devel08 58.43 12.36 8.99 5.62

devel09 38.46 9.89 13.19 1.10

devel10 75.82 21.98 50.55 1.10

devel11 67.39 18.48 35.87 2.17

devel12 52.81 5.62 22.47 4.49

devel13 50.00 17.05 9.09 2.27

devel14 73.91 22.83 28.26 3.26

devel15 50.00 8.70 21.74 0.00

devel16 57.47 17.24 31.03 6.90

devel17 66.30 32.61 30.43 4.35

devel18 70.00 28.89 40.00 11.11

devel19 71.43 15.38 49.45 3.30

devel20 70.33 36.26 35.16 12.09

Average 62.32 18.01 28.73 6.24

Fig. 2.12 Gesture samples on the one-shot-learning gesture challenge (devel03, devel10, and
devel19)

2.8 Discussion

The proposed method is geometrically motivated. It decomposes a video tensor to
three Stiefel manifolds via HOSVD where the orthogonal elements are imposed to
Grassmannian spaces. Asmentioned before, one of the key advantages of ourmethod
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Fig. 2.13 The effect of background clutter. Appearance, horizontal motion, and vertical motion
are depicted in the first, second, and third columns, respectively

is its direct use of raw pixels. This gives rise to a practical and important question.
How robust can the raw pixel representation be against background clutter?

To address this concern, we synthesize an illustrative example given in Fig. 2.13.
The first, second, and third columns depict the appearance, horizontal motion, and
vertical motion of the gesture, respectively. A V-shape rightward gesture and a flat
leftward gesture are shown in the first row and second row. We superpose a cluttered
background on every frame of the flat leftward gesture exhibited in the third row.
While the appearances between the uniform flat gesture and the cluttered flat gesture
emerge differently, the deterioration on the dynamics is quite minimal. As a result,
the gesture performed with the background clutter can still be discriminated against
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other gestures. Numerically, the sum of the canonical angles between the uniform
(second row) and the cluttered background (third row) gestures is (56.09, 7.99, 9.17)
resulting in a geodesic distance of 5.91 on the product manifold. In contrast, the sum
of the canonical angles between the V-shape (first row) and the flat (second row)
gestures is (76.35, 23.66, 18.42) yielding a geodesic distance of 8.29. In addition,
when the V-shape gesture (first row) matches against the cluttered flat gesture (third
row), the sum of the canonical angles is (76.09, 23.75, 18.84) and the geodesic
distance is 8.31. This finding reveals that the geodesic distance between the uniform
and cluttered background gestures are quite similar against inter-class gestures, while
the geodesic distance is significantly smaller for the intra-class gestures. Hence, raw
pixels can be directly exploited in our representation.

As technology advances, we can now separate the foreground and background
more easily using a KinectTM camera. We hypothesize that better recognition results
may be obtained when the foreground gestures are extracted. On the other hand, our
method can still perform gracefully when a cluttered background is present.

2.9 Conclusions

This paper promotes the importance of the underlying geometry of data tensors. We
have presented a geometric framework for least squares regression and applied it to
gesture recognition. We view action videos as third order tensors and impose them
on a product manifold where each factor is Grassmannian. The realization of points
on these Grassmannians is achieved by applying HOSVD to a tensor representation
of the action video. A natural metric is inherited from the factor manifolds since
the geodesic on the product manifold is given by the product of the geodesic on the
Grassmann manifolds.

The proposed approach provides a useful metric and a regression model based
on latent geometry for action recognition. To account for the underlying geometry,
we formulate least squares regression as a composite function. This formulation
provides a natural extension fromEuclidean space tomanifolds. Experimental results
demonstrate that ourmethod is effective and generalizeswell to the one-shot-learning
scheme.

For longer video sequences, micro-action detection is needed which may be mod-
eled effectively using HMM. Future work will focus on developing more sophis-
ticated models for gesture recognition and other regression techniques on matrix
manifolds for visual applications.
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