
2Machine andStatistical Learning

It may be summed up in one short sentence:
‘Advise your son not to purchase your wine in
Cambridge’

C. Babbage, Passages from the life of a
philosopher, 1864, p. 25 [1]

In this chapter we will review some analytical tools. We will need them to analyse
the effect of data protection methods on the data. We do not distinguish here whether
the tools described belong to the statistics community or to the machine learning
comunity.

Having said that, there is some discussion in the literature on the similarities and
differences between machine learning and statistics (see e.g. [2–7]). As a personal
comment, and following [4,5], I consider that there is a large overlapping that is
increasing year by year due to the research directions in artificial intelligence and
machine learning. But of course, some particular topics do not belong to the over-
lapping region. This is the case of e.g. inductive logic programming and official
statistics. The first topic falls within the area of machine learning and the second in
the area of statistics.

Some argue that machine learning focuses on prediction without focusing too
much on the underlying distribution of the data. For example, [7] illustrates this with
the case of data with more variables than samples. This type of problem has been
studied in machine learning for e.g. recommender systems, and it is difficult to build
parametric models for this type of data. Observe however the study of predictive
inference [8] within statistics.

Others [5]mention as amain difference the size of the data, beingmachine learning
devoted to large data sets. From my point of view, this is not an issue of machine

© Springer International Publishing AG 2017
V. Torra, Data Privacy: Foundations, New Developments
and the Big Data Challenge, Studies in Big Data 28,
DOI 10.1007/978-3-319-57358-8_2

23

24 2 Machine and Statistical Learning

learning, but of data mining, where issues such as dimensionality reduction and
scalability are of extreme importance. Data mining has its origin on commercial data
where files and databases are typically of large dimensions (although not as large
as today’s big data). In addition, current research on statistics (see e.g. [9–11]) also
consider high-dimensional data and large data sets.

In any case, in real applications, techniques originating from both, machine learn-
ing and the statistics communities are needed. As this chapter is mainly instrumental,
we describe the tools without distinguishing their origin or their development. In
order to present the different tools, we will mainly follow the terminology of Hastie,
Tibshirani, and Friedman in [12].

2.1 Classification of Techniques

Methods and techniques in machine learning are typically classified into three large
classes according to the type of information available. They are supervised learning,
unsupervised learning, and reinforcement learning. We discuss them below. All of
them presume a set of labeled examples X used in the learning process. We will
also presume that each example xi in X is described in terms of a set of attributes
A1, . . . , AM . We will use A j (xi) to denote the value of the attribute A j for example
xi . That is, xi is a vector in an M-dimensional space.

• Supervised learning. In this case, it is presumed that for each example in X there
is a distinguished attribute Ay . The goal of supervised learning algorithms is to
build a model of this attribute with respect to the other attributes. For example, if
the attributes A1 . . . AM are numerical and the distinguished attribute Ay is also
numerical, the goal of the supervised learning algorithm might be to express Ay

as a linear regression of A1, . . . , Ak for k ≤ M . In general, Ay is expressed as a
function of A1, . . . , Ak . When Ay is categorical, we call this attribute the class.
Figure2.1 summarizes the notation for supervised learning.
For the sake of simplicity, it is usual to use xi to denote A(xi), X to denote the full
matrix (or just the full matrixwithout the attribute Ay), and Y to denote the column
Ay . In some applications we need some training setsC that are subsets of X . That
is,C ⊆ X . Then, we denote by MC that we have a model learnt fromC .
Formally, let us consider a training setC defined in terms of the examples X where
for each example xi in X , we have its known label (outcome or class label) y.
Then, we presume that we can express y in terms of a function f of xi and some

Fig. 2.1 Notation for
supervised machine learning

A1 . . . AM Ay

x1 A1(x1) . . . AM(x1) y1 = Ay(x1)
...

...
...

...
xN A1(xN) . . . AM(xN) yN = Ay(xN)

2.1 Classification of Techniques 25

error. That is, y = f (xi) + ε.With this notationwe can say that the goal is to build
a model MC that depends on the training set C such that MC (xi) approximates
f (xi) for all xi in the training set. This model is then used to classify unseen
instances.
Within supervised learning algorithms we investigate regression problems and
classification problems. They are described further below.

– Regression problems. They correspond to the case in which Ay is numerical.
Models include linear regression (i.e.,models of the form Ay = ∑k

i=1 ai Ai+a0
for real numbers ai), non-linear regression, and neural networks.

– Classification problems. They correspond to the case in which Ay is categor-
ical. Models include logistic regression, decision trees, and different types of
rule based systems.

– Search problems. They correspond to the problems in artificial intelligence to
speed up search algorithms. However, this type of problems are of no interest
in this book.

• Unsupervised learning. In this case, all the attributes are equal with respect
to the learning process, and there is no such a distinguishable attribute. In this
case, algorithms try to discover patterns or relationships in the data that can be of
interest. Unsupervised learning includes clustering and association rules mining.
The former discovers partitions in the data and the latter discovers rules between
the attributes.

• Reinforcement learning. In this case we presume that there is already a sys-
tem (or model) that approximates the data. When the model is used, the system
receives a reward if the outcome of the model is successful and a penalty if the
outcome is incorrect. These rewards are used to update the model and increase its
performance.

2.2 Supervised Learning

A large number of algorithms for supervised machine learning have been developed.
We give a brief overview of a few of them. For details and further algorithms the
reader is referred to [12,13].

2.2.1 Classification

We explain superficially decision trees and the nearest neighbor.

26 2 Machine and Statistical Learning

2.2.1.1 Decision Trees
A decision tree classifies an element x by means of a chain of (usually binary)
questions. These questions are organized as a tree with the first question in the top
(the root) and classes in the leaves.

Machine learning algorithms build decision trees from data. The goal is to classify
newelements correctly, andminimize the height of the tree (i.e.,minimize the number
of questions to be asked when a new element arrives).

2.2.1.2 Nearest Neighbor
Classification of a new example x is based on finding the nearest record from a set
of stored records (the training set C). The class of this record is returned. Formally,

class(x) = class(arg min
x ′∈C

d(x ′, x))

where class(x) = Ay(x) using the notation given above.
An alternative is to consider the k nearest records and then return the class of the

majority of these k records. This approach corresponds to the k-nearest neighbor.

2.2.2 Regression

There are different approaches to build models for regression. In this section we only
review the expressions for linear regressionmodels. There are, however, alternatives.
For example, we have non-linear regression models and we can use k-nearest neigh-
bor for regression. The k-nearest neighbor for regression follows the approach of the
k-nearest neighbor explained above but instead of returning the class of the majority,
the mean of the output of the majority is used.

Let us now focus on linear regression. We will give the expressions in matrix
form. For details on regression see e.g. [14].

We denote the data (the training set) by the pair X, Y where Y corresponds to the
variable to bemodeled (the dependent variable) and X corresponds to the variables of
the model (the independent or explanatory variables). In linear regression the model
has the following form

yi = β0 + β1xi1 + β2xi2 + · · · + βMxiM + εi .

In matrix form, using

Y T = (y1y2 . . . yN)

βT = (β0β1β2 . . . βM)

2.2 Supervised Learning 27

and

X =

⎛

⎜
⎜
⎜
⎝

1 x11 x12 . . . x1M
1 x21 x22 . . . x2M
...

...
...

...

1 xN1 xN2 . . . xNM

⎞

⎟
⎟
⎟
⎠

(2.1)

we have that the model has this form:

Y = Xβ + ε.

Then, the ordinary least squares (OLS) method estimates the parameters β of the
model computing

β = [XT X]−1XT Y.

Statistical properties of this method (as e.g. the Gauss-Markov theorem) can be
found in [14].

2.2.3 Validation of Results: k-Fold Cross-Validation

This is one of the most used approaches to evaluate the performance of a model. The
approach is based on having a data set Z and then building several pairs of (training,
testing) sets from this single data set. For each pair we can compute a model using
the training set and evaluate its performance with the test set.

For a given parameter k, we divide the set Z into k subsets of equal size. Let

Z = (Z1, Z2, . . . , Zk)

be these sets. Then, we define for i = 1, . . . , k the pair of training and test sets
(CTr

i ,CTs
i) as follows:

CTr
i = ∪ j �=i Z j

CT s
i = Zi .

Given these sets, we can compute the accuracy of any machine learning algorithm
that when applied to the training set C returns a classification model MC using the
following expression:

accuracy =
∑k

i=1 |{x |Mc(x) = Ay(x), x ∈ CTs
i }|

∑k
i=1 |CTs

i | .

Note that accuracy is not the only way to evaluate the performance of a classifier.
Nevertheless, we will not discuss alternatives here. Cross-validation can also be used
to evaluate regression.

28 2 Machine and Statistical Learning

2.3 Unsupervised Learning

The area of unsupervised learning has developed several families of methods to
extract information from unclassified raw data. In this section we will focus onmeth-
ods for clustering, for association rule mining, and on the expectation-maximization
algorithm. They are the ones that will be used later in this book.

2.3.1 Clustering

The objective is not to choose a ‘best’ clustering
technique or program. Such a task would be
fruitless and contrary to the very nature of
clustering.

Dubes and Jain, 1976 [15], p. 247

The goal of clustering, also known as cluster analysis, is to detect the similarities
between the data in a set of examples. Different cluster methods differ on the type
of data considered and on the way used to express the similarities.

For example, most clustering methods are applicable to numerical data. Neverthe-
less, other methods can be used on categorical data, time series, search logs, or even
on nodes in social networks. With respect to the way used to express the similarities
between the data, some clustering methods build partitions of the data objects, oth-
ers build fuzzy partitions of these data, fuzzy relationships between the objects, and
hierarchical structures (dendrograms).

In all cases, the goal of a clustering method is to put similar objects together in the
same group or cluster, and put dissimilar ones in different clusters. For achieving this,
a crucial point is how tomeasure the similarity between objects. Different definitions
of similarity and distance lead to different clusters.

Methods and algorithms for clustering can be classified according to several
dimensions. As expressed above, one is the type of data being clustered, another
is the type of structure built around the data. Reference [12] (page 507) considers
another dimension that refers to our assumptions on data. The following classes of
clustering algorithms are considered: combinatorial algorithms, algorithms for mix-
ture modeling, and algorithms that are mode seekers. See the outline in Fig. 2.2. We
briefly describe these classes below.

• Combinatorial algorithms. They do not presume any underlying probability
distribution. They directly work on the data.

• Mixture modeling algorithms. They presume an underlying probability den-
sity function. Assuming a parametric approach, clustering consists of finding the
parameters of the model (a mixture of density functions). E.g., two Gaussian
distributions are fitted to a set of points.

2.3 Unsupervised Learning 29

Clustering methods

• Combinatorial methods.

– Partitive methods (top-down): c-means, fuzzy c-means.
– Agglomerative methods (bottom-up): single linkage.

• Mixture modeling methods.
• Mode seeker methods.

Fig. 2.2 A classification of some clustering methods

• Mode seeker algorithms. They also presume an underlying probability density
function but in this case the perspective is nonparametric. So, there is no such a
prior assumption that data follows a particular model.

In the rest of this section we review some methods for clustering. We focus on
methods for numerical data that lead to crisp and fuzzy partitions. These algorithms
belong to the family of combinatorial algorithms. Both type of methods are partitive,
this means that we have initially a single set of data (a single cluster) and then we
partition this cluster into a set of other clusters. In contrast, we find in the literature
agglomerative methods that start with as many clusters as data, and then merge some
of these clusters to build new ones. Agglomerativemethods can be seen as bottom-up
methods, and partitive methods as top-down.

FollowingDubes and Jain [15,16], we can distinguish between clusteringmethods
(or techniques) and clustering algorithms (or programs). A clustering method is
to specify the general strategy for defining the clusters. In contrast, a clustering
algorithm implements the strategy and might use some heuristics. This difference
will be further stressed below when describing the k-means.

2.3.1.1 Crisp Clustering
Given a data set X a crisp clustering algorithm builds a partition of the objects in X .
Formally, Π = {π1, . . . , πc} is a partition of X if ∪πi = X and for all i �= j we
have πi ∩ π j = ∅.

For any set of n objects, given c, the number of possible partitions of c clusters is
the Stirling number of the second kind (see [16] p. 91, and [12] Sect. 14.30):

S(n, c) = 1

c!
c∑

k=1

(−1)c−k
(
c
k

)

kn .

When c is not known and any number of clusters of c = 1, . . . , n is possible, the
number of possible partitions of a set with n elements is the Bell number.

Bn =
n∑

k=1

S(n, c).

30 2 Machine and Statistical Learning

It is known (see [17]) that for n ∈ N
n

(n

e ln n

)n
< Bn <

(
0.792n

ln(n + 1)

)n

.

Different methods exist for selecting or constructing one of these partitions. In
optimal clustering, the partition is selected as the one that minimizes an objective
function. That is, given an objective function OF , and a space of solutions S, select
Π as the solution s that minimizes OF . Formally,

Π = argmin
s∈S OF(s).

One of the most used methods for clustering is k-means, also known as crisp
c-means in the community of fuzzy clustering. This algorithm uses as inputs the
data set X and also the number of clusters c. This method is defined as an optimal
clustering with the following objective function.

OF(Π) =
c∑

k=1

∑

x∈πk

||A(x) − pk ||2 (2.2)

Here, πk , which is a part of partition Π , corresponds to a cluster and pk is the
centroid or prototype of this cluster. ||u|| is the norm of the vector u. That is, ||u|| =√
u21 + . . . u2M .
Expression2.2 can be rewritten in terms of characteristic functions χk of sets πk .

That is, for each set πk we have a characteristic function χk : X → {0, 1} such
that χk(x) = 1 if and only if x ∈ πk . Using this notation, the goal of the clustering
algorithm is to determine the set of characteristic functions χ = {χ1, . . . , χc} as well
as the cluster centroids P = {p1, . . . , pc}.

The characteristic functions define a partition. Because of that we require χ to
satisfy

• χk(x) ∈ {0, 1} for all k = 1, . . . , c and x ∈ X , and that
• for all x ∈ X there is exactly one k0 such that χk0(x) = 1.

The last condition can be equivalently expressed as
∑c

k=1 χk(x) = 1 for all x ∈ X .
Taking all this into account, we formalize the c-means problem as follows:

Minimize

OF(χ, P) =
∑c

k=1

∑

x∈X χk(x)||A(x) − pk ||2 (2.3)

subject to

χ ∈ Mc =
{
χk(x)|χk(x) ∈ {0, 1},

∑c

k=1
χk(x) = 1 for all x ∈ X

}

2.3 Unsupervised Learning 31

This optimization problem is usually solved bymeans of an iterative algorithm that
interleaves two steps. In the first step, we presume that P is known and determines the
partition χ that minimizes the objective function OF(χ, P) given P . In the second
step, we presume that the partition χ is known and we determine the cluster centers
P that minimize the objective function OF(χ, P) given χ . This process is repeated
until convergence.

This algorithm does not ensure a global minimum, but ensures convergence to a
local minimum. We discuss this in more detail later.

Let us now formalize the steps above and give expressions for their calculation.
The steps are as follows.

Step 1. Define an initial partition and compute its set of centroids P .
Step 2. Solve minχ∈Mc OF(χ, P).
Step 3. Solve minPOF(χ, P).
Step 4. Repeat steps 2 and 3 till convergence.

The solution of Step 2 consists of assigning each object in X to the nearest cluster.
Formally, for all x ∈ X use the following assignments.

• k0 := argmini ||A(x) − pi ||2
• χk0(x) := 1
• χ j (x) := 0 for all j �= k0

Note that in this definition k0 depends on x ∈ X .
To prove that this is the optimal solution of the problem stated in Step 2, let us

consider the objective function

OF(χ, P) =
c∑

k=1

∑

x∈X
χk(x)||A(x) − pk ||2.

Naturally, we have that for a given x and p1, . . . , pc, it holds

||A(x) − pk || ≥ ||A(x) − pk0 ||

for all k ∈ {1, . . . , c}, when k0 is the index k0 = argmini ||A(x) − pi ||2. Therefore,
the assignment χk0(x) = 1 and χ j (x) = 0 for all j �= k0 minimizes

∑

x∈X
χk(x)||A(x) − pk ||2

for all k ∈ {1, . . . , c}, and thus the objective function.

32 2 Machine and Statistical Learning

The solution of Step 3 consists in computing for all k = 1, . . . , c.

pk =
∑

x∈X χk(x)A(x)
∑

x∈X χk(xi)
(2.4)

To prove that this is the optimal centroid we consider again the objective function
OF(χ, P) and derive it with respect to pk . Taking into account that ∂OF

∂pk
= 0, we

obtain an expression for pk . Note that

0 = ∂OF

∂pk
= 2

∑

x∈X
χk(x)(A(x) − pk)(−1),

and, therefore, we get the equation

−2
∑

x∈X
χk(x)A(x) +

∑

x∈X
χk(x)pk = 0,

that leads to Eq.2.4.
If we put all the items together, we get Algorithm1.
As stated above, there is no guarantee that this algorithm leads to the global optimal

solution. However, it can be proven that it converges to a local optimal one. Note
that at each step the objective function is reduced. In Step 2, with fixed centroids
P , the objective function is reduced changing χ . Then, in Step 3, with fixed χ ,
the objective function is reduced changing P . As the objective function is always
positive, convergence is ensured.

Different executions of this algorithm using the same initialization lead to the
same results. Nevertheless, due to the fact that the algorithm does not ensure a global

Algorithm 1: Clustering: c-means.
Step 1. Define an initial partition and compute its centroid P .
Step 2. Solve minχ∈Mc OF(χ, P) as follows:

• For all x ∈ X ,

– k0 := argmini ||A(x) − pi ||2
– χk0 (x) := 1
– χ j (x) := 0 for all j ∈ {1, . . . , c} s.t. j �= k0

Step 3. Solve minP OF(χ, P) as follows:

• for all k ∈ {1, . . . , c},

– pk :=
∑

x∈X χk (x)A(x)∑
x∈X χk (xi)

Step 4. Repeat steps 2 and 3 till convergence

2.3 Unsupervised Learning 33

minimum but a local one, we have the situation where different initializations can
lead to different local minima. This fact is very important when we need to compare
clusters obtained from the application of this algorithm.

To partially solve this problem, we can use some of the existing methods for
selecting a good initialization for a dataset X . For some initialization methods, see
e.g. [18]. Another option is to apply the same algorithm several times to the same
data set X , but with different initializations. Then, each application will lead to a
partition with its corresponding value for the objective function. Let r = 1, . . . , R
denote the r th application, Πr the partition obtained and OFr its corresponding
objective function. All partitions Πr are local optima of the same objective function
OF . Then, we select the partition Πr with minimum OFr . That is, we select the
partition

r0 = argmin OFr .

This approach does not ensure finding the global optimum, it can still lead to a local
optimum. Nevertheless it gives us more chances of finding it. We have used this
approach in [19], where 20 different executions were used, and in [20] where 30
were used.

The outcome of c-means permits us to define classification rules for any element
d in the same domain D of the elements in X . That is, not only the elements x can
be classified but any d ∈ D can be classified to one of the clusters π1, . . . , πc. The
classification rule is:

cluster(d) = arg
c

min
k=1

||d − pk ||2.
The application of this classification rule in a domain D results into a Voronoi
diagram described by the centers P and the Euclidean distance. Recall that the
Voronoi diagram of a domain D divides D into a set of regions. Here, the regions
are (Rk)k∈{1,...,c}, where

Rk = {d ∈ D| ||d − pk || ≤ ||d − p j || for all j �= k}.

2.3.1.2 Fuzzy Clustering
Fuzzy clustering algorithms return a fuzzy partition instead of a crisp partition. In
fuzzypartitions, clusters typically overlap.This causes elements x ∈ X to havepartial
membership to different clusters. Partial membership is represented by a value in the
[0, 1] interval.

In this section we review some of the algorithms that lead to fuzzy partitions. We
begin by reviewing the notion of membership function used to define fuzzy sets [21],
and then the notion of fuzzy partition. For a discussion on the difference between
fuzzy and probabilistic uncertainty (from a fuzzy point of view) see [22].

Definition 2.1 [21]
Let X be a reference set. Then μ : X → [0, 1] is a membership function.

34 2 Machine and Statistical Learning

Definition 2.2 [23] Let X be a reference set. Then, a set of membership functions
M = {μ1, . . . , μc} is a fuzzy partition of X if for all x ∈ X we have

c∑

i=1

μi (x) = 1

Fuzzy c-means (FCM) [24] is one of the most used algorithms for fuzzy cluster-
ing. It can be seen as a generalization of crisp c-means that has a similar objective
function. The solution of the problem is a fuzzy partition. That is, given a value c, the
algorithm returns cmembership functionsμ1, . . . , μc that define a fuzzy partition of
the elements of the domain X . Figure2.3 discusses a naive fuzzification of c-means.

The notation follows the one of c-means. X is the set of records, P = {p1, . . . , pc}
representing the cluster centers or centroids, μi is the membership function of the
i th cluster and, then, μi (xk) is the membership of the kth record to the i th cluster.
μik is also used as an expression equivalent to μi (xk).

Fuzzy c-means has two parameters. One is the number of clusters c, as in the
c-means. Another is a value m that measures the degree of fuzziness of the solution.
The value m should be larger than or equal to one. When m = 1, the problem to
optimize corresponds to the c-means and the algorithm returns a crisp partition.
Then, the larger the m, the fuzzier is the solution. In particular, for large values of
m, we have that the solutions are completely fuzzy and memberships in all clusters
are μi (xk) = 1/c for all i and xk ∈ X .

The optimization problem follows.

Minimize
OFFCM (μ, P) = {∑c

i=1
∑

x∈X (μi (x))m ||x − pi ||2}
subject to

μi (x) ∈ [0, 1] for all i ∈ {1, . . . , c} and x ∈ X∑c
i=1 μi (x) = 1 for all x ∈ X.

(2.5)

This problem is usually solved using Algorithm2. The algorithm is an iterative
process similar to the one of c-means. It iterates two steps. One step estimates the
membership functions of elements to clusters (taking centroids as fixed). The other
step estimates the centroids for each cluster (taking membership functions as fixed).
The algorithm converges but as in the case of c-means the solution can be a local

Naive fuzzy c-means. A naive fuzzification of the c-means algorithm is to replace the constraint
of in {0,1} in Equation 2.3 by another requiring to be a value in [0,1]. Nevertheless, this
fuzzification has no practical effect. It does not lead to fuzzy solutions. In other words, all so-
lutions of this alternative problem are crisp partitions. That is, although is permitted to take
values different to 0 and 1, all solutions have values of in the extremes of the interval [0,1].

Fig. 2.3 Remark on a naive fuzzy c-means

2.3 Unsupervised Learning 35

Algorithm 2: Clustering: fuzzy c-means.
Step 1. Generate initial P
Step 2. Solve minμ∈MOFFCM (μ, P) by computing for all i ∈ {1, . . . , c} and x ∈ X :

μi (x) :=
(c∑

j=1

(||x − pi ||2
||x − p j ||2

) 1
m−1

)−1

Step 3. Solve minP OFFCM (μ, P) by computing for all i ∈ {1, . . . , c}:

pi :=
∑

x∈X (μi (x))mx
∑

x∈X (μi (x))m

Step 4. If the solution does not converge, go to Step 2; otherwise, stop.

optimum. The algorithm does not discuss the case of denominators equal to zero.
This is solved with adhoc definitions for μ (see e.g. [25–27]).

Expressions for μi (x) and pi in Steps 2 and 3 are determined using Lagrange
multipliers (see e.g. [24]). The expression tominimize includes the objective function
OFFCM as well as the constraints

∑c
i=1 μi (x) = 1 for all x ∈ X . Each constraint

is multiplied by the corresponding Lagrange multiplier λk (for k = 1, . . . , N).

L = OFFCM (μ, P) + ∑N
k=1 λk

(∑c
i=1 μi (xk) − 1

)

= ∑c
i=1

∑N
k=1(μi (x))m ||x − pi ||2 + ∑N

k=1 λk
(∑c

i=1 μi (xk) − 1
) (2.6)

Now, in order to find the expression forμi (xk), we consider the partial derivatives
of L with respect to μi (xk), that need to be zero. These partial derivatives are

∂L

∂μi (xk)
= m(μi (xk))

m−1||A(xk) − pi ||2 + λk = 0

Therefore, we have the following expression for μi (xk)

μi (xk) =
(−λk

m||A(xk) − pi ||2
) 1

m−1

Now, taking advantage of the fact that
∑c

i=1 μi (x) = 1 for all x ∈ X , we get rid of
λk and obtain the expression for μi (xk) in Step 2.

Similarly, in order to find the expression for pi , we proceed with the partial
derivative of L with respect to pi . That is,

∂L

∂pi
=

∑

k=1

N (μi (xk))
m 2 (A(xk) − pi) (−1) = 0.

From this expression we get the expression for pi in Step 3.

36 2 Machine and Statistical Learning

2.3.1.3 Variations for Fuzzy Clustering
There are several variations of fuzzy c-means. One of them is entropy based fuzzy
c-means (EFCM). This method, which was proposed in [28], introduces fuzziness
into the solution by adding to the objective function a term based on entropy. In a
way similar to fuzzy c-means the algorithm uses a parameter λ (λ ≥ 0) to control
the degree of fuzziness. The larger the parameter, the more crisp is the solution.
When λ → ∞, the added term becomes negligible and the algorithm corresponds
to standard c-means. In contrast, the near the parameter λ is to zero, the fuzzier
is the solution. For λ near to zero, solutions have memberships μi = 1/c for all
i = 1, . . . , c.

The optimization problem for EFCM is defined as follows.

Minimize
OFEFCM (μ, P) = ∑

x∈X
∑c

i=1{μi (x)||x − pi ||2+λ−1μi (x)logμi (x)}
s.t.

μi (x) ∈ [0, 1]∑c
i=1 μi (x) = 1 for all x ∈ X.

(2.7)

As in the previous algorithms, this problem is solved by an iterative process that
repeats two steps. One finds membership values (μi (x)) that minimize the objective
function given centers, and the other that find centers (pi) given membership values.
The expressions follows.

pi =
∑

x∈X μi (x)x
∑

x∈X μi (x)
(2.8)

μi (x) = e−λ||x−pi ||2
∑c

j=1 e
−λ||x−p j ||2 (2.9)

The last expression for μi (x) can be rewritten as follows.

μi (x) = 1

1 +
∑c

j �=i e
−λ||x−p j ||2

e−λ||x−pi ||2

(2.10)

There are several variations of the algorithms described above. One of them was
introduced in [29]. Fuzzy c-means has an implicit assumption that all clusters have
equal size. Because of that, given two clusters, with cluster centers p1 and p2 the
mid-point between the two centers has equal membership to both clusters. That is,
μ1((p1 + p2)/2) = μ2((p1 + p2)/2) = 0.5. If one of the clusters is larger than
the other, we might have some elements incorrectly classified. This is illustrated
in Fig. 2.4. There is one cluster with 1000 points centered in (−2, 0) and another
cluster with 10 points centered in (2, 0). Classification according to fuzzy c-means
assigns all points (x, y) with x ≤ 0 to the cluster centered in (−2, 0) and all points
with x > 0 to the cluster centered in (2, 0). This will incorrectly assign some of the

2.3 Unsupervised Learning 37

−4 −2 0 2 4

−4
−2

0
2

4

Two clusters of different size

tableX

ta
bl
eY

Fig. 2.4 Two clusters of different size. Fuzzy c-means and entropy based fuzzy c-means assigns
some of the points to the incorrect cluster

points of the cluster in the left to the one in the right. The data represented in the
figure was generated according to independent Normal distributions N (0, 0.8) on
each variable. One cluster with mean (−2, 0) and the other with mean (2, 0).

The algorithm presented in [29] solves this problem introducing a variable for
each cluster that corresponds to its size. Then, the algorithm determines the variables
corresponding to the sizes aswell as themembership functions and the cluster centers.
A similar approach was also introduced in [30].

Let us consider the same notation above, and letαi denote the size of the i th cluster
for i ∈ {1, . . . , c}. Then, the variable size fuzzy c-means problem corresponds to the
following optimization problem.

Minimize
OFV SFCM (α, μ, P) = ∑c

i=1 αi
∑

x∈X (α−1
i μi (x))m ||x − pi ||2

subject to
μi (x) ∈ [0, 1] for all i ∈ {1, . . . , c} and x ∈ X∑c

i=1 μi (x) = 1 for all x ∈ X∑c
i=1 αi = 1

αi ≥ 0 for all i = 1, . . . , c.
(2.11)

Note that now the size of the i th cluster weights the contribution of each cluster
in the objective function. The constraints are the same we had before, adding two
constraints for the new variables α.

38 2 Machine and Statistical Learning

Algorithm 3: Clustering: variable size fuzzy c-means.
Step 1. Generate initial α and P
Step 2. Solve minμ∈MOFV SFCM (α, μ, P) by computing for all i = 1, . . . , c and x ∈ X :

μi (x) :=
(c∑

j=1

(α j

αi

)(||x − pi ||2
||x − p j ||2

) 1
m−1

)−1

Step 3. Solve minP OFV SFCM (α, μ, P) by computing for all i = 1, . . . , c:

pi :=
∑

x∈X (μi (x))mx
∑

x∈X (μi (x))m

Step 4. Solve minαOFV SFCM (α, μ, P) by computing for all i = 1, . . . , c:

αi :=
⎛

⎝
c∑

j=1

(∑
x∈X (μ j (x))m ||x − p j ||2

∑
x∈X (μi (x))m ||x − pi ||2

)m
⎞

⎠

−1

Step 5. If the solution does not converge, go to Step 2; otherwise, stop.

This optimization problem is also solved using an iterative procedure that, in this
case, iterates three steps. We have two that, as the ones we had in fuzzy c-means,
compute membership values and cluster centers, and we have an additional step
about the computation of the values αi . The expressions for μ, p and α are given
in Algorithm3. Note that the expressions for p does not change, and that now the
membership values depend on the values α.

The problem discussed above with the size of the clusters also appears in the case
of entropy based fuzzy c-means. Because of that, a variable size entropy based fuzzy
c-means was also defined in [28]. The optimization problem considers the following
objective function.

OFEFCM (α, μ, P) =
∑

x∈X

c∑

i=1

μi (x)||x − pi ||2 + λ−1μi (x)log(α
−1
i μi (x))

with the same constraints we had in variable size fuzzy c-means. In this case the
iterative solution leads to the following expressions. Note that the expression for the
centroids has not changed.

μi (x) = αi e−λ||x−pi ||2
∑c

j=1 α j e−λ||x−p j ||2

αi =
∑

x∈X μi (x)

|X |

2.3 Unsupervised Learning 39

pi =
∑

x∈X μi (x)x
∑

x∈X μi (x)

2.3.1.4 Fuzzy Clustering and Noisy Data
In this section we mention a few more fuzzy clustering algorithms that have as their
main characteristics that attempt to deal with the problem of noise.

Dave introduced in 1991, see [31], the Noise clustering method to reduce the
effects of noisy data in the clusters obtained by FCM. The algorithm defines a noise
cluster in order to assign noisy data to it. The distance of any element to this cluster
is constant. This constant is a parameter of the algorithm (parameter δ). The other
parameters are the ones of the fuzzy c-means. That is, the number of clusters c and
the fuzziness m.

Later, Krishnapuram and Keller [32] introduced the Possibilistic c-means (PCM).
While in fuzzy c-means, entropy fuzzy c-means and in all their variations the mem-
berships of one element to clusters add up to one, this is not a requirement in the
possibilistic c-means. In this case, values are only required to be in the [0, 1] interval.
This fact implies that the distribution of memberships defines a possibility distribu-
tion, and, thus, a possibilistic interpretation is possible.

As [32] points out, a possibilistic solution cannot be achieved restating the opti-
mization problem of the fuzzy c-means (Eq.2.5) by just removing the constraint∑c

i=1 μi (x) = 1. Note that in this case the minimum is obtained with μi (x) = 0
for all x and i . To avoid this problem, the authors remove the constraint and add
an extra term to OFFCM (μ, P) that depends on a parameter for each class: νi for
i = 1, . . . , c. This parameter, using authors’ words, “determines the distance at
which the membership value of a point in a cluster becomes 0.5”. So, in some sense
this is related to the size of the cluster and similar to the variables αi in variable size
cluster. Note that while αi are determined by the algorithm, νi is a parameter of the
algorithm. Nevertheless, the authors suggest an expression to compute νi from data
that has some resemblances with the expression for computing αi in Algorithm3.

The fact that νi determines the distance where a membership of 0.5 is achieved
implies that this value can be considered as a threshold value and that data with a
distance to the centroid larger than νi is considered as noise for that cluster.

In applications, this algorithm tends to locate the centroids in dense regions, and
this causes that clusters have a large overlapping. This problem has been reported
in [33,34]. The fuzzy possibilistic c-means (FPCM) is a variation of this algorithm
proposed in [35] to avoid coincident clusters and to make the final clusters less
sensitive to initializations. This algorithm was further improved in [36] where the
authors of FPCM and PCM introduced possibilistic-fuzzy c-means (PFCM).

We review below the possibilistic-fuzzy c-means (PFCM). In the fuzzy c-means
we have that the solutions are such that memberships to clusters add up to one;
in the possibilistic fuzzy c-means this is not the case but memberships are only
required to be positive. According to [32,36] this second type of memberships can
be understood as the typicality of the element to the cluster. Then, possibilistic-fuzzy
c-means includes both values membership and typicality. We will use μ to represent

40 2 Machine and Statistical Learning

the usual membership and T to represent the set of typicalities, and ti (x) to represent
the typicality of x to cluster i . The solution (the degree of possibility) for an element
x will be a(μi (x))m + b(ti (x))η with μ and t representing the degree of fuzziness
of membership and typicality, respectively.

Values a and b are given and correspond, respectively, to the importance of mem-
bership and typicality. Naturally, when a = 1 and b = 0, we would have only
membership as in the case of FCM.

The definition is not restricted to the Euclidean distance as previously. Now, the
definition is in terms of an inner product norm, and thus other distances defined on
inner product norms are valid. We will use ||X ||A = √

xt Ax to denote any inner
product norm based on matrix A.

Taking all this into account, the possibilistic-fuzzy c-means is defined by the
following optimization problem.

Minimize
OFPFCM (μ, T, P) = ∑

x∈X
∑c

i=1
(
a(μi (x))

m + b(ti (x))
η
) × ||x − pi ||2A+ ∑c

i=1 γi
∑

x∈X (1 − ti (x))
η

subject to ∑
μi (x) = 1 for all x ∈ X

0 ≤ μi (x) for all x ∈ X and all i = {1, . . . , c}
ti (x) ≤ 1 for all x ∈ X and all i = {1, . . . , c}

(2.12)

The parameters of the clustering method are a, b, m, η and γi for i = {1, . . . , c}.
In this algorithm, a and b define, as described above, the relative importance of fuzzy
membership and typicality values in the objective function. We require a > 0 and
b > 0. Then, m is the degree of fuzziness in the solution corresponding to the fuzzy
c-means (we require m > 1), and η is the fuzzifier corresponding to the PCM (we
also require η > 1). Then, the parameters γi > 0 for i = 1, . . . , c correspond to the
parameters νi of PCM (i.e., “the distance at which the membership value of a point
in a cluster becomes 0.5” [32]).

The original paper gives some hints about the definition of the parameters γi . One
of them is to bootstrap the algorithm using the fuzzy c-means and then define γi as
follows for a K > 0 (with K = 1 the most common choice).

γi = K

∑
x∈X (μi (x))mD2

ik A∑
x∈X (μi (x))m

where DikA = ||xk − vi ||A.
It is clear that when b = 0, and also γi = 0 for all i , the problem reduces to

a FCM. Reference [36] also proves that also when b = 0, the problem implicitly
becomes equivalent to FCM. With a = 0 it corresponds to PCM.

This optimization problem is solved using an iterative algorithm that interleaves
the following three equations.

2.3 Unsupervised Learning 41

Let DikA = ||xk − vi ||A, then

uik =
⎛

⎝
c∑

j=1

(
DikA

D jkA

) 2
(m−1)

⎞

⎠

−1

for all 1 ≤ i ≤ c and 1 ≤ k ≤ n,

tik =
⎛

⎝
n∑

j=1

(
DikA

Di j A

) 2
(η−1)

⎞

⎠

−1

for all 1 ≤ i ≤ c and 1 ≤ k ≤ n, and

vi =
∑n

k=1(u
m
ik + tηik)xk∑n

k=1(u
m
ik + tηik)

for all i = 1, . . . , c.
The algorithm can be bootstrapped using a set of initial cluster centers. The algo-

rithm requires first to fix the parameters a, b,m, η, γi .

2.3.1.5 Comparison of Cluster Results
The need to compare different sets of clusters on the same data set appears naturally
when we want to analyse the result of clustering algorithms. We can either need to
compare the results of the clustering algorithmwith respect to a known set of clusters
(a reference partition), or to compare different executions of the same clustering
algorithm.

Rand [37] (1971, Section3), Hubert and Arabie [38], and Anderson et al. [39]
mention the following applications related to clustering where functions to compare
clusters are needed.

• Comparison with a reference partition or golden standard. This golden stan-
dard are the “natural” clusters usingRand’s terminology. The results of a clustering
algorithm are compared with the reference partition.

• Comparison with noisy data. The results of clustering the original data and the
perturbed data permits us to measure the sensitivity of an algorithm to noisy data.

• Comparison with supressed data (to missing individuals). Comparison of an
original data set X and the same data set after suppressionmeasures the sensitivity
of an algorithm to missing data.

• Comparison of two algorithms. The results of two different algorithms applied
to the same data are compared.

• Comparison of two successive partitions given by the same algorithm. This
is useful for defining stopping criteria in iterative algorithms.

42 2 Machine and Statistical Learning

Table 2.1 Definitions for comparing two partitions Π and Π ′.

IΠ(x1) = IΠ(x2) IΠ(x1) �= IΠ(x2) Total

IΠ ′ (x1) = IΠ ′ (x2) r t r + t = np(Π ′)
IΠ ′ (x1) �= IΠ ′ (x2) s u s + u

r + s = np(Π) t + u
(|X |
2

)

• Comparison for prediction. This is about using one of the partitions to predict
the other.

In the remaining part of this sectionwe discuss some of the distances and similarity
measures for clusters that can be found in the literature. In our definitions we use Π

andΠ ′ to denote two partitions of a data set X . We presume that both partitions have
the same number of parts, and that this number is n. Then, letΠ = {π1, . . . , πn} and
Π ′ = {π ′

1, . . . , π
′
n}, that is, πi and π ′

i denotes a part of Π and, therefore, πi ⊆ X
and π ′

i ⊆ X for all i = 1, . . . , n.
Let IΠ(x) denote the cluster of x in the partition Π . Then, let us define r , s, t ,

and u as follows:

• r is the number of pairs (x1, x2), with x1 and x2 elements of X , and both in
the same cluster in Π and also both in the same cluster in Π ′. That is, r is the
cardinality of the set

{(x1, x2) with x1 ∈ X, x2 ∈ X, and x1 �= x2|IΠ(x1) = IΠ(x2) and IΠ ′ (x1) = IΠ ′ (x2)};

• s is the number of pairs (x1, x2) where x1 and x2 are in the same cluster in Π but
not in Π ′. That is,

{(x1, x2) with x1 ∈ X, x2 ∈ X, and x1 �= x2|IΠ(x1) = IΠ(x2) and IΠ ′ (x1) �= IΠ ′ (x2)};

• t is the number of pairs where x1 and x2 are in the same cluster in Π ′ but not in
Π . That is,

{(x1, x2) with x1 ∈ X, x2 ∈ X, and x1 �= x2|IΠ(x1) �= IΠ(x2) and IΠ ′ (x1) = IΠ ′ (x2)};

• u is the number of pairs where x1 and x2 are in different clusters in both partitions.

In addition, we denote np(Π) as the number of pairswithin clusters in the partition
Π . That is

np(Π) = |{(x1, x2)|x1 ∈ X, x2 ∈ X, x1 �= x2, IΠ(x1) = IΠ(x2)}|
where | · | is the cardinality of the set.

Note that using the notation above, np(Π) = r + s and np(Π ′) = r + t . Table2.1
presents a summary of these definitions.

The literature presents a large number of indices and distances to compare (crisp)
partitions. The most well known are the Rand, the Jaccard and the Adjusted Rand
index.We present these three and a few other ones. See e.g. [39,40] for other indices.

2.3 Unsupervised Learning 43

• Rand Index. Defined by Rand in [37], this index is defined as follows:

RI (Π, Π ′) = (r + u)/(r + s + t + u)

For any Π and Π ′, we have RI (Π,Π ′) ∈ [0, 1], with RI (Π,Π) = 1.
• Jaccard Index. It is defined as follows:

J I (Π, Π ′) = r/(r + s + t)

For any Π and Π ′, we have J I (Π,Π ′) ∈ [0, 1], with RI (Π,Π) = 1.
• Adjusted Rand Index. This is a correction of the Rand index so that the expecta-

tion of the index for partitions with equal number of objects is 0. This adjustment
was done assuming generalized hypergeometric distribution as the model of ran-
domness. That is, if we consider a random generation of two partitions so that
they have both n sets, the adjusted Rand index is zero. The definition of the index
is as follows.

ARI (Π,Π ′) = r − exp

max − exp

where

exp = (np(Π)np(Π ′))/(n(n − 1)/2)

and where

max = 0.5(np(Π) + np(Π ′)).

First discussion of the adjusted Rand index is due to Morey and Agresti [41] and
current expression is due to Hubert and Arabie [38].

• Wallace Index. This index is defined in terms of the following expression.

W I (Π,Π ′) = r/
√
np(Π)np(Π ′)

• Mántaras Distance. This distance proposed in [42] is defined for two partitions
by

MD(Π, Π ′) = I (Π/Π ′) + I (Π ′/Π)

I (Π ′ ∩ Π)

where

I (Π/Π ′) = −
n∑

i=1

P(π ′
i)

n∑

j=1

P(π j/π
′
i) log P(π j/π

′
i)

I (Π ′ ∩ Π) = −
n∑

i=1

n∑

j=1

P(π ′
i ∩ π j) log P(π ′

i ∩ π j)

and where P(A) is the probability of A estimated as P(A) = |A|/|X |.

44 2 Machine and Statistical Learning

Transaction Itemsets Items
number purchased (only first letter)
x1 {apple, biscuits, chocolate, doughnut, ensaïmada, flour} {a, b, c, d, e, f}
x2 {apple, biscuits, chocolate} {a, b, c}
x3 {chocolate, doughnut, ensaïmada} {c, d, e}
x4 {biscuits} {b}
x5 {chocolate, doughnut, ensaïmada, flour} {c, d, e, f}
x6 {biscuits, chocolate, doughnout} {b, c, d}
x7 {ensaïmada} {e}
x8 {chocolate, flour} {c, f}

Fig. 2.5 Database D with 8 transactions for the itemset I = {apple, biscuits, chocolate, doughnut,
ensaïmada, flour, grapes}

In the case of fuzzy clusters, a comparison can be done through α-cuts. That is, all
those elements with a membership larger than α have their membership assigned to
the value 1, others assigned to zero. Nevertheless, this process does not generate in
general partitions and the above expressions cannot be used. Instead, we can compute
the absolute distance between memberships. For binary memberships, this distance
corresponds to the Hamming distance.

Alternatively, there are a few definitions to generalize some of the existing dis-
tances for crisp partitions to the case of fuzzy partitions. First attempts can be found
in [43,44] and more consolidated work can be found in [39,45].

2.3.2 Association Rules

Association rules establish relationships between attributes or items in a database.
Association rule learning algorithms try to find relevant rules in a given database. A
typical application of these algorithms is market basket analysis. A market basket is
the set of items a costumer buys in a single purchase. Then, a rule relates a set of
some items that can be purchased with some other items that consumers usually buy
at the same time.

Formally, a databasematchscr D = {x1, . . . , xN } has N transactions (or records)
consisting each one in a subset of a predefined set of items. Let I = {I1, . . . , Im} be
the set of items. Then, xi ⊂ I for all i ∈ 1, . . . , N . We call itemset any subset of I .
Thus, xi are itemsets.

In order to simplify the algorithms, it is usual to presume that the items in I are
ordered in a particular preestablished order, and that the itemsets are not empty (i.e.,
|xi | ≥ 1).

An association rule is an implication of the form

X ⇒ Y

2.3 Unsupervised Learning 45

where X and Y are nonempty itemsets with no common items. Formally, X, Y ⊆ I
such that |X | ≥ 1, |Y | ≥ 1, and X ∩ Y = ∅. X is called the antecedent and Y the
consequent of the rule.

We review now some definitions that are needed later. We give examples for each
definition based on the database D in Fig. 2.5.

• Matching. An itemset S matches a transaction T if S ⊆ T . For example,
S1 = {chocolate, doughnut} matches transactions x1, x3, x5, x6, S2 = { f lour}
matches transactions x1, x5, and x8, and there is no transaction matching S3 =
{grapes}.

• Support count. The support count of an itemset S, expressed by Count(S), is the
number of transactions (or records) that match S in the databaseD . For example,
CountD (S1) = 4, CountD (S2) = 3, and CountD (S3) = 0.

• Support. The support of an itemset S, expressed by Support(S) is the proportion of
transactions that contain all items in S in the databaseD . That is, SupportD (S) =
CountD (S)/|D |. For example,

SupportD (S1) = 4/8, SupportD (S2) = 3/8, and SupportD (S2) = 0/8.

When the context makes clear the database used, we will simply use Count (s)
and Support(s) instead of CountD (s) and SupportD (s).

Lemma 2.1 Let I1 and I2 be two itemsets; then if I1 ⊆ I2 then

Support(I1) ≥ Support(I2).

Note that this holds because I1 matches more itemsets in the database (because
has less requirements) than I2.

Given a rule of the form R = (X ⇒ Y), its support will be the proportion of
transactions in which both X and Y hold. This is computed defining the support of
the rule as the support of the union of the two itemsets that define the rule.

• Support of a rule. The support of the rule R = (X ⇒ Y) is the support of X ∪Y .
I.e.,

Support(R) = Support(X ∪ Y).

For example, the support of the rule

R0 = (X ⇒ Y)

with X = {chocolate, doughnut} and Y = {ensaïmada} is
Support(X ⇒ Y) = Support(X ∪ Y) = Support({chocolate,

doughnut, ensaïmada}) = 3
because {chocolate, doughnut,ensaïmada} matches x1, x3, and x5.

46 2 Machine and Statistical Learning

Note that the rule R0 in the last example does not hold for all the transactions in the
database.Although the support of X = {chocolate, doughnut} includes x1, x3, x5, x6,
we have that x6 does not include ensaïmada. Therefore, the rule does not hold for
this transaction. In general, rules do not hold 100% of the time.

In order for a rule to be interesting, it should

• apply to a large proportion of records in the database, and
• have a large prediction capability.

For measuring the first aspect we can use the support. Note that support precisely
measures the proportion of itemsets where the rule is applicable and holds. For the
example above R0 applies to

Support (R0) = 3/8

of the transactions in D .
For measuring the second aspect, we need to estimate the predictive accuracy of

a rule. This is measured by the confidence of a rule, which is defined in terms of the
support of the rule with respect to the support of the antecedent of the rule. In other
words, the confidence states how many times the rule leads to a correct conclusion.

• Confidence of a rule. The confidence of the rule R = (X ⇒ Y) is the support of
the rule divided by the support of X . That is,

Confidence(R) = Support(X ∪ Y)/Support(X).

Or, equivalently, using Count:

Confidence(R) = Count (X ∪ Y)/Count (X).

As stated above, it is usual that rules are not exact. That is, Confidence(R) < 1
because for Lemma2.1, Support (X ∪ Y) ≤ Support (X).
As an example, the confidence of the rule R0 = (X ⇒ Y) is

Confidence(X ⇒ Y) = Support (X ∪ Y)/Support (X)

= Support ({c, d, e})/Support ({c, d}) = 3/4.
(2.13)

In order to filter the rules that are not interesting, we will reject all the rules that
have a support below a certain threshold. That is, we reject all the rules that only
apply to a small set of transactions. For example, the rules with a support less than
0.01. Given a threshold for the support thr −s, we say that an itemset I0 is supported
when Support (I0) ≥ thr − s.

2.3 Unsupervised Learning 47

Algorithm 4: Association Rule Generation: Simple algorithm.
Step 1. R := ∅
Step 2. L be the set of supported itemsets with cardinality larger than 2 (thr − s)
Step 3. for all l ∈ L
Step 4. for all X ⊂ l with X �= ∅ (generate all possible rules from l)
Step 5. if (Confidence(X ⇒ (l \ X)) ≥ thr − c then
Step 6. R := R ∪ (X ⇒ (l \ X))

Step 7. end if
Step 8. end for
Step 9. end for
Step 10. return R

For supported itemsets, the following holds.

Lemma 2.2 Let I0 be a supported itemset. Then, any non empty subset I ′
0 of I0 (i.e.,

I ′
0 ⊆ I0 such that |I ′

0| ≥ 1) is also supported �

Proof From Lemma2.1 and the fact that I0 is supported, it follows

Support (I ′
0) ≥ Support (I0) ≥ thr − s.

So, I ′
0 is also supported. �

In addition we will also reject the rules below a certain confidence level. That is,
the rules that fail too often. For example, rules that apply correctly less than 75% of
the times are not valid. We will denote this threshold by thr − c.

So as a summary, we are interested in finding rules R such that

Support (R) ≥ thr − s (2.14)

and

Confidence(R) ≥ thr − c. (2.15)

Algorithms to find such rules are known by rule mining algorithms. Algorithm4
is a simple algorithm for rule mining. The algorithm first considers all supported
itemsets. That is, it selects all itemsets with a support larger than thr − s. Then, for
each of these itemsets, it generates all possible rules, and all those rules with enough
confidence are returned.

The cost of this algorithm is very large. If the number of items in the itemset I
is m, there are 2m subsets of I . Of these, 2m − m − 1 are the number of subsets
of I with cardinality larger than or equal to 2. With small m, the cost becomes
unfeasible. For example for the cardinalities (number of different products in the
supermarket)m = 10, 20, and 100wehave 210 = 1024, 220 ≈ 106, and 2100 ≈ 1030.

48 2 Machine and Statistical Learning

Because of this, more efficient and heuristic methods have been defined to find
relevant and interesting rules.

Support and confidence can be understood as probabilities. In particular, the sup-
port of an itemset X can be understood as the probability that X occurs. Therefore,
we can estimate P(X) as follows:

P(X) = Support(X) = transactions satisfying X

number of transactions
.

Then, the confidence of rule R = (X ⇒ Y) can be understood as the conditional
probability of X ∪ Y given X . So, we can estimate the probability for this rule
P(Y |X) as

P(Y |X) = P(X ∪ Y)

P(X)
.

2.3.2.1 Apriori Algorithm
The Apriori algorithm [46] is a well known algorithm for association rule learning.
The algorithm incrementally defines candidate itemsets of length k from itemsets of
length k − 1. This process is based on the following lemma, which is known as the
downward closure lemma.

Lemma 2.3 [47] Let Lk be all itemsets with cardinality k. That is,

Lk = {S||S| ≥ k, Support (K) ≥ thr − s}.

Then, if Lk is empty, Lk′ is empty for all k′ > k.

Proof Let us presume that Lk is empty but Lk′ is not for k′ = k+1 > k. This means
that there exists a supported itemset I0 of cardinality k + 1. Let i0 be an item in I0.
Then, I0 \ {i0} is also supported by Lemma2.2. As I0 has cardinality k, we have a
contradiction and the proposition is proved. �

This result permits us to define an algorithm that considers supported itemsets of
increasing cardinality. For each itemset Lk−1 of cardinality k − 1 we will define a
candidate set for the itemsets of cardinality k and then prune all those that are not
sufficiently supported. The supported ones will define Lk . Algorithm5 describes this
process.

The process of constructing the new candidate set is given in Algorithm6 (see
[46,48]). For each pair of itemsets J1 and J2 that share all items except one we
compute the union that will have exactly k items. The union will be in Ck . Formally,

Ck = {J1 ∪ J2|J1, J2 ∈ Lk−1 and |J1 ∩ J2| = k − 2}.

2.3 Unsupervised Learning 49

Algorithm 5: Association Rule Generation: Apriori algorithm.
Step 1. L1 be the set of supported itemsets of cardinality one(thr − s).
Step 2. Set k := 2
Step 3. while (Lk−1 �= ∅)
Step 4. Ck := new candidate set (Lk−1)
Step 5. Lk := remove non supported itemsets in Ck (thr − s)
Step 6. k := k + 1
Step 7. end while
Step 8. return L1 ∪ L2 ∪ · · · ∪ Lk

Algorithm 6: Association Rule Generation: Apriori algorithm. Computation of
the new candidate set from Lk−1. If the elements in the itemsets J1 and J2 are
ordered, this order can be exploited to speed up the procedure.
Step 1. Ck := ∅
Step 2. for each pair J1, J2 in Lk−1

Step 3. if (J1 and J2 share k − 2 items) then
Step 4. Ck := Ck ∪ {J1 ∪ J2}
Step 5. end if
Step 6. end for
Step 7. return Ck

For example, let us consider k = 5 and Lk−1 = L4 including, among others,
J1 = {a, b, c, d} and J2 = {a, b, c, e}. Then, as J1 and J2 share k − 2 = 5 − 2 = 3
items, we will include in C5 the itemset J1 ∪ J2 = {a, b, c, d, e}.

In order to know if an itemset c ∈ Ck should be in Lk or not, we first check
whether its subsets of cardinality k − 1 are in Lk−1. If one fails to be in Lk−1, then
c should not be in Lk . However, this is not enough to ensure that the support of c
is larger than the threshold. This has to be checked also. Algorithm7 describes this
process.

In the remaining part of this section we consider the application of the Apriori
algorithm (Algorithm5) to the database in Table2.2. This example is from [46].
We will use a threshold of thr − s = 2/4. For the sake of simplicity we will work
with the count instead of the support, so, we will use a threshold of 2.

The algorithm starts with the definition of supported itemsets of cardinality one.
These itemsets define L1. Using the database in Table2.2, we compute the following
count values:

• Count({1}) = 2
• Count({2}) = 3
• Count({3}) = 3
• Count({4}) = 1
• Count({5}) = 3

50 2 Machine and Statistical Learning

Algorithm 7: Association Rule Generation: Apriori algorithm. Removal of non
supported itemsets in Ck(thr − s) to compute Lk .
Step 1. for all c in Ck

Step 2. for all subsets c′ of c with k − 1 elements
Step 3. remove c from Ck if c′ is not in Lk−1

Step 4. end for
Step 5. end for
Step 6. for all c in Ck

Step 7. if (Support (c) < thr − s) then remove c from Ck

Step 8. end for
Step 9. return Ck

Table 2.2 Database for the
example of the Apriori
algorithm, from [46]

Transaction number Itemsets

x1 {1, 3, 4}

x2 {2, 3, 5}

x3 {1, 2, 3, 5}

x4 {2, 5}

Therefore, L1 consists of all items except 4. That is,

L1 = {{1}, {2}, {3}, {5}}.

The next step (Step 4) is to computeC2, the candidate set of itemsets with cardinality
2. This is computed from L1 using Algorithm6. This consists in combining itemsets
from L1 such that they have all elements except one in common. In the case of C2
this corresponds to the pairs J1 and J2 from L1. Therefore, we get

C2 = {{1, 2}, {1, 3}, {1, 5}, {2, 3}, {2, 5}, {3, 5}}.

Let us now apply Step 5, which consists in removing all non supported itemsets
from C2 to define L2. To do so we apply Algorithm7. So, first we have to remove all
elements in C2 with subsets not in L1. In our case, there is no such set as all subsets
of itemsets in C2 are in L1. Then, we have to check in the database if itemsets in C2
are supported. The following counts are found:

• Count ({1, 2}) = 1
• Count ({1, 3}) = 2
• Count ({1, 5}) = 1
• Count ({2, 3}) = 2
• Count ({2, 5}) = 3
• Count ({3, 5}) = 2

2.3 Unsupervised Learning 51

As thr − s = 2, we have

L2 = {{1, 3}, {2, 3}, {2, 5}, {3, 5}}.

From this set, we compute C3 obtaining

C3 = {{1, 2, 3}, {1, 2, 5}, {1, 3, 5}, {2, 3, 5}}.

Then, L3 will contain only the itemsets fromC3 that are supported usingAlgorithm7.
Step 3 in this algorithm removes {1, 2, 3} and {1, 2, 5} as {1, 2} is not supported,
{1, 3, 5} as {1, 5} is not supported and only {2, 3, 5} remains. Then, in Step 7 we
check in the database if {2, 3, 5} is supported and as this is so (Count ({2, 3, 5}) = 2)
we get

L3 = {2, 3, 5}.
Then, in the next step we compute C4, but this is empty, so the algorithm finishes
and we have obtained the following sets:

• L1 = {{1}, {2}, {3}, {5}},
• L2 = {{1, 3}, {2, 3}, {2, 5}, {3, 5}},
• L3 = {{2, 3, 5}}.

Therefore, the algorithm returns these sets from which rules will be generated.

2.3.3 Expectation-Maximization Algorithm

In this section we describe the EM algorithm, where EM stands for expectation-
maximization. The algorithm looks for maximum likelihood estimates. We define in
this section first likelihood estimate and then the EM algorithm.

2.3.3.1 Likelihood Function andMaximum Likelihood
Themaximum likelihood is a method for estimating the parameters of a given proba-
bility density. Let us consider a probability density f (z|θ). That is, f is a parametric
model of the random variable z with parameter θ (or, parameters, because θ can be
a vector). Let z = {z1, . . . , ze} be a sample of the variable z. Then, the likelihood of
z under a particular model f (z|θ) is expressed by:

f (z = (z1, . . . , ze)|θ) =
e∏

i=1

f (zi |θ)

52 2 Machine and Statistical Learning

That is, f (z|θ) is the probability of the sample z under the particularmodel f (zi |θ)

with a particular parameter θ . The likelihood function is the function above when the
sample is taken as constant and θ is the variable. This is denoted by L(θ |z). Thus,

L(θ |z) =
e∏

i=1

f (zi |θ)

Often, the log-likelihood function is used instead of the likelihood function. The
former is the logarithm of the latter and is denoted by l(θ |z) or, sometimes, by l(θ).
Therefore,

l(θ |z) = log L(θ |z) = log
e∏

i=1

f (zi |θ) =
e∑

i=1

log f (zi |θ)

Given a sample z and a model f (z|θ), the maximum likelihood estimate of the
parameter θ is the θ̂ that maximizes l(θ |z). Equivalently, the estimate is θ̂ such that

l(θ |z) ≤ l(θ̂ |z)

for all θ .

2.3.3.2 EM Algorithm
The EM algorithm [49] (where EM stands for Expectation-Maximization) is an iter-
ative process for the computation of maximum likelihood estimates. The method
starts with an initial estimation of the parameters and then in a sequence of two
step iterations builds more accurate estimations. The two steps considered are the
so-called Expectation step and Maximization step.

The algorithm is based on the consideration of two sample spaces Y andX and
a many-to-one mapping fromX to Y . We use y to denote this mapping, and X (y)
to denote the set {x |y = y(x)}. Only data y in Y are observed, and data x inX are
only observed indirectly through y. Due to this, x are referred to as complete data
and y as the observed data.

Let f (x |θ) be a family of sampling densities for x with parameter θ , it is clear
that the corresponding family of sampling densities g(y|θ) can be computed from
f (x |θ) as follows:

g(y|θ) =
∫

X (y)
f (x |θ)dx

Now, roughly speaking, the expectation step consists on estimating the com-
plete data x and the maximization step consists on finding a new estimation of the

2.3 Unsupervised Learning 53

parameters θ by maximum likelihood. In this way, the EM algorithm tries to find the
value θ that maximizes g(y|θ) given an observation y. However, the method also
uses f (x |θ).

References

1. Babbage, C.: Passages from the life of a philosopher, Longman, Green, Longman, Roberts &
Green (1864)

2. Breiman, L.: Statistical modeling: the two cultures. Stat. Sci. 16(3), 199–231 (2001)
3. Friedman, J.H.: Data mining and statistics: what’s the connection? (1997). http://www-stat.

stanford.edu/~jhf/ftp/dm-stat.pdf
4. http://brenocon.com/blog/2008/12/statistics-vs-machine-learning-fight/. Accessed Jan 2017
5. http://normaldeviate.wordpress.com/2012/06/12/statistics-versus-machine-learning-5-2/.

Accessed Jan 2017
6. http://stats.stackexchange.com/questions/1521/data-mining-and-statistical-analysis.

Accessed Jan 2017
7. http://stats.stackexchange.com/questions/6/the-two-cultures-statistics-vs-machine-learning.

Accessed Jan 2017
8. Geisser, S.: Predictive Inference: An Introduction. CRC Press (1993)
9. Srivastava, M.S.: Minimum distance classification rules for high dimensional data. J. Multivar.

Anal. 97(9), 2057–2070 (2006)
10. Yata, K., Aoshima, M.: Effective PCA for high-dimension, low-sample-size data with noise

reduction via geometric representations. J. Multivar. Anal. 105(1), 193–215 (2012)
11. Yata, K., Aoshima, M.: Correlation tests for high-dimensional data using extended cross-data-

matrix methodology. J. Multivar. Anal. 117, 313–331 (2013)
12. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer (2009)
13. Witten, I.H., Frank, E., Hall, M.A.: Data Mining. Elsevier (2011)
14. Ryan, T.P.: Modern Regression Methods. Wiley (1997)
15. Dubes, R., Jain, A.K.: Clustering techniques: the user’s dilemma. Pattern Recogn. 8, 247–260

(1976)
16. Jain,A.K.,Dubes, R.C.:Algorithms forClusteringData. PrenticeHall, EnglewoodCliffs (1988)
17. Berend, D., Tassa, T.: Improved bounds on bell numbers and on moments of sumes of random

variables. Probab. Math. Stat. 30(2), 185–205 (2010)
18. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis.

Wiley (1990)
19. Torra, V., Endo, Y., Miyamoto, S.: On the comparison of some fuzzy clustering methods for

privacy preserving data mining: towards the development of specific information loss measure.
Kybernetika 45(3), 548–560 (2009)

20. Torra, V., Endo, Y., Miyamoto, S.: Computationally intensive parameter selection for clustering
algorithms: the case of fuzzy c-means with tolerance. Int. J. Intel. Syst. 26(4), 313–322 (2011)

21. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
22. Bezdek, J.C.: The parable of Zoltan. In: Seising, R., Trillas, E., Moraga, C., Termini, S. (eds.)

On Fuzziness: Volume 1 (STUDFUZZ 298), pp. 39–46. Springer (2013)
23. Ruspini, E.H.: A new approach to clustering. Inf. Control 15, 22–32 (1969)
24. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press,

New York (1981)
25. Miyamoto, S.: Introduction to Fuzzy Clustering (in Japanese), ed. Morikita, Japan (1999)

http://www-stat.stanford.edu/~jhf/ftp/dm-stat.pdf
http://www-stat.stanford.edu/~jhf/ftp/dm-stat.pdf
http://brenocon.com/blog/2008/12/statistics-vs-machine-learning-fight/
http://normaldeviate.wordpress.com/2012/06/12/statistics-versus-machine-learning-5-2/
http://stats.stackexchange.com/questions/1521/data-mining-and-statistical-analysis
http://stats.stackexchange.com/questions/6/the-two-cultures-statistics-vs-machine-learning

54 2 Machine and Statistical Learning

26. Miyamoto, S., Ichihashi, H., Honda, K.: Algorithms for Fuzzy Clustering. Springer (2008)
27. Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. Wiley (1999)
28. Miyamoto, S., Mukaidono, M.: Fuzzy c-means as a regularization and maximum entropy

approach. In: Proceedings of the 7th International Fuzzy Systems AssociationWorld Congress,
IFSA 1997, vol. II, pp. 86–92 (1997)

29. Miyamoto, S., Umayahara, K.: Fuzzy c-means with variables for cluster sizes (in Japanese).
In: 16th Fuzzy System Symposium, pp. 537–538 (2000)

30. Ichihashi, H., Honda, K., Tani, N.: Gaussian mixture PDF approximation and fuzzy c-means
clustering with entropy regularization. In: Proceedings of the 4th Asian Fuzzy System Sympo-
sium, 31 May–3 June, Tsukuba, Japan, pp. 217–221 (2000)

31. Davé, R.N.: Characterization and detection of noise in clustering. Pattern Recogn. Lett. 12,
657–664 (1991)

32. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst.
1, 98–110 (1993)

33. Barni, M., Cappellini, V., Mecocci, A.: Comments on “a possibilistic approach to clustering”.
IEEE Trans. Fuzzy Syst. 4(3), 393–396 (1996)

34. Ladra, S., Torra,V.:On the comparison of generic information lossmeasures and cluster-specific
ones. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 16(1), 107–120 (2008)

35. Pal, N.R., Pal, K., Bezdek, J.C.: A mixed c-means clustering model. In: Proceedings of the 6th
IEEE International Conference on Fuzzy Systems, pp. 11–21 (1997)

36. Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C.: A possibilistic fuzzy c-means clustering algorithm.
IEEE Trans. Fuzzy Syst. 13(4), 517–530 (2005)

37. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc.
66(336), 846–850 (1971)

38. Hubert, L.J., Arabie, P.: Comparing partition. J. Classif. 2, 193–218 (1985)
39. Anderson, D.T., Bezdek, J.C., Popescu, M., Keller, J.M.: Comparing fuzzy, probabilistic, and

possibilistic partitions. IEEE Trans. Fuzzy Syst. 18(5), 906–918 (2010)
40. Albatineh, A.N., Niewiadomska-Bugaj, M., Mihalko, D.: On similarity indices and correction

for chance agreement. J. Classif. 23, 301–313 (2006)
41. Morey, L., Agresti, A.: The measurement of classification agreement: an adjustment to the rand

statistic for chance agreement. Educ. Psychol. Meas. 44, 33–37 (1984)
42. López deMántaras, R.: A distance-based attribute selectionmeasure for decision tree induction.

Mach. Learn. 6, 81–92 (1991)
43. Hüllermeier, E.,Rifqi,M.:A fuzzyvariant of theRand index for comparing clustering structures.

In: Proceedings, IFSA/EUSFLAT (2009)
44. Brouwer, R.K.: Extending the Rand, adjusted Rand and jaccard indices to fuzzy partitions. J.

Intell. Inf. Syst. 32, 213–235 (2009)
45. Hüllermeier, E., Rifqi,M., Henzgen, S., Senge, R.: Comparing fuzzy partitions: a generalization

of the rand index and related measures. IEEE Trans. Fuzzy Syst. 20(3), 546–556 (2012)
46. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the

20th International Conference on VLDB, pp. 478-499. Also as research report RJ 9839, IBM
Almaden Research Center, San Jose, California, June 1994

47. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in
large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, pp. 207-216 (1993)

48. Mannila, H., Toivonen, H., Verkamo, A.I.: Efficient algorithms association for discovering
rules.AAAI technical reportWS-94-03. http://www.aaai.org/Papers/Workshops/1994/WS-94-
03/WS94-03-016.pdf (1994)

49. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the
EM algorithm. J. Roy. Stat. Soc. 39, 1–38 (1977)

http://www.aaai.org/Papers/Workshops/1994/WS-94-03/WS94-03-016.pdf
http://www.aaai.org/Papers/Workshops/1994/WS-94-03/WS94-03-016.pdf

http://www.springer.com/978-3-319-57356-4

	2 Machine and Statistical Learning
	2.1 Classification of Techniques
	2.2 Supervised Learning
	2.2.1 Classification
	2.2.2 Regression
	2.2.3 Validation of Results: k-Fold Cross-Validation

	2.3 Unsupervised Learning
	2.3.1 Clustering
	2.3.2 Association Rules
	2.3.3 Expectation-Maximization Algorithm

