Weno Scheme for Transport Equation
on Unstructured Grids with a DDFV
Approach
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Abstract In this paper we develop a DDFV approach for WENO scheme on unstruc-
tred grids for 2D transport equations. An order 2 scheme is presented using the DDFV
diamond structure to define the different stencils. Numerical tests illustrate the accu-
racy and robustness of the method.
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1 Introduction

The problems we are interested in are fluid-structure interaction problems in 2D,
where we use a level-set approach. In such problems, we look at the behavior and
displacement of a structure, that can be a solid or an elastic membrane, inside a fluid.
The level-set approach consists, in this situation, in representing the interface between
the fluid and the structure implicitly as the level-set of a function ¢. The modelization
of this situations often implies fluid mechanics equations, such as Stokes equations,
coupled with transport equations.

Here we focus on numerical tools for the resolution of transport equations.
Because the level-set function ¢ that captures the interface is the solution of a transport
equation we want to be very sharp when solving this equation. Order one schemes
are known to be very diffusive and inadapted in the level-set context. High order
method, like WENO schemes, appear to be a good solution to solve precisely trans-
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port equation. First introduce by Harten, Osher and others [6-8, 13], WENO schemes
are known to be efficient on convection problems.

The interest to use locally refined meshes is that it allows us to be accurate near the
interface between fluid and structure although to be efficient in term of computational
time and memory. In this paper, we will develop a DDFV approach for WENO scheme
on locally refined grids. The Discrete Duality Finite Volume method (DDFV) is a
Finite Volume method, that has been successfully used to solve Stokes equations
[11] on various kind of meshes, including locally refined meshes. In Sect.2 we will
present the time and spatial discretization of the transport equation, in Sect. 3 we will
expose the reconstruction procedure used in the WENO scheme in itself and then we
will illustrate our statement with numerical tests in Sect. 4.

2 Discretization of the Transport Equation

2.1 Notations and DDFV Structure

In fluid-structure interaction problems, the velocity used in the transport equation
is often given by fluid mechanics equations like Stokes equations. In such models
we must couple the resolution of Stokes equations with the resolution of transport
equation. In order to be able to deal with a large class of meshes and to release us
from the orthogonality constraint imposed by VF4 methods (see [4]), we choose to
use a DDFV strategy.

DDFV are Finite Volume methods introduced first in [3, 9]. They consist in a
decomposition of the computing domain in a set of polygons. Those polygons form
the primal mesh and one unknown is associated to the barycenter of each polygon.
Then other unknowns are added on the vertices of the polygons. Those vertices are
therefore seen as centers of other polygons that define a dual mesh as in Fig. 1. The
interest of introducing new unknowns is that it allows us to compute an approximation
of the gradient in every directions.
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Fig. 1 DDFV structure. From the left to the right primal mesh, dual mesh and diamond structure
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We denote by K a polygon of the primal mesh 97 and K* a polygon of the dual
mesh 2T*. In the following, we will denote an element of the primal or dual mesh by
C e MUM™.

Another mesh, the diamond mesh, can be associated to the DDFV structure. This
third mesh is very convenient when we have to implement the DDFV method because
it is a link beetween primal and dual meshes in which they both play a symmetric
role. In particular, this is on the diamond mesh that we define the discretized gradient.
To create the diamond mesh, we construct quadrangle associated to each edge of the
primal and dual mesh like in Fig. 1.

2.2 Time Discretization

The transport equation on a bounded open set £2 C R?, with a divergence-free veloc-
ity u, can be written as:
d¢

T —div(¢u) == Z(¢) D

For the time discretization, we follow [5] and use a TVD Runge-Kutta of order k. The
order k is then chosen to be in adequation with the order of the spatial discretization,
that means here k = 2. Let At be the the time step of the method, we will denote by
¢" the approximation of function ¢ at time #, = nAt. The RK2 scheme is then given
by the following steps:

1 1 1
¢n,1 — an +At$ (¢n) , ¢n+1 = §¢n + Ed)n,l + EAtg (¢n1) (2)

We will now focus on the space discretization of operator . by a WENO method.

2.3 Discretization of Operator div(¢pU)

Let ¢" = (¢c)ceomume» the vector of the approximations ¢¢ of the mean values
¢c = ﬁ f ¢ @ of function ¢ on the cells C € 9 U M* that we want to compute.
Following the Finite Volume strategy, we integrate the operator . on each cell:

1 1
i K4 [ . 3
|C|/C @ =1 /Qc pu.n ©)

where 7 is the outer unit normal to the boundary OC of C.
Because the cells are polygonal, we can rewrite the boundary integral as a sum

over the edgeS:
gL — E Jloy 4

occacv?
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The line integral of the right member can be approximated using a p point Gaussian
quadrature. Taking p = 1 allows us to find back the classical DDFV formulation of
divergence operator. Of course the same work can be done for p > 1

/ gun~ > |olé(x,)u(x,).n, wherex, is the middle of o 5)
ac ocoC

The WENO scheme consists in approximating for each cell C and each edge o, the
value ¢(x,) by a convex combination of the value in x,, of several polynomials whose
mean values coincide with the mean values of ¢ on a set of selected cells. This set
of cells is called the stencil of the method. The WENO procedure for polynomial
reconstructions will be developed in Sect. 3. For the moment, let us assume that we
dispose of such an approximation ¢¢ .. Then we define the spatial discretization .
of operator . using an upwind flux as:

L (@) == D lol[bc.oW(x)n)" — ¢, W(xy).ns)"]

o=CNC

- Z |0 [dc.0 uxe).no)t = dp(xo) U(xs).n0) "] (6)

ceCnNo

where C and C share the edge o and ¢, prescribed through the boundary condition.
Let define ¢™™ = (gb'é) cemun- the vector of the approximation ¢f. of the mean
value of ¢ on the cells C at time #,. The full discretization is then given by:

1
gy zm[z (00) + 2 (0 + ML) @

The previous work is done in the same way on both primal mesh and dual mesh. If
we take a look at Eq. (6), we can see that each cell is only linked with its neighbours.
One can then think that primal and dual meshes are totally decoupled. In fact the
coupling beetween the two meshes will be ensured by the reconstruction process as
we are going to see in the next section and depends on the degree of the polynomial
approximation.

3 Reconstruction Procedure

3.1 Problem Statement

Given a cell C and an edge o, we want to reconstruct an approximation of ¢(x,)
though we only know the mean values (¢¢) of ¢ on 9t U 90t*. Following the WENO
strategy, the approximation ¢¢ , is computed as a convex combination of several
polynomial interpolations of ¢.
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To find those polynomial interpolations, we fix a subset S C 9t U It*, depending
on C and o, and we choose the polynomial Ps[¢] among the polynomials of degree
k as the solution of the following problem:

1 _
—_— P = , YVCeS 8
|C|/C S[6] = e, VC e ®)

The degree k of polynomial Ps is fixed arbitrary and impacts the size of the stencil S.

For high degree k, interpolation often leads to oscillating polynomials. That is the
reason why we compute a convex combination of several different interpolations of ¢.
The weights in the convex combination are choosen in order to favour non-oscillating
polynomials

bco = D asPs[l(xs) ©)
S

In this paper, we choose to focus on the oscillating criterion proposed by Abgrall in
[1] but other criterion and weights can be found in [5, 10]:

(e + co(Ps[o])~* .
ag = , with ¢g(P) = |pal for P = P X" (10)
’ > (e +co(Prigh) ™ ' .0.22;11 \%
T

3.2 Polynomial Interpolation Procedure

Let us consider a stencil S = {Cy, ..., C;} and (d_)cl)i:]“; the mean values of ¢ on the
cells C;. We want to find a polynomial Pg that depends on the stencil S and such as:
(Pg)c = ¢c, for each C € S. With idea of computing an approximation Ps on the
stencil S and to avoid spatial dependency, we use a barycentric representation with
respect to a given cell Cy:

Ps = Z Pa(X —x¢))"

lal<n

where xc, is the barycenter of cell Co C S. When we rewrite the previous equations
on Ps in an extended form

z Pal(X — x¢))")c = ¢c, foreachC e S

lal<n

we can easily see that we have to solve a linear problem &/ X = b, with <7k , =
(X —xc,)% ¢, X = (Pa)oanddb = (gi_)C)CCS.Ifthe matrix <7 is invertible, the stencil
S is called admissible. In practice, we don’t have access to an easy way to know if
a stencil is admissible. When a stencil is not admissible, then we have to change
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the stencil, test again if it is admissible and repeat those operations until we find an
admissible one.

3.3 Stencil Choice

The choice of the stencil is a crucial point in the construction of the scheme. Stencils
will be composed of both primal and dual cells. As in classical WENO scheme
stencils have to be centered in the smooth regions and one-sided near the shocks.

The usual strategy is to associate a given number of stencil to each cell, and
then to evaluate the corresponding polynomials on each edges. Here, because the
natural structure to use in DDFV schemes is the diamonds structure, we define
stencils from this structure. We associate stencils to each couple (C, o) and each
couple is associated to an unique diamond &, see Fig.2 (left). Let us define
V(D) = {2’/ such that 2 N 2’ # (}. In order to construct the stencils, we will use
the unknowns provided by 2 but also by ¥ (Z) and ¥ (¥ (Z)). This choice allows
us to have access to enough unknowns on the boundary and to construct centered as
one-sided stencils.

Then we will construct the stencils associated to (C, o) as follows. First, we set
C as the first cell of the stencil. Then we will choose randomly the other ones (if
needed) in 2 U ¥ (2) U ¥ (V¥ (D)).

Because diamonds are quadrangles and two neighbours share an edge, the number
A, of potential unknowns is then given by 4, <4+4 x 243 x4 x 2 = 36.

For a reconstruction of order 0, we only need one point in the stencil and so we
only have one potential stencil. One can easily see that in that case we find back
the classical upwind scheme and both primal and dual meshes are totally decoupled.
For a reconstruction of order greater than 0, primal and dual mesh are coupled. For
example in the case of order 2, we have at most A5 = (356) different stencils. We can
however mention that in practice, the maximal number of potential unknowns is not
achieved (see Fig.2 for examples).
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Fig. 2 Diamond cells. Z is in black, ¥ (2) in gray and ¥ (¥ (2)) in light gray
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4 Numerical Tests

In all the following tests, we use a locally refined mesh like in Fig. 1. The previous
WENO scheme is implemented in each case with 15 stencils.

4.1 Sinus Translation

First, we test our WENO scheme on the equation

% g—f g—f =0, () el[=22] x[-2;2]
with the initial condition ¢o(x, y) = sin(5(x + y)). One can refer to [10] for com-
parison of the results. Tests are done with a time step equal to Ar = 0.01 and in each
case we compute the L error at time t = 2.The results for the error and the order
of the scheme are presented in Table 1 (mesh size refers for the minimal size of the
square cells). We obtain an order 2 for the method, which is in adequation with the
degree of the polynomial reconstruction.

4.2 Solid Body Rotation (SBR)

Solid body rotation is a classical test used in the literature for advection equation.
Zalesak proposed in [14] the rotation of a slotted cylinder. The width of the slot as
well as the “bridge” connecting the two half must be about 5 cells. Here, we choose
an adaptation of this test introduced in [12] and used in [2]. It consists in the rotation
of three body shapes, a hump, a cone and a the slotted cylinder of Zalesak. The
overvalue of the initial condition is given on Fig. 3 (left). We choose At = 0.005 and
a mesh size h = 1/128. As it is mention in [2], a way to measure the accuracy of
the scheme is to count the number of isolines outside of the slot. Figure 3, show the
isolines at + = 27r. We can see here that all the isolines fit the slot. Results at r = 7
in Fig. 3 are here to point the fact that all three shapes really pass through the refined
part of the mesh.

Table 1 L, error for sinus translation

Mesh size 1.25.107! 6.25.1072 3.125.1072 1.5625.1072
Error L1 5.699.107! 1.448.10~! 3.363.1072 7.884.1073
Order - 1.98 2.10 2.09
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Fig. 3 Isovalues from 0.1 to 0.9 for SBR. From the /eft to the right Isovalues at t = 0, 7, 27

5

Conclusion

We presented in this paper a DDFV approach for WENO scheme working on any
structured and unstructred grids. We exhibited the expected order 2 of the scheme on
smooth test case. The experiment on the SBR test seems also very promising. This
approach will have many applications in moving domains on adaptative meshes.
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