
2PatternClassification

Machine learning problems can be broadly classified into supervised learning, unsu-
pervised learning and reinforcement learning. In supervised learning, we have set of
feature vectors and their corresponding target values. The aim of supervised learning
is to learn a model to accurately predict targets given unseen feature vectors. In other
words, the computer must learn a mapping from feature vectors to target values.
The feature vectors might be called independent variable and the target values might
be called dependent variable. Learning is done using and objective function which
directly depends on target values. For example, classification of traffic signs is a
supervised learning problem.

In unsupervised setting, we only have a set of feature vectors without any target
value. The main goal of unsupervised learning is to learn structure of data. Here,
because target values do not exist, there is not a specific way to evaluate learnt
models. For instance, assume we have a dataset with 10,000 records in which each
data is a vector consists of [driver’s age, driver’s gender, driver’s education level,
driving experience, type of car,model of car, carmanufacturer, GPSpoint of accident,
temperature, humidity, weather condition, daylight, time, day of week, type of road].
The goal might be to divide this dataset into 20 categories. Then, we can analyze
categories to see how many records fall into each category and what is common
among these records. Using this information, we might be able to say in which
conditions car accidents happen more frequently. As we can see in this example,
there is not a clear way to tell how well the records are categorized.

Reinforcement learning usually happens in dynamic environments where series of
actions lead the system into a point of getting a reward or punishment. For example,
consider a system that is learning to drive a car. The system starts to driver and
several seconds later it hits an obstacle. Series of actions has caused the system to
hit the obstacle. Notwithstanding, there is no information to tell us how good was
the action which the systems performed at a specific time. Instead, the system is
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16 2 Pattern Classification

punished because it hit the obstacle. Now, the system must figure out which actions
were not correct and act accordingly.

2.1 Formulation

Supervised learning mainly breaks down into classification and regression. The
main difference between them is the type of target values. While target values of a
regression problem are real/discrete numbers, target values of a classification prob-
lem are categorical numbers which are called labels. To be more specific, assume
Fr : Rd → R is a regression model which returns a real number. Moreover, assume
we have the pair (xr , yr ) including a d-dimensional input vector xr and real number
yr . Ideally,Fr (xr )must be equal to yr . In other words, we can evaluate the accuracy
of the prediction by simply computing |Fr (xr ) − yi |.

In contrast, assume the classification model

Fc : Rd → {speedlimit, danger, prohibi tive,mandatory} (2.1)

which returns a categorical number/label. Given the pair (xc, danger),Fc(xc) must
be ideally equal to danger. However, it might return mandatory wrongly. It is not
possible to simply subtract the output of Fc with the actual label to ascertain how
much the model has deviated from actual output. The reason is that there is not a
specific definition of distance between labels. For example, we cannot tell what is
the distance between “danger” and “prohibitive” or “danger” and “mandatory”. In
other words, the label space is not an ordered set. Both traffic sign detection and
recognition problems are formulated using a classification model. In the rest of this
section, we will explain the fundamental concepts using simple examples.

Assume a set of pairs X = {(x0, y0), . . . , (xn, yn)} where xi ∈ R
2 is a two-

dimensional input vector and yi ∈ {0, 1} is its label. Despite the fact that 0 and
1 are numbers, we treat them as categorical labels. Therefore, it is not possible to
compute their distance. The target value yi in this example can only take one of the
two values. These kind of classification problems in which the target value can only
take two values are called binary classification problems. In addition, because the
input vectors are two-dimensional we can easily plot them. Figure2.1 illustrates the
scatter plot of a sampleX .

The blue squares show the points belonging to one class and the pink circles depicts
the points belonging to the other class.We observe that the two classes overlap inside
the green polygon. In addition, the vectors shown by the green arrows are likely to be
noisy data. More importantly, these two classes are not linearly separable. In other
words, it is not possible to perfectly separate these two classes from each other by
drawing a line on the plane.

Assume we are given a xq ∈ R
2 and we are asked to tell which class xq belongs

to. This point is shown using a black arrow on the figure. Note that we do not know
the target value of xq . To answer this question, we first need to learn a model from
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Fig. 2.1 A dataset of
two-dimensional vectors
representing two classes of
objects

X which is able to discriminate the two classes. There are many ways to achieve
this goal in literature. However, we are only interested in a particular technique
called linear models. Before explaining this technique, we mention a method called
k-nearest neighbor.

2.1.1 K-Nearest Neighbor

From one perspective, machine learning models can be categorized into paramet-
ric and nonparametric models. Roughly speaking, parametric models have some
parameters which are directly learnt from data. In contrast, nonparametric models
do not have any parameters to be learnt from data. K-nearest neighbor (KNN) is a
nonparametric method which can be used in regression and classification problem.

Given the training set X , KNN stores all these samples in memory. Then, given
the query vector xq , it finds K closest samples from X to xq .1 Denoting the K
closest neighbors of xq with NK (xq ;X ),2 the class of xq is determined by:

F(xq) = argmax
v∈{0,1}

∑

p∈NK (xq )

δ(v, f (p)) (2.2)

1Implementations of the methods in this chapter are available at github.com/pcnn/.
2You can read this formula as “NK of xq given the dataset X ”.
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Fig. 2.2 K-nearest neighbor
looks for the K closets points
in the training set to the
query point

δ(a, b) =
{
1 a = b
0 a �= b

(2.3)

where f (p) returns the label of training sample p ∈ X . Each of K closest neighbors
vote for xq according to their label. Then, the above equation counts the votes and
returns the majority of votes as the class of xq . We explain the meaning of this
equation on Fig. 2.2. Assuming K = 1, KNN looks for the closest point to xq in
the training set (shown by black polygon on the figure). According to the figure,
the red circle is the closest point. Because K = 1, there is no further point to vote.
Consequently, the algorithm classifies xq as red.

By setting K = 2 the algorithm searches the two closest points which in this case
are one red circle and one blue square. Then, the algorithm counts the votes for each
label. The votes are equal in this example. Hence, the method is not confident with
its decision. For this reason, in practice, we set K to an odd number so one of the
labels always has the majority of votes. If we set K = 3, there will be two votes for
the blue class and one vote for the red class. As the result, xq will be classified as
blue.

We classified every point on the plane using different values of K and X .
Figure2.3 illustrates the result. The black solid line on the plots shows the bor-
der between two regions with different class labels. This border is called decision
boundary. When K = 1 there is always a region around the noisy points, where
they are classified as the red class. However, by setting K = 3 those noisy regions
disappear and they become part the correct class. As the value of K increases, the
decision boundary becomes more smooth and small regions disappear.
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Fig. 2.3 K-nearest neighbor applied on every point on the plane for different values of K

The original KNN does not take into account the distance of its neighbor when
it counts the votes. In some cases, we may want to weight the votes based on the
distance from neighbors. This can be done by adding a weight term to (2.2):

F(xq) = argmax
v∈{0,1}

∑

p∈NK (xq )

wi δ(v, f (p)) (2.4)

wi = 1

d(xq , p)
. (2.5)

In the above equation,d(.) returns the distance between twovectors.According to this
formulation, the weight of each neighbor is equal to the inverse of its distance from
xq . Therefore, closer neighbors have higher weights. KNN can be easily extended
to datasets with more than two labels without any modifications. However, there
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are two important issues with this method. First, finding the class of a query vector
requires to separately compute the distance from all of the samples in training set.
Unless we devise a solution such as partitioning the input space, this can be time and
memory consuming when we are dealing with large datasets. Second, it suffers from
a phenomena called curse of dimensionality. To put it simply, Euclidean distance
becomes very similar in high-dimensional spaces. As the result, if the input of KNN
is a high-dimensional vector then the difference between the closest and farthest
vectors might be very similar. For this reason, it might classify the query vectors
incorrectly.

To alleviate these problems, we try to find a discriminant function in order to
directlymodel the decision boundary. In other words, a discriminant functionmodels
the decision boundary using training samples in X . A discriminant function could
be a nonlinear function. However, one of the easy ways to model decision boundaries
is linear classifiers.

2.2 Linear Classifier

Assume a binary classification problem in which labels of the d-dimensional input
vector x ∈ R

d can be only 1 or −1. For example, detecting traffic signs in an image
can be formulated as a binary classification problem. To be more specific, given an
image patch, the aim detection is to decide if the image represents a traffic sign or
a non-traffic sign. In this case, images of traffic signs and non-traffic signs might be
indicated using labels 1 and −1, respectively. Denoting the i th element of x with xi ,
it can be classified by computing the following linear relation:

f (x) = w1x1 + · · · + wi xi + · · · + wd xd + b (2.6)

where wi is a trainable parameter associated with xi and b is another trainable para-
meter which is called intercept or bias. The above equation represents a hyperplane
in a d-dimensional Euclidean space. The set of weights {∀i=1...dwi } determines the
orientation of the hyperplane and b indicates the distance of the hyperplane from
origin. We can also write the above equation in terms of matrix multiplications:

f (x) = wxT + b (2.7)

where w = [w1, . . . , wd ]. Likewise, it is possible to augment w with b and show all
parameters of the above equation in a single vector ww|b = [b, w1, . . . , wd ]. With
this formulation, we can also augment x with 1 to obtain xx |1 = [1, x1, . . . , xd ] and
write the above equation using the following matrix multiplication:

f (x) = ww|bxTx |1. (2.8)
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Fig. 2.4 Geometry of linear models

From now on in this chapter, when we write w, x we are referring to ww|b and xx |1,
respectively. Finally, x is classified by applying the sign function on f (x) as follows:

F(x) =
⎧
⎨

⎩

1 f (x) > 0
N A f (x) = 0
−1 f (x) < 0

(2.9)

In other words, x is classified as 1 if f (x) is positive and it is classified as −1 when
f (x) is negative. The special case happens when f (x) = 0 in which x does not
belong to any of these two classes. Although it may never happen in practice to have
a x such that f (x) is exactly zero, it explains an important theoretical concept which
is called decision boundary. We shall mention this topic shortly. Before, we further
analyzewwith respect to x. Clearly, f (x) is zerowhen x is exactly on the hyperplane.
Considering the fact that w and x are both d + 1 dimensional vectors, (2.8) denotes
the dot product of the two vectors. Moreover, we know from linear algebra that the
dot product of two orthogonal vectors is 0. Consequently, the vector w is orthogonal
to every point on the hyperplane.

This can be studied from another perspective. This is illustrated using a two-
dimensional example on Fig. 2.4. If we rewrite (2.6) in slope-intercept form, we will
obtain:

x2 = −w1

w2
x1 − b

w2
. (2.10)
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where the slope of the line is equal to m = −w1
w2

. In addition, a line is perpendicular

to the above line if its slope is equal to m′ = −1
m = w2

w1
. As the result, the weight

vector w = [w1, w2] is perpendicular to the every point on the above line since its
slope is equal to w2

w1
. Let us have a closer look to the geometry of the linear model.

The distance of point x′ = [x ′
1, x

′
2] from the linear model can be found by projecting

x − x′ onto w which is given by:

r = | f (x)|
‖w‖ (2.11)

Here, w refers to the weight vector before augmenting with b. Also, the signed
distance can be obtained by removing the abs (absolute value) operator from the
numerator:

rsigned = f (x)
‖w‖ . (2.12)

When x is on the line (i.e., a hyperplane in N-dimensional space) then f (x) = 0.
Hence, the distance from the decision boundary will be zero. Set of all points {x |
x ∈ R

d ∧ f (x = 0)} represents the boundary between the regionswith labels−1 and
1. This boundary is called decision boundary. However, if x is not on the decision
boundary its distance will be a nonzero value. Also, the sign of the distance depends
on the region that the point falls into. Intuitively, the model is more confident about
its classification when a point is far from decision boundary. In contrary, as it gets
closer to the decision boundary the confidence of the model decreases. This is the
reason that we sometimes call f (x) the classification score of x.

2.2.1 Training a Linear Classifier

According to (2.9), output of a linear classifier could be 1 or −1. This means that
labels of the training data must be also member of set {−1, 1}. Assume we are given
the training setX = {(x0, y0), . . . , (xn, yn)}where xi ∈ R

d is a d-dimensional vec-
tor and yi ∈ {−1, 1} showing label of the sample. In order to train a linear classifier,
we need to define an objective function. For any wt , the objective function uses
X to tell how accurate is the f (x) = wtxT at classification of samples in X . The
objective function may be also called error function or loss function. Without the
loss function, it is not trivial to assess the goodness of a model.

Our main goal in training a classification model is to minimize the number of
samples which are classified incorrectly. We can formulate this objective using the
following equation:

L0/1(w) =
n∑

i=1

H0/1(wxT , yi ) (2.13)

H0/1(wxT , yi ) =
{
1 wxT × yi < 0
0 otherwise

(2.14)
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Fig.2.5 The intuition behind squared loss function is to minimized the squared difference between
the actual response and predicted value. Left and right plots show two lines with different w1 and
b. The line in the right plot is fitted better than the line in the left plot since its prediction error is
lower in total

The above loss function is called 0/1 loss function. A sample is classified correctly
when the sign of wxT and yi are identical. If x is not correctly classified by the
model, the signs of these two terms will not be identical. This means that one of
these two terms will be negative and the other one will be positive. Therefore, their
multiplication will be negative. We see that H0/1(.) returns 1 when the sample is
classified incorrectly. Based on this explanation, the above loss function counts the
number of misclassified samples. If all samples in X is classified correctly, the
above loss function will be zero. Otherwise, it will be greater than zero. There are
two problems with the above loss function which makes it impractical. First, the
0/1 loss function is nonconvex. Second, it is hard to optimize this function using
gradient-based optimization methods since the function is not continuous at 0 and
its gradient is zero elsewhere.

Instead of counting the number of misclassified samples, we can formulate the
classification problem as a regression problem and use the squared loss function.
This can be better described using a one-dimensional input vector x ∈ R in Fig. 2.5:

In this figure, circles and squares illustrate the samples with labels −1 and 1,
respectively. Since, x is one-dimensional (scaler), the linear model will be f (x) =
w1x1 + b with only two trainable parameters. This model can be plotted using a line
in a two-dimensional space. Assume the line shown in this figure. Given any x the
output of the function is a real number. In the case of circles, themodel should ideally
return−1. Similarly, it should return 1 for all squares in this figure. Notwithstanding,
because f (x) is a linearmodel f (x1) �= f (x2) ifx1 �= x2. Thismeans, it is impossible
that our model returns 1 for every square in this figure. In contrast, it will return a
unique value for each point in this figure.

For this reason, there is an error between the actual output of a point (circle
or square) and the predicted value by the model. These errors are illustrated using
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red solid lines in this figure. The estimation error for xi can be formulated as ei =
( f (xi ) − yi ) where yi ∈ {−1, 1} is the actual output of xi as we defined previously
in this section. Using this formulation, we can define the squared loss function as
follows:

Lsq(w) =
n∑

i=1

√
(ei )2 =

n∑

i=1

√
(wxTi − yi )2. (2.15)

In this equation, x ∈ R
d is a d-dimensional vector and yi ∈ {−1, 1} is its actual label.

This loss function treat the labels as real number rather than categorical values. This
makes it possible to estimate the prediction error by subtracting predicted values
from actual values. Note from Fig. 2.5 that ei can be a negative or a positive value.
In order to compute the magnitude of ei , we first compute the square of ei and apply
square root in order to compute the absolute value of ei . It should be noted that we

could define the loss function as
∑n

i=1 |wxTi − yi | instead of
∑n

i=1

√
(wxTi − yi )2.

However, as we will see shortly, the second formulation has a desirable property
when we utilize a gradient-based optimization to minimize the above loss function.

We can further simplify (2.15). If we unroll the sum operator in (2.15), it will look
like:

Lsq(w) =
√

(wxT1 − y1)2 + · · · +
√

(wxTn − yn)2. (2.16)

Taking into account the fact that square root is a monotonically increasing function
and it is applied on each term individually, eliminating this operator from the above
equation does not change the minimum of L (w). By applying this on the above
equation, we will obtain:

Lsq(w) =
n∑

i=1

(wxTi − yi )
2. (2.17)

Our objective is to minimize the prediction error. In other words:

w = min
w′∈Rd+1

L (w′) (2.18)

This is achievable by minimizing Lsq with respect to w ∈ R
d+1. In order to min-

imize the above loss function, we can use an iterative gradient-based optimization
method such as gradient descend (Appendix A). Starting with an the initial vec-
tor wsol ∈ R

d+1, this method iteratively changes wsol proportional to the gradient
vector �L = [ δL

δw0
, δL

δw1
, . . . , δL

δwd
]. Here, we have shown the intercept using w0

instead of b. Consequently, we need to calculate the partial derivative of the loss
function with respect to each of parameters in w as follows:

δL

δwi
= 2

n∑

i=1

xi (wxT − yi ) ∀i = 1 . . . d

δL

δw0
= 2

n∑

i=1

(wxT − yi )

(2.19)
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One problem with the above equation is that Lsq might be a large value if there
are many training samples in X . For this reason, we might need to use very small
learning rate in the gradient descend method. To alleviate this problem, we can
compute the mean square error by dividing Lsq with the total number of training
samples. In addition, we can eliminate 2 in the partial derivative by multiplyingLsq

by 1/2. The final squared loss function can be defined as follows:

Lsq(w) = 1

2n

n∑

i=1

(wxTi − yi )
2 (2.20)

with its partial derivatives equal to:

δL

δwi
= 1

n

n∑

i=1

xi (wxT − yi ) ∀i = 1 . . . d

δL

δw0
= 1

n

n∑

i=1

(wxT − yi )

(2.21)

Note that the location of minimum of the (2.17) is identical to (2.20). The latter
function is just multiplied by a constant value. However, adjusting the learning rate is
easier when we use (2.20) to find optimal w. One important property of the squared
loss function with linear models is that it is a convex function. This means, the
gradient descend method will always converge at the global minimum regardless of
the initial point. It is worthmentioning this property does not hold if the classification
model is nonlinear function of its parameters.Weminimized the square loss function
on the dataset shown in Fig. 2.1. Figure2.6 shows the status of the gradient descend
in four different iterations.

The background of the plots shows the label of each region according to sign
of classification score computed for each point on the plane. The initial model is
very inaccurate since most of the vectors are classified as red. However, it becomes
more accurate after 400 iterations. Finally, it converges at Iteration 2000. As you
can see, the amount of change in the first iterations is higher than the last iterations.
By looking at the partial derivatives, we realize that the change of a parameter is
directly related to the prediction error. Because the prediction error is high in the
first iterations, parameters of the model changes considerably. As the error reduces,
parameters also change slightly. The intuition behind the least square loss function
can be studied from another perspective.

Assume the two hypothetical lines parallel to the linear model shown in Fig. 2.7.
The actual distance of these lines from the linear model is equal to 1. In the case
of negative region, the signed distance of the hypothetical line is −1. On the other
hand, we know from our previous discussion that the normalized distance of samples
x from the decision boundary is equal to f (x)

‖w‖ where, here, w refers to the parameter
vector before augmenting. If consider the projection of x onw and utilize the fact that
wx = ‖w‖‖x‖ cos(θ), we will see that the unnormalized distance of sample x from
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Fig.2.6 Status of the gradient descend in four different iterations. The parameter vectorw changes
greatly in the first iterations. However, as it gets closer to the minimum of the squared loss function,
it changes slightly

the linear model is equal to f (x). Based on that, least square loss tries to minimize
the sum of unnormalized distance of samples from their actual hypothetical line.

One problemwith least square loss function is that it is sensitive to outliers. This is
illustrated using an example on Fig. 2.8. In general, noisy samples do not come from
the same distribution as clean samples. This means that they might not be close to
clean samples in the d-dimensional space. On the one hand, square loss function tries
to minimize the prediction error between the samples. On the other hand, because the
noisy samples are located far from the clean samples, they have a large prediction
error. For this reason, some of the clean samples might be sacrificed in order to
reduce the error with the noisy sample. We can see in this figure that because of
noisy sample, the model is not able to fit on the data accurately.
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Fig. 2.7 Geometrical intuition behind least square loss function is to minimize the sum of unnor-
malized distances between the training samples xi and their corresponding hypothetical line

Fig.2.8 Square loss function may fit inaccurately on training data if there are noisy samples in the
dataset

It is also likely in practice that clean samples form two or more separate clusters
in the d-dimensional space. Similar to the scenario of noisy samples, squared loss
tries to minimize the prediction error of the samples in the far cluster as well. As we
can see on the figure, the linear model might not be accurately fitted on the data if
clean samples form two or more separate clusters.
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This problem is due to the fact that the squared loss does not take into account
the label of the prediction. Instead, it considers the classification score and computes
the prediction error. For example, assume the training pairs:

{(xa, 1), (xb, 1), (xc, −1), (xd , −1)} (2.22)

Also, suppose two different configurationsw1 andw2 for the parameters of the linear
model with the following responses on the training set:

fw1(xa) = 10 fw2(xa) = 5
fw1(xb) = 1 fw2(xb) = 2
fw1(xc) = −0.5 fw2(xc) = 0.2
fw1(xd) = −1.1 fw2(xd) = −0.5
Lsq(w1) = 10.15 Lsq(w1) = 2.33

(2.23)

In terms of squared loss, w2 is better than w1. But, if we count the number of
misclassified samples we see that w1 is the better configuration. In classification
problems, we are mainly interested in reducing the number of incorrectly classified
samples. As the result, w1 is favorable to w2 in this setting. In order to alleviate
this problem of squared loss function we can define the following loss function to
estimate 0/1 loss:

Lsg(w) =
n∑

i=1

1 − sign( f (xi ))yi . (2.24)

If f (x) predicts correctly, its sign will be identical to the sign of yi in which their
multiplication will be equal to +1. Thus, the outcome of 1 − sign( f (xi ))yi will
be zero. In contrary, if f (x) predicts incorrectly, its sign will be different from yi .
So, their multiplication will be equal to −1. That being the case, the result of 1 −
sign( f (xi ))yi will be equal to 2. For this reason, wsg returns the twice of number
of misclassified samples.

The above loss function look intuitive and it is not sensitive to far samples. How-
ever, finding the minimum of this loss function using gradient-based optimization
methods is hard. The reason is because of sign function. One solution to solve this
problem is to approximate the sign function using a differentiable function. Fortu-
nately, tanh (Hyperbolic tangent) is able to accurately approximate the sign function.
More specifically, tanh(kx) ≈ sign(x) when k 
 1. This is illustrated in Fig. 2.9.
As k increases, the tanh function will be able to approximate the sign function more
accurately.

By replacing the sign function with tanh in (2.24), we will obtain:

Lsg(w) =
n∑

i=1

1 − tanh(k f (xi ))yi . (2.25)
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Fig. 2.9 The sign function
can be accurately
approximated using tanh(kx)
when k 
 1

Similar to the squared loss function, the sign loss function can beminimized using
the gradient descend method. To this end, we need to compute the partial derivatives
of the sign loss function with respect to its parameters:

δLsg(w)

wi
= −kxi y(1 − tanh2(k f (x)))

δLsg(w)

w0
= −ky(1 − tanh2(k f (x))) (2.26)

If we train a linear model using the sign loss function and the gradient descend
method on the datasets shown in Figs. 2.1 and 2.8,wewill obtain the results illustrated
in Fig. 2.10. According to the results, the sign loss function is able to deal with
separated clusters of samples and outliers as opposed to the squared loss function.

Even though the sign loss using the tanh approximation does a fairly good job on
our sample dataset, it has one issue which makes the optimization slow. In order to
explain this issue, we should study the derivative of tanh function. We know from
calculus that δ tanh(x)

δx = 1 − tanh2(x). Figure2.11 shows its plot. We can see that the
derivative of tanh saturates as |x | increases. Also, it saturates more rapidly if we set k
to a positive number greater than 1. On the other hand, we know from (2.26) that the
gradient of the sign loss function directly depends on the derivative of tanh function.
That means if the derivative of a sample falls into the saturated region, its magnitude
is close to zero. As a consequence, parameters change very slightly. This phenomena
which is called the saturated gradients problem slows down the convergence speed
of the gradient descend method. As we shall see in the next chapters, in complex
models such as neural networks with millions of parameters, the model may not
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Fig.2.10 The sign loss function is able to deal with noisy datasets and separated clusters problem
mentioned previously

Fig. 2.11 Derivative of
tanh(kx) function saturates
as |x | increases. Also, the
ratio of saturation growth
rapidly when k > 1

be able to adjust the parameters of initial layers since the saturated gradients are
propagated from last layers back to the first layers.

2.2.2 Hinge Loss

Earlier in this chapter, we explained that the normalized distance of sample x from the
decision boundary is equal to | f (x)|

‖w‖ . Likewise,margin of x is obtained by computing

(wxT )y where y is the corresponding label of x. The margin tell us how correct is the
classification of the sample. Assume that the label of xa is −1. If wxTa is negative,
its multiplication with y = −1 will be positive showing that the sample is classified
correctly with a confidence analogous to |wxT |. Likewise, if wxTa is positive, its
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Fig. 2.12 Hinge loss increases the margin of samples while it is trying to reduce the classification
error. Refer to text for more details

multiplication with y = −1 will be negative showing that the sample is classified
incorrectly with a magnitude equal to |wxT |.

The basic idea behind hinge loss is not only to train a classifier but also to increase
margin of samples. This is an important property which may increase tolerance of
the classifier against noisy samples. This is illustrated in Fig. 2.12 on a synthetic
dataset which are perfectly separable using a line. The solid line shows the decision
boundary and the dashed lines illustrate the borders of the critical region centered
at the decision boundary of this model. It means that the margin of samples in this
region is less than |a|. In contrast, margin of samples outside this region is high
which implies that the model is more confident in classification of samples outside
this region. Also, the colorbar next to each plots depicts the margin corresponding
to each color on the plots.
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In the first plot, two test samples are indicated which are not used during the
training phase. One of them belongs to circles and the another one belongs to squares.
Although the line adjusted on the training samples is able to perfectly discriminate
the training samples, it will incorrectly classify the test red sample. Comparing the
model in the second plot with the first plot, we observe that fewer circles are inside
the critical region but the number of squares increase inside this region. In the third
plot, the overall margin of samples are better if we compare the samples marked with
white ellipses on these plots. Finally, the best overall margin is found in the fourth
plot where the test samples are also correctly classified.

Maximizing the margin is important since it may increase the tolerance of model
against noise. The test samples in Fig. 2.12 might be noisy samples. However, if the
margin of the model is large, it is likely that these samples are classified correctly.
Nonetheless, it is still possible that we design a test scenario where the first plot
could be more accurate than the fourth plot. But, as the number of training samples
increases a classifier with maximum margin is likely to be more stable. Now, the
question is how we can force the model by a loss function to increase its accuracy
and margin simultaneously? The hinge loss function achieves these goals using the
following relation:

Lhinge(w) = 1

n

n∑

i=1

max(0, a − wxTi yi ) (2.27)

where yi ∈ {−1, 1} is the label of the training sample xi . If signs of wxi and yi
are equal, the term inside the sum operator will return 0 since the value of the
second parameter in the max function will be negative. In contrast, if their sign
are different, this term will be equal to a − wxTi yi increasing the value of loss.
Moreover, if wxTi yi < a this implies that x is within the critical region of the model
and it increases the value of loss. By minimizing the above loss function we will
obtain a model with maximummargin and high accuracy at the same time. The term
inside the sum operator can be written as:

max(0, a − wxTi yi ) =
{
a − wxTi yi wxTi yi < a

0 wxTi yi ≥ a
(2.28)

Using this formulation and denoting max(0, a − wxTi yi ) with H , we can compute
the partial derivatives of Lhinge(w) with respect to w:

δH

δwi
=
{−xi yi wxTi yi < a

0 wxTi yi ≥ a

δH

δw0
=
{−yi wxTi yi < a

0 wxTi yi ≥ a

(2.29)
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Fig. 2.13 Training a linear classifier using the hinge loss function on two different datasets

δLhinge(w)

δwi
= 1

n

n∑

i=1

δH

wi

δLhinge(w)

δw0
= 1

n

n∑

i=1

δH

w0

(2.30)

It should be noted that, Lhinge(w) is not continuous at wxTi yi = a and, conse-
quently, it is not differentiable at wxTi yi = a. For this reason, the better choice for
optimizing the above function might be a subgradient-based method. However, it
might never happen in a training set to have a sample in whichwxTi yi is exactly equal
to a. For this reason, we can still use the gradient descend method for optimizing
this function.

Furthermore, the loss function does not depend on the value of a. It only affects
the magnitude of w. In other words, w is always adjusted such that as few training
samples as possible fall into the critical region. For this reason, we always set a = 1
in practice. We minimized the hinge loss on the dataset shown in Figs. 2.1 and 2.8.
Figure2.13 illustrates the result. As before, the region between the two dashed lines
indicates the critical region.

Based on the results, the model learned by the hinge loss function is able to deal
with separated clusters problem. Also, it is able to learn an accurate model for the
nonlinearly separable dataset. A variant of hinge loss called squared hinge loss has
been also proposed which is defined as follows:

Lhinge(w) = 1

n

n∑

i=1

max(0, 1 − wxTi yi )
2 (2.31)
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The main difference between the hinge loss and the squared hinge loss is that the
latter one is smoother and it may make the optimization easier. Another variant of
the hinge loss function is called modified Huber and it is defined as follows:

Lhuber (w) =
{
max(0, 1 − ywxT )2 ywxT ≥ −1

−4ywxT otherwise
(2.32)

The modified Huber loss is very close to the squared hinge and they may only differ
in the convergence speed. In order to use any of these variants to train a model,
we need to compute the partial derivative of the loss functions with respect to their
parameters.

2.2.3 Logistic Regression

Noneof the previouslymentioned linearmodels are able to compute the probability of
samples x belonging to class y = 1. Formally, given a binary classification problem,
we might be interested in computing p(y = 1|x). This implies that p(y = −1|x) =
1 − p(y = 1|x). Consequently, the sample x belongs to class 1 if p(y = 1|x) > 0.5.
Otherwise, it belongs to class -1. In the case that p(y = 1|x) = 0.5, the sample is
exactly on the decision boundary and it does not belong to any of these two classes.
The basic idea behind logistic regression is to learn p(y = 1|x) using a linear model.
To this end, logistic regression transforms the score of a sample into probability by
passing the score through a sigmoid function. Formally, logistic regression computes
the posterior probability as follows:

p(y = 1|x;w) = σ(wxT ) = 1

1 + e−wxT
. (2.33)

In this equation, σ : R → [0, 1] is the logistic sigmoid function. As it is shown in
Fig. 2.14, the function has a S shape and it saturates as |x | increases. In other words,
derivative of function approaches to zero as |x | increases.

Since range of the sigmoid function is [0, 1] it satisfies requirements of a prob-
ability measure function. Note that (2.33) directly models the posterior probability
which means by using appropriate techniques that we shall explain later, it is able
to model likelihood and a priori of classes. Taking into account the fact that (2.33)
returns the probability of a sample, the loss function must be also build based on
probability of the whole training set given a specific w. Formally, given a dataset of
n training samples, our goal is to maximize their joint probability which is defined
as:

Llogistic(w) = p(x1 ∩ x2 ∩ · · · ∩ xn) = p

(
n⋂

i=1

xi

)
. (2.34)

Modeling the above joint probability is not trivial. However, it is possible to decom-
pose this probability into smaller components. To be more specific, the probability
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Fig. 2.14 Plot of the sigmoid function (left) and logarithm of the sigmoid function (right). The
domain of the sigmoid function is real numbers and its range is [0, 1]

of xi does not depend on the probability of x j . For this reason and taking into
account the fact that p(A, B) = p(A)p(B) if A and B are independent events, we
can decompose the above joint probability into product of probabilities:

Llogistic(w) =
n∏

i=1

p(yi |xi ) (2.35)

where p(xi ) is computed using:

p(yi |xi ) =
{

p(y = 1|x;w) yi == 1
1 − p(y = 1|x;w) yi == −1

(2.36)

Representing the negative class with 0 rather than −1, the above equation can be
written as:

p(xi ) = p(y = 1|x;w)yi (1 − p(y = 1|x;w))1−yi . (2.37)

This equationwhich is calledBernoulli distribution is used tomodel randomvariables
with two outcomes. Plugging (2.33) into the above equation we will obtain:

Llogistic(w) =
n∏

i=1

(
σ(wxT )yi (1 − σ(wxT ))1−yi

)
. (2.38)

Optimizing the above function is hard. The reason is because of
∏

operator which
makes the derivative of the loss function intractable.However,we can apply logarithm
trick to change the multiplication into summation. In other words, we can compute
log(Llogistic(w)):

log(Llogistic(w)) = log

(
n∏

i=1

(
σ(wxT )yi (1 − σ(wxT ))1−yi

))
. (2.39)
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We know from properties of logarithm that log(A × B) = log(A) + log(B). As the
result, the above equation can be written as:

log(Llogistic(w)) =
n∑

i=1

yi log σ(wxT ) + (1 − yi ) log(1 − σ(wxT )). (2.40)

If each sample in the training set is classified correctly, p(xi ) will be close to 1 and
if it is classified incorrectly, it will be close to zero. Therefore, the best classification
will be obtained if we find the maximum of the above function. Although this can
be done using gradient ascend methods, it is preferable to use gradient descend
methods. Because gradient descend can be only applied on minimization problems,
we can multiply both sides of the equation with −1 in order to change the maximum
of the loss into minimum:

E = − log(Llogistic(w)) = −
n∑

i=1

yi log σ(wxT ) + (1 − yi ) log(1 − σ(wxT )).

(2.41)
Now, we can use gradient descend to find the minimum of the above loss function.
This function is called cross-entropy loss. In general, these kind of loss functions
are called negative log-likelihood functions. As before, we must compute the partial
derivatives of the loss function with respect to its parameters in order to apply the
gradient descend method. To this end, we need to compute the derivative of σ(a)

with respect to its parameter which is equal to:

δσ (a)

a
= σ(a)(1 − σ(a)). (2.42)

Then, we can utilize the chain rule to compute the partial derivative of the above loss
function. Doing so, we will obtain:

δE

wi
= (

σ(wxTi ) − yi
)
xi

δE

w0
= σ(wxTi ) − yi

(2.43)

Note that in contrast to the previous loss functions, here, yi ∈ {0, 1}. In other words,
the negative class is represented using 0 instead of−1. Figure2.15 shows the result of
training linear models on the two previously mentioned datasets. We see that logistic
regression is find an accurate model even when the training samples are scattered in
more than two clusters. Also, in contrast to the squared function, it is less sensitive
to outliers.

It is possible to formulate the logistic loss with yi ∈ {−1, 1}. In other words, we
can represent the negative class using −1 and reformulate the logistic loss function.
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Fig. 2.15 Logistic regression is able to deal with separated clusters

More specifically, we can rewrite the logistic equations as follows:

p(y = 1|x) = 1

1 + e−wxT

p(y = −1|x) = 1 − p(y = 1|x) = 1

1 + e+wxT

(2.44)

This implies that:

p(yi |xi ) = 1

1 + e−yiwxT
(2.45)

Plugging this in (2.35) and taking the negative logarithm, we will obtain:

Llogistic(w) =
n∑

i=1

log(1 + e−yiwxT ) (2.46)

It should be noted that (2.41) and (2.46) are identical and they can lead to the same
solution. Consequently, we can use any of them to fit a linear model. As before, we
only need to compute partial derivatives of the loss function and use them in the
gradient descend method to minimize the loss function.

2.2.4 Comparing Loss Function

We explained 7 different loss functions for training a linear model.We also discussed
some of their properties in presence of outliers and separated clusters. In this section,
we compare these loss functions from different perspectives. Table2.1 compares
different loss functions. Besides, Fig. 2.16 illustrates the plot of the loss functions
along with their second derivative.
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Table 2.1 Comparing different loss functions

Loss function Equation Convex

Zero-one loss L0/1(w) = ∑n
i=1 H0/1(wxT , yi ) No

Squared loss Lsq (w) = ∑n
i=1(wx

T
i − yi )2 Yes

Tanh Squared loss wsg = ∑n
i=1 1 − tanh(k f (xi ))yi . No

Hinge loss Lhinge(w) = 1
n

∑n
i=1 max(0, 1 − wxTi yi ) Yes

Squared hinge loss Lhinge(w) = 1
n

∑n
i=1 max(0, 1 − wxTi yi )

2 Yes

Modified Huber
Lhuber (w) =

{
max(0, 1 − ywxT )2 ywxT ≥ −1

−4ywxT otherwise

Yes

Logistic loss − log(Llogistic(w)) =
−∑n

i=1 yi log σ(wxT ) + (1 − yi ) log(1 − σ(wxT ))

Yes

Fig. 2.16 Tanh squared loss and zero-one loss functions are not convex. In contrast, the squared
loss, the hinge loss, and its variant and the logistic loss functions are convex

Informally, a one variable function is convex if for every pair of points x and
y, the function falls below their connecting line. Formally, if the second derivative
of a function is positive, the function is convex. Looking at the plots of each loss
function and their derivatives, we realize that the Tanh squared loss and the zero-one
loss functions are not convex. In contrast, hinge loss and its variants as well as the
logistic loss are all convex functions. Convexity is an important property since it
guarantees that the gradient descend method will find the global minimum of the
function provided that the classification model is linear.

Let us have a closer look at the logistic loss function on the dataset which is
linearly separable. Assume the parameter vector ŵ such that two classes are sepa-
rated perfectly. This is shown by the top-left plot in Fig. 2.17. However, because the
magnitude of ŵ is low σ(wxT ) is smaller than 1 for the points close to the decision
boundary. In order to increase the value of σ(wxT ) without affecting the classifica-
tion accuracy, the optimization method may increase the magnitude of ŵ. As we can
see in the other plots, as themagnitude increases, the logistic loss reduces.Magnitude
of ŵ can increase infinitely resulting the logistic to approach zero.
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Fig.2.17 Logistic regression tries to reduce the logistic loss even after finding a hyperplane which
discriminates the classes perfectly

However, as we will explain in the next chapter, parameter vectors with high
magnitude may suffer from a problem called overfitting. For this reason, we are
usually interested in finding parameter vectors with low magnitudes. Looking at the
plot of the logistic function in Fig. 2.16, we see that the function approaches to zero
at infinity. This is the reason that the magnitude of model increases.

We can analyze the hinge loss function from the same perspective. Looking at
the plot of the hinge loss function, we see that it becomes zero as soon as it finds a
hyperplane in which all the samples are classified correctly and they are outside the
critical region. We fitted a linear model using the hinge loss function on the same
dataset as the previous paragraph. Figure2.18 shows that after finding a hyperplane
that classifies the samples perfectly, themagnitude ofw increases until all the samples
are outside the critical region. At this point, the error becomes zero and w does not
change anymore. In other words, ‖w‖ has an upper bound when we find it using the
hinge loss function.
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Fig. 2.18 Using the hinge loss function, the magnitude of w changes until all the samples are
classified correctly and they do not fall into the critical region

The above argument about the logistic regression does not hold when the classes
are not linearly separable. In other words, in the case that classes are nonlinearly
separable, it is not possible to perfectly classify all the training samples. Conse-
quently, some of the training samples are always classified incorrectly. In this case,
as it is shown in Fig. 2.19, if ‖w‖ increases, the error of the misclassified samples
also increases resulting in a higher loss. For this reason, the optimization algorithm
change the value of w for a limited time. In other words, there could be an upper
bound for ‖w‖ when the classes are not linearly separable.
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Fig. 2.19 When classes are not linearly separable, ‖w‖ may have an upper bound in logistic loss
function

2.3 Multiclass Classification

In the previous section, we mentioned a few techniques for training a linear classifier
on binary classification problems. Recall from the previous section that in a binary
classification problem our goal is to classify the input x ∈ R

d into one of two classes.
A multiclass classification problem is a more generalized concept in which x is
classified into more than two classes. For example, suppose we want to classify 10
different speed limit signs starting from 30 to 120km/h. In this case, x represents
the image of a speed limit sign. Then, our goal is to find the model f : Rd → Y
where Y = {0, 1, . . . , 9}. The model f (x) accepts a d-dimensional real vector and
returns a categorical integer between 0 and 9. It is worth mentioning that Y is not
an ordered set. It can be any set with 10 different symbols. However, for the sake of
simplicity, we usually use integer numbers to show classes.

2.3.1 OneVersus One

A multiclass classifier can be build using a group of binary classifiers. For instance,
assume the 4-class classification problem illustrated in Fig. 2.20 where
Y = {0, 1, 2, 3}. One technique for building a multiclass classifier using a group
of binary classifier is called one-versus-one (OVO).

Given the dataset X = {(x0, y0), . . . , (xn, yn)} where xi ∈ R
d and yi ∈

{0, 1, 2, 3}, we first pick the samples fromX with label 0 or 1. Formally, we create
the following dataset:

X0|1 = {xi | xi ∈ X ∧ yi ∈ {0, 1}} (2.47)
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Fig. 2.20 A samples dataset
including four different
classes. Each class is shown
using a unique color and
shape

and a binary classifier is fitted onX0|1. Similarly,X0|2,X0|3,X1|2,X1|3 andX2|3
are created a separate binary classifiers are fitted on each of them. By this way,
there will be six binary classifiers. In order to classify the new input xq into one of
four classes, it is first classified using each of these 6 classifiers. We know that each
classifier will yield an integer number between 0 and 3. Since there are six classifiers,
one of the integer numbers will be repeated more than others. The class of xq is equal
to the number with highest occurrence. From another perspective, we can think of
the output of each binary classifier as a vote. Then, the winner class is the one with
majority of votes. This method of classification is calledmajority voting. Figure2.21
shows six binary classifiers trained on six pairs of classes mentioned above. Besides,
it illustrates how points on the plane are classified into one of four classes using this
technique.

This example can be easily extended to a multiclass classification problemwith N
classes.More specifically, all pairs of classesXa|b are generated for alla = 1 . . . N −
1 and b = a + 1 . . . N . Then, a binary model fa|b is fitted on the corresponding
dataset. By this way, N (N−1)

2 binary classifiers will be trained. Finally, an unseen
sample xq is classified by computing the majority of votes produces by all the binary
classifiers.

One obvious problem of one versus one technique is that the number of binary
classifiers quadratically increases with the number of classes in a dataset. This
means that using this technique we need to train 31125 binary classifiers for a
250-class classification problem such as traffic sign classification. This makes the
one versus one approach impractical for large values of N . In addition, some-
times ambiguous results might be generated by one versus one technique. This may
happen when there are two or more classes with majority of votes. For example,
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�Fig.2.21 Training six classifiers on the four class classification problem. One versus one technique
considers all unordered pairs of classes in the dataset and fits a separate binary classifier on each pair.
A input x is classified by computing the majority of votes produced by each of binary classifiers.
The bottom plot shows the class of every point on the plane into one of four classes

assume that the votes of 6 classifiers in the above example for an unseen sample
are 1, 1, 2, and 2 for classes 0, 1, 2, and 3, respectively. In this case, the Class 2 and
Class 3 have equally the majority votes. Consequently, the unseen sample cannot be
classified. This problem might be addressed by taking into account the classification
score (i.e., wxT ) produced by the binary classifiers. However, the fact remains that
one versus one approach is not practical in applications with many classes.

2.3.2 OneVersus Rest

Another popular approach for building a multiclass classifier using a group of binary
classifiers is called one versus rest (OVR). It may also be called one versus all or one
against all approach. As opposed to one versus one approach where N (N−1)

2 binary
classifiers are created for a N-class classification problem, one versus rest approach
trains only N binary classifiers to make predictions. The main difference between
these two approaches are the way that they create the binary datasets.

In one versus rest technique, a binary dataset for class a is created as follows:

Xa|rest = {(xi , 1)|xi ∈ X ∧ yi = a} ∪ {(xi ,−1)|xi ∈ X ∧ yi �= a}. (2.48)

Literally, Xa|rest is composed of all the samples in X . The only difference is
the label of samples. For creating Xa|rest , we pick all the samples in X with label
a and add them to Xa|rest after changing their label to 1. Then, the label of all the
remaining samples in X is changed to −1 and they are added to Xa|rest . For a
N-class classification problem, Xa|rest is generated for all a = 1 . . . N . Finally, a
binary classifier fa|rest (x) is trained on eachXa|rest using the method we previously
mentioned in this chapter. An unseen sample xq is classified by computing:

ŷq = argmax
a=1...N

fa|rest (xq). (2.49)

In other words, the score of all the classifiers are computed. The classifier with
the maximum score shows the class of the sample xq . We applied this technique
on the dataset shown in Fig. 2.20. Figure2.22 illustrates how the binary datasets
are generated. It also shows how every point on the plane are classified using this
technique.

Comparing the results from one versus one and one versus all, we observe that
they are not identical. One advantage of one versus rest over one versus one approach
is that the number of binary classifiers increases linearly with the number of classes.
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Fig. 2.22 One versus rest approach creates a binary dataset by changing the label of the class-of-
interest to 1 and the label of the other classes to −1. Creating binary datasets is repeated for all
classes. Then, a binary classifier is trained on each of these datasets. An unseen sample is classified
based on the classification score of the binary classifiers

For this reason, one versus rest approach is practical evenwhen the number of classes
is high. However, it posses another issue which is called imbalanced dataset.

Wewill talk throughly about imbalanced datasets later in this book. But, to give an
insight about this problem, consider a 250-class classification problem where each
class contains 1000 training samples. This means that the training dataset contains
250,000 samples. Consequently, Xa|rest will contain 1000 samples with label 1
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(positive samples) and 249,000 samples with label−1 (negative samples). We know
from previous section that a binary classifier is trained byminimizing a loss function.
However, because the number of negative samples is 249 timesmore than the samples
with label 1, the optimization algorithm will in fact try to minimize the loss occurred
by the negative samples. As the result, the binary model might be highly biased
toward negative samples and it might classify most of unseen positive samples as
negative samples. For this reason, one versus rest approach usually requires a solution
to tackle with highly imbalanced datasetXa|rest .

2.3.3 Multiclass Hinge Loss

An alternative solution to one versus one and one versus all techniques is to partition
the d-dimensional space into N distinct regions using N linear models such that:

L0/1(W) =
n∑

i=1

H(x, yi )

H(x, yi ) =
{
0 yi = argmax j=1...N fi (xi )
1 otherwise

(2.50)

is minimum for all the samples in the training dataset. In this equation,W ∈ R
N×d+1

is a weight matrix indicating the weights (d weights for each linear model) and biases
(1 bias for each linear model) of N linear models. Also, xi ∈ R

d is defined as before
and yi ∈ {1, . . . , N } can take any of the categorical integer values between 1 and N
and it indicates the class of xi . This loss function is in fact the generalization of the
0/1 loss function into N classes. Here also the objective of the above loss function is
to minimize the number of incorrectly classified samples. After finding the optimal
weight matrixW∗, an unseen sample xq is classified using:

ŷq = argmax
i=1...N

fi (xq;W∗
i ) (2.51)

where W∗
i depicts the i th row of the weight matrix. The weight matrix W∗ might

be found by minimizing the above loss function. However, optimizing this function
using iterative gradient methods is a hard task. Based on the above equation, the
sample xc belonging to class c is classified correctly if:

∀ j=1...N∧ j �=iWcxi > W jxi . (2.52)

In other words, the score of the cth model must be greater than all other models so
xc is classified correctly. By rearranging the above equation, we will obtain:

∀ j=1...N∧ j �=iW jxi − Wcxi ≤ 0. (2.53)
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Assume thatW jxi is fixed. AsWcxi increases, their difference becomes more nega-
tive. In contrast, if the sample is classified incorrectly, their difference will be greater
than zero. Consequently, if:

max
j=1...N∧ j �=i

W jxi − Wcxi (2.54)

is negative, the sample is classified correctly. In contrary, if it is positive the sample
is misclassified. In order to increase the stability of the models we can define the
margin ε ∈ R

+ and rewrite the above equation as follows:

H(xi ) = ε + max
j=1...N∧ j �=i

W jxi − Wcxi . (2.55)

The sample is classified correctly if H(xi ) is negative. The margin variable ε elimi-
nates the samples which are very close to the model. Based on this equation, we can
define the following loss function:

L (W) =
n∑

i=1

max(0, ε + max
j �=i

W jxi − Wcxi ). (2.56)

This loss function is calledmulticlass hinge loss. If the sample is classified correctly
and it is outside the critical region, ε + max j=1...Nand j �=i W jxi − Wcxi will be neg-
ative. Hence, output of max(0, −) will be zero indicating that we have not made a
loss on xi using the current value for W. Nonetheless, if the sample is classified in
correctly or it is within the critical region ε + max j=1...Nand j �=i W jxi − Wcxi will
be a positive number. As the result, max(0, +) will be positive indicating that we
have made a loss on xi . By minimizing the above loss function, we will findW such
that the number misclassified samples is minimum.

The multiclass hinge loss function is a differentiable function. For this reason,
gradient-based optimization methods such as gradient descend can be used to find
the minimum of this function. To achieve this goal, we have to find the partial
derivatives of the loss function with respect to each of the parameters inW. Given a
sample xi and its corresponding label yi , partial derivatives of (2.56) with respect to
Wm,n is calculated a follows:

δL (W; (xi , yi ))
δWm,n

=
⎧
⎨

⎩

xn ε + Wmxi − Wyi xi > 0 and m = argmaxp �=yiWpxi − Wyi xi
−xn ε + maxp �=m Wpxi − Wmxi > 0 and m = yi
0 otherwise

(2.57)

δL (W)

δWm,n
=

n∑

i=1

δL (W; (xi , yi ))
δWm,n

(2.58)

In these equations, Wm,n depicts the nth parameter of the mth model. Similar to
the binary hinge loss, ε can be set to 1. In this case, the magnitude of the models
will be adjusted such that the loss function is minimum. If we plug the above partial



48 2 Pattern Classification

Fig.2.23 A two-dimensional space divided into four regions using four linear models fitted using
the multiclass hinge loss function. The plot on the right shows the linear models (lines in two-
dimensional case) in the space

derivatives into the gradient descend method and apply it on the dataset illustrated
in Fig. 2.20, we will obtain the result shown in Fig. 2.23.

The left plot in this figure shows how the two-dimensional space is divided into
four distinct regions using the four linear models. The plot on the right also illustrates
the four lines in this space. It should be noted that it is themaximum score of a sample
from all the models that determined the class of the sample.

2.3.4 Multinomial Logistic Function

In the case of binary classification problems, we are able to model the probability
of x using the logistic function in (2.33). Then, a linear model can be found by
maximizing the joint probability of training samples. Alternatively, we showed in
(2.46) that we can minimize the negative of logarithm of probabilities to find a linear
model for a binary classification problem.

It is possible to extend the logistic function into amulticlass classification problem.
We sawbefore that N classes canbediscriminated using N different lines. In addition,
we showed how tomodel the posterior probability of input x using logistic regression
in (2.33). Instead of modeling p(y = 1|x;w), we can alternatively model ln p(y =
1|x;w) given by:

ln p(y = 1|x;w) = wxT − ln Z (2.59)

where ln Z is a normalization factor. Thismodel is called log-linearmodel.Using this
formulation, we can model the posterior probability of N classes using N log-linear
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models:

ln p(y = 1|x;w1) = w1xT − ln Z

ln p(y = 2|x;w2) = w2xT − ln Z

...

ln p(y = N |x;wn) = wNxT − ln Z

(2.60)

If we compute the exponential of the above equations we will obtain:

p(y = 1|x;w1) = ew1xT

Z

p(y = 2|x;w2) = ew2xT

Z
...

p(y = N |x;wN ) = ewN xT

Z

(2.61)

We know from probability theory that:

N∑

c=1

p(y = c|x;w1) = 1 (2.62)

Using this property, we can find the normalization factor Z that satisfies the above
condition. If we set:

ew1xT

Z
+ ew2xT

Z
+ · · · + ewN xT

Z
= 1 (2.63)

as solve the above equation for Z , we will obtain:

Z =
N∑

i=1

ewixT (2.64)

Using the above normalization factor and given the sample xi and its true class c,
the posterior probability p(y = c|xi ) is computed by:

p(y = c|xi ) = ewcxTi
∑N

j=1 e
w jxTi

(2.65)

where N is the number of classes. The denominator in the above equation is a
normalization factor so

∑N
c=1 p(y = c|xi ) = 1 holds true and, consequently, p(y =

c|xi ) is a valid probability function. The above function which is called softmax
function is commonly used to train convolutional neural networks. Given, a dataset
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of d-dimensional samples xi with their corresponding labels yi ∈ {1, . . . N } and
assuming the independence relation between the samples (see Sect. 2.2.3), likelihood
of all samples for a fixed W can be written as follows:

p(X ) =
n∏

i=1

p(y = yi |xi ). (2.66)

As before, instead of maximizing the likelihood, we can minimize the negative of
log-likelihood that is defined as follows:

− log(p(X )) = −
n∑

i=1

log(p(y = yi |xi )). (2.67)

Note that the product operator has changed to the summation operator taking into
account the fact that log(ab) = log(a) + log(b). Now, for any W we can compute
the following loss:

Lsof tmax (W) = −
n∑

i=1

log(yc) (2.68)

whereW ∈ R
N×d+1 represents the parameters for N linear models and yc = p(y =

yi |xi ). Before computing the partial derivatives of the above loss function, we explain
how to show the above loss function using a computational graph.Assume computing
log(yc) for a sample. This can be represented using the graph in Fig. 2.24.

Computational graph is a directed acyclic graph where each non-leaf node in this
graph shows a computational unit which accepts one or more inputs. Leaves also
show the input of the graph. The computation starts from the leaves and follows the
direction of the edges until it reaches to the final node. We can compute the gradient
of each computational node with respect to its inputs. The labels next to each edge
shows the gradient of its child node (top) with respect to its parent node (bottom).
Assume, we want to compute δL /δW1. To this end, we have to sum all the paths
fromL toW1 andmultiply the gradients represented by edges along each path. This
result will be equivalent tomultivariate chain rule. According to this, δL /δW1 will
be equal to:

δL

δW1
= δL

δyc

δyc
δz1

δz1
δW1

. (2.69)

Using this concept, we can easily compute δL /δWi, j where Wi, j refers to the j th

parameter of uth model. For this purpose, we need to compute δyc
δzi

which is done as
follows:

δyc
δzi

=
δ ezc∑N

m=1 e
zm

δzi
=

⎧
⎪⎨

⎪⎩

ezc
∑

m ezm−ezc ezc

(
∑

m ezm )
2 = yc(1 − yc) i = c

−ezi ezc

(
∑

m ezm )
2 = yi yc i �= c

(2.70)
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Fig. 2.24 Computational
graph of the softmax loss on
one sample

Now, we can compute δL /δWi, j by plugging the above derivative into the chain
rule obtained by the computational graph for sample x with label yc.

δL

δWi, j
=
{

−(1 − yc)x j i = c

yi x j i �= c
(2.71)

With this formulation, the gradient of all the samples will be equal to sum of the
gradient of each sample. Now, it is possible to minimize the softmax loss function
using the gradient descend method. Figure2.25 shows how the two-dimensional
space in our example is divided into four regions using the models trained by the
softmax loss function. Comparing the results from one versus one, one versus all,
the multiclass hinge loss and the softmax loss, we realize that their results are not
identical. However, the two former techniques is not usually used for multiclass
classification problems because of the reasons we mentioned earlier. Also, there is
not a practical rule of thumb to tell if the multiclass hinge loss better or worse than
the softmax loss function.

2.4 Feature Extraction

In practice, it is very likely that samples in the training set X = {(x1, y1), . . . ,
(xn, yn)} are not linearly separable. The multiclass dataset in the previous section is
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Fig.2.25 The two-dimensional space divided into four regions using four linear models fitted using
the softmax loss function. The plot on the right shows the linear models (lines in two-dimensional
case) in the space

Fig.2.26 A linear classifier is not able to accurately discriminate the samples in a nonlinear dataset

an example of such a dataset. Figure2.26 shows a nonlinear dataset and the linear
classifier fitted using logistic regression. Samples of each class are illustrated using
a different marker and different color.

Clearly, it is impossible to perfectly discriminate these two classes using a line.
There are mainly two solutions for solving this problem. The first solution is to train
a nonlinear classifier such as random forest on the training dataset. This method is
not within the scope of this book. The second method is to project the original data

into another space using the transformation function Φ : Rd → R
d̂ where classes

are linearly separable in the transformed space. Here, d̂ can be any arbitrary integer
number. Formally, given the sample x ∈ R

d , it is transformed into a d̂-dimensional
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space using:

Φ(x) = x̂ =

⎡

⎢⎢⎢⎣

φ1(x)
φ2(x)

...

φd̂(x)

⎤

⎥⎥⎥⎦ (2.72)

where φi : Rd → 1 is a scaler function which accepts a d-dimensional input and
return a scaler. Also, φi can be any function. Sometimes, an expert can design these
functions based on the requirements of the problem. To transform the above nonlinear
dataset, we define Φ(x) as follows:

Φ(x) = x̂ =
[
φ1(x) = e−10‖x−c1‖2

φ2(x) = e−20‖x−c2‖2

]
(2.73)

where c1 = (0.56, 0.67) and c2 = (0.19, 0.11). By applying this function on each
sample, we will obtain a new two-dimensional space where the samples are non-
linearly transformed. Figure2.27 shows how samples are projected into the new
two-dimensional space. It is clear that the samples in the new space become lin-
early separable. In other words, the dataset X̂ = {(Φ(x1), y1), . . . , (Φ(xn), yn)} is
linearly separable. Consequently, the samples in X̂ can be classified using a linear
classifier in the previous section. Figure2.28 shows a linear classifier fitted on the
data in the new space.

The decision boundary of a linear classifier is a hyperplane (a line in this exam-
ple). However, because Φ(x) is a nonlinear transformation, if we apply the inverse
transform from the new space to the original space, the decision boundary will not
be a hyperplane anymore. Instead, it will be a nonlinear decision boundary. This is
illustrated in the right plot of Fig. 2.28.

Choice of Φ(x) is the most important step in transforming samples into a new
space where they are linearly separable. In the case of high-dimensional vectors such
as images, finding an appropriate Φ(x) becomes even harder. In some case, Φ(x)
might be composition of multiple functions. For example, one can define Φ(x) =
Ψ (Ω(Γ (x)))whereΦ : Rd → R

d̂ ,Ψ : Rd2 → R
d̂ ,Ω : Rd1 → R

d2 and,Γ : Rd →
R
d1 . In practice, there might be infinite number of functions tomake samples linearly

separable.
Let us apply our discussions so far on a real world problem. Suppose the 43

classes of traffic signs shown in Fig. 2.29 that are obtained from the German traffic
sign recognition benchmark (GTSRB) dataset. For the purpose of this example,
we randomly picked 1500 images for each class. Assume a 50 × 50 RGB image.
Taking into account the fact that each pixel in this image is represented by a three-
dimensional vector, the flattened image will be a 50 × 50 × 3 = 7500 dimensional
vector. Therefore, the training dataset X is composed of 1500 training sample pair
(xi , yi ) where x ∈ R

7500 and yi ∈ {0, . . . 42}.
Beside the training dataset, we also randomly pick 6400 test samples (ẋ, ẏi ) from

the dataset that are not included in X . Formally, we have another dataset Ẋ of
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Fig.2.27 Transforming samples from the original space (left) into another space (right) by applying
Φ(x) on each sample. The bottom colormaps show how the original space is transformed using this
function

traffic signs where ẋ ∈ R
7500 and ẋ /∈ X and ẏi ∈ {0, . . . 42}. It is very important

in testing a model to use unseen samples. We will explain this topic throughly in the
next chapters. Finally, we can train a linear classifier F(x) usingX to discriminate
the 43 classes of traffic signs. Then, F(x) can be tested using Ẋ and computing
classification accuracy.

To bemore specific,we pick every sample ẋi and predict its class label using F(ẋi ).
Recall from previous sections that for a softmaxmodel with 43 linermodels, the class
of sample ẋi is computed using F(ẋi ) = argmaxi=1...43 fi (ẋi ) where fi (ẋi ) = wẋi
is the score computed by the i th model. With this formulation, the classification
accuracy of the test samples is obtained by computing:

acc = 1

6400

6400∑

i=1

1[F(ẋi ) == ẏi ] (2.74)
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Fig. 2.28 Samples become linearly separable in the new space. As the result, a linear classifier is
able to accurately discriminate these samples. If we transform the linear model from the new space
into the original space, the linear decision boundary become a nonlinear boundary

Fig. 2.29 43 classes of traffic in obtained from the GTSRB dataset (Stallkamp et al. 2012)

where 1[.] is the indicator function and it returns 1when the input is true. The quantity
acc is equal to 1 when all the samples are classified correctly and it is equal to 0
when all of them are misclassified. We trained a linear model on this dataset using
the raw pixel values. The accuracy on the test set is equal to 73.17%. If we ignore the
intercept, the parameters vector w ∈ R

7500 of the linear model f (x) = wxT has the
same dimension as the input image. One way to visualize and study the parameter
vector is to reshape w into a 50 × 50 × 3 image. Then, we can plot each channel in
this three-dimensional array using a colormap plot. Figure2.30 shows weights of the
model related to Class 1 after reshaping.

We can analyze this figure to see what a linear model trained on raw pixel inten-
sities exactly learns. Consider the linear model f (x) = w1x1 + · · · + wnxn without
the intercept term. Taking into account the fact that pixel intensities in a regular RGB
image are positive values, xi in this equation is always a positive value. Therefore,
f (x) will return a higher value if wi is a high positive number. In contrary, f (x) will
return a smaller value if wi is a very small negative number. From another perspec-
tive, we can interpret positive weights as “likes” and negative weights as “dislikes”
of the linear model.

That being said ifwi is negative, the model does not like high values of xi . Hence,
if the intensity of pixel at xi is higher than zero it will reduce the classification score.
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Fig. 2.30 Weights of a linear model trained directly on raw pixel intensities can be visualized by
reshaping the vectors so they have the same shape as the input image. Then, each channel of the
reshaped matrix can be shown using a colormap

In contrast, if wi is positive, the model likes high values of xi . In other words, as the
intensity of xi increases, the model becomes more confident about the classification
since it increases the classification score.

Looking at this figure, we see a red region in the middle of red, green and blue
channels. According to the color map next to each plot, red regions correspond to
weights with high positive values. Since, the same region is red in all three channels,
we can imply that the model likes to see the white color in that specific region. Then,
we observe that the region analogous to the rim of the sign has high positive weight
in the red channel and small negative weights in the blue channel. Also, the weights
of the green channel for that region is close to zero. This means that the model likes
to see high red values in that region and it dislikes blue values in that region. This
choice made by the model also seems rational for a human expert. This argument
can be applied on the other classes of traffic signs, as well.

Remember that the accuracy of themodel trained on rawpixel intensitieswas equal
to 73.17%.Now, the question iswhy the accuracy of themodel is very low?To answer
this question, we start with a basic concept. A two-dimensional vector (x1, x2) can be
illustrated using a point in a two-dimensional space. Moreover, a three-dimensional
vector (x1, x2, x3) can be shownusing a point in a three-dimensional space. Similarly,
a d-dimensional vector (x1, . . . , xd) is a point in a d-dimensional space. It is trivial
for a human to imagine the points in two-dimensional and three-dimensional spaces.
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But, it might be difficult at first to imagine higher dimensions. For starting, it suffice
to know that a d-dimensional vector is a point in a d-dimensional space.

EachRGB image in the above examplewill be a point in a 7500-dimensional space.
We can study the above question in this space. There are mainly two possibilities that
reduces the accuracy of a linear model in this space defined by raw images. First, like
the dataset in Fig. 2.26 the classes of traffic signs might be completely disjoint but
they might not be linearly separable. Second, similar to the dataset in Fig. 2.20, the
classes might have overlap with each other. The latter problem is commonly known
as interclass similarity meaning that samples of two or more classes are similar. In
both cases, a linear model is not able to accurately discriminate the classes.

Although there might not be a quick remedy to the second problem, the first
problem might be addressed by transforming the raw vectors into another space
using the feature transformation function Φ(x). Knowing the fact that output of
Φ(x) is a d̂-dimensional vector, the question in designingΦ(x) is what should be the
value of d̂? Even if we found a way to determine the value of d̂, the next question is
what should be the transformation function φi (x), i = 1, . . . , d̂? There are infinite
ways to define this function. For this reason, it is not trivial in practice to defineΦ(x)
for an image (it might not be a tedious task for othermodalities with low dimensions).

To alleviate this problem, researchers came up with the idea of feature extraction
algorithms. In general, a feature extraction algorithm processes an image and gen-
erates a more informative vector which better separates classes. Notwithstanding,
a feature extraction algorithm does not guarantee that the classes will be linearly
separable. Despite this, in most cases, a feature extraction is applied on an image
before feeding it to a classifier. In other words, we do not classify images using raw
pixel values. Instead, we always extract their feature and train a classifier on top of
the feature vectors.

One of the widely used feature extraction algorithms is called histogram of ori-
ented gradients (HOG). It starts by applying the gamma correction transformation
on the image and computing its first derivatives. Then, the image is divided into
small patches called cells. Within each cell, a histogram is computed based on the
orientation of the gradient vector and its magnitude using the pixels inside that cell.
Then, blocks are formed by considering neighbor cells and the histogram of the
cells within that block are concatenated. Finally, the feature vector is obtained by
concatenating the vectors of all blocks. The whole process of this algorithm can be
easily represented in terms of mathematical equations.

Assume that Φhog(x) : Rd → R
dhog denotes the HOG features. We can now

apply Φhog(x) on each sample of the training set X in order to obtain X̂ =
{(Φhog(x1), y1), . . . , (Φhog(xn), yn)}. Then, a linear classifier is trained using X̂ .
By doing this, the accuracy of the classification increases to 88.90%. Comparing
with the accuracy of the classifier trained on raw pixel intensities (i.e., 73.17%), the
accuracy increases 15.73%.

There might different reasons that the accuracy is not still very high. First, the
feature extraction function Φhog(x) might not be able to perfectly make the classes
linearly separable. This could be due to the fact that there are traffic signs such as
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“left bend ahead” and “right bend ahead” with slight differences. The utilized feature
extraction function might not be able to effectively model these differences such that
these classes become linearly separable. Second, the function Φhog(x) may cause
some of the classes to have overlap with other classes. Both or one of these reasons
can be responsible for having a low accuracy.

Like before, it is possible to create another function whose input isΦhog(x) and its
output is a d̂ dimensional vector. For example, we can define the following function:

Φ(Φhog(x)) =

⎡

⎢⎢⎢⎣

φ1(Φhog(x))
φ2(Φhog(x))

...

φd̂(Φhog(x))

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

e−γ ‖Φhog(x)−c1‖2

e−γ ‖Φhog(x)−c2‖2
...

e−γ ‖Φhog(x)−cd̂‖2

⎤

⎥⎥⎥⎥⎦
(2.75)

where γ ∈ R is a scaling constant and ci ∈ R
dhog is parameters which can be

defined manually or automatically. Doing so, we can generate a new dataset
X̂ = {Φ((Φhog(x1)), y1), . . . , (Φ(Φhog(xn)), yn)} and train a linear classifier on
top of this dataset. This increases the accuracy from 88.90 to 92.34%. Although the
accuracy is higher it is not still high enough to be used in practical applications.
One may add another feature transformation whose input is Φ(Φhog(x)). In fact,
compositing the transformation function can be done several times. But, this does
not guarantee that the classes are going to be linearly separable. Some of the trans-
formation function may increase the interclass overlap causing a drop in accuracy.

As it turns out, the key to accurate classification is to have a feature transformation
function Φ(x) which is able to make the classes linearly separable without causing
interclass overlap. But, how can we find Φ(x) which satisfies both these conditions?
We saw in this chapter that a classifier can be directly trained on the training dataset.
It might be also possible to learn Φ(x) using the same training dataset. If Φ(x) is
designed by a human expert (such as the HOG features), it is called a hand-crafted
or hand-engineered feature function.

2.5 LearningΦ(x)

Despite the fairly accurate results obtained by hand-crafted features on somedatasets,
as we will show in the next chapters, the best results have been achieved by learning
Φ(x) from a training set. In the previous section, we designed a feature function
to make the classes in Fig. 2.26 linearly separable. However, designing that feature
function by hand was a tedious task and needed many trials. Note that, the dataset
shown in that figure was composed of two-dimensional vectors. Considering the
fact that a dataset may contain high-dimensional vectors in real-world applications,
designing an accurate feature transformation function Φ(x) becomes even harder.

For this reason, in many cases the better approach is to learn Φ(x) from data.
More specifically, Φ(x;wφ) is formulated using the parameter vector wφ . Then, the
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linear classifier for i th class is defined as:

fi (x) = wΦ(x;wφ)T (2.76)

where w ∈ R
d̂ and wφ are parameter vectors that are found using training data.

Depending on the formulation of Φ(x), wφ can be any vector with arbitrary size.
The parameter vectorw andwφ determine the weights for the linear classifier and the
transformation function, respectively. The ultimate goal in a classification problem
is to jointly learn this parameter vectors such that the classification accuracy is high.

This goal is exactly the same as learning w such that wxT accurately classifies
the samples. Therefore, we can use the same loss functions in order to train both
parameter vectors in (2.76). Assume that Φ(x;wφ) is defined as follows:

Φ(x;wφ) =
[
ln(1 + e(w11x1+w21x2+w01))

ln(1 + e(w12x1+w22x2+w02))

]
(2.77)

In the above equation wφ = {w11, w21, w01, w12, w22, w02} is the parameter vector
for the feature transformation function. Knowing the fact that the dataset in Fig. 2.26
is composed of two classes, we can minimize the binary logistic loss function for
jointly finding w and wφ . Formally, the loss function is defined as follows:

L (w,wφ) = −
n∑

i=1

yi log(σ (wΦ(x)T )) + (1 − yi )(1 − log(σ (wΦ(x)T ))) (2.78)

The intuitiveway to understanding the above loss function and computing its gradient
is to build its computational graph. This is illustrated in Fig. 2.31. In the graph, g(z) =
ln(1 + ez) is a nonlinear function which is responsible for nonlinearly transforming
the space. First, the dot product of the input vector x is computed with two weigh
vectors wL0

1 and wL0
2 in order to obtain zL0

1 and zL0
2 , respectively. Then, each of

these values is passed through a nonlinear function and their dot product with wL2

is calculated. Finally, this score is passed through a sigmoid function and the loss
is computed in the final node. In order to minimize the loss function (i.e., the top
node in the graph), the gradient of the loss function has to be computed with respect
to the nodes indicated by w in the figure. This can be done using the chain rule or
derivatives. To this end, gradient of each node with respect to its parent must be
computed. Then, for example, to compute δL /δwL0

1 , we have to sum all the paths

from wL0
1 toL and multiply the term along each path. Since there is only from one

path from wL0
1 in this graph, the gradient will be equal to:

δL

δwL0
1

= δzL0
1

δwL0
1

δzL1
1

δzL0
1

δzL2

δzL1
1

δp

δzL2

δL

δp
(2.79)

The gradient of the loss with respect to the other parameters can be obtained in a sim-
ilar way. After that, we should only plug the gradient vector in the gradient descend
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Fig. 2.31 Computational
graph for (2.78). Gradient of
each node with respect to its
parent is shown on the edges

method and minimize the loss function. Figure2.32 illustrates how the system even-
tually learns to transform and classify the samples. According to the plots in the
second and third rows, the model is able to find a transformation where the classes
become linearly separable. Then, classification of the samples is done in this space.
This means that the decision boundary in the transformed space is a hyperplane.
If we apply the inverse transform from the feature space to the original space, the
hyperplane is not longer a line. Instead, it is a nonlinear boundary which accurately
discriminates the classes.

In this example, the nonlinear transformation function that we used in (2.77) is
called the softplut function and it is defined as g(x) = ln(1 + ex ). The derivative of
this function is also equal to g′(x) = 1

1+e−x . The softplut function can be replaced
with another function whose input is a scaler and its output is a real number. Also, we
there are many other ways to define a transformation function and find its parameters
by minimizing the loss function.
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Fig.2.32 By minimizing (2.78) the model learns to jointly transform and classify the vectors. The
first row shows the distribution of the training samples in the two-dimensional space. The second
and third rows show the status of the model in three different iterations starting from the left plots

2.6 Artificial Neural Networks

The idea of learning a feature transformation function instead of designing it by
hand is very useful and it produces very accurate results in practice. However, as we
pointed out above, there are infinite ways to design a trainable feature transformation
function. But, not all of them might be able to make the classes linearly separable
in the feature space. As the result, there might be a more general way to design a
trainable feature transformation functions.

An artificial neural network (ANN) is an interconnected group of smaller compu-
tational units called neurons and it tries tomimic biological neural networks.Detailed
discussion about biological neurons is not within the scope of this book. But, in order
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Fig. 2.33 Simplified diagram of a biological neuron

to better understand an artificial neuron we explain how a biological neuron works
in general. Figure2.33 illustrates a simplified diagram of a biological neuron.

A neuron is mainly composed of four parts including dendrites, soma, axon,
nucleus and boutons. Boutons is also called axon terminals. Dendrites act as the
input of the neuron. They are connected either to a sensory input (such as eye) or
other neurons through synapses. Soma collects the inputs from dendrites. When the
inputs passes a certain threshold it fires series of spikes across the axon. As the
signal is fired, the nucleus returns to its stationary state. When it reaches to this state,
the firing stops. The fired signals are transmitted to other neuron through boutons.
Finally, synaptic connections transmits the signals from one neuron to another.

Depending on the synaptic strengths and the signal at one axon terminal, each
dendron (i.e., one branch of dendrites) increases or decreases the potential of nucleus.
Also, the direction of the signal is always from axon terminals to dendrites. That
means, it is impossible to pass a signal from dendrites to axon terminals. In other
words, the path from one neuron to another is always a one-way path. It is worth
mentioning that each neuron might be connected to thousands of other neurons.
Mathematically, a biological neuron can be formulated as follows:

f (x) = G (wxT + b). (2.80)

In this equation, w ∈ R
d is the weight vector, x ∈ R

d is the input and b ∈ R is the
intercept term which is also called bias. Basically, an artificial neuron computes the
weighted sum of inputs. This mimics the soma in biological neuron. The synaptic
strength is modeled using w and inputs from other neurons or sensors are modeled
using x. In addition G (x) : R → R is a nonlinear function which is called activation
function. It accepts a real number and returns another real number after applying a
nonlinear transformation on it. The activation function act as the threshold function
in biological neuron. Depending on the potential of nucleus (i.e., wxT + b), the
activation function returns a real number. From computational graph perspective, a
neuron is a node in the graph with the diagram illustrated in Fig. 2.34.

An artificial neural network is created by connecting one or more neurons to the
input. Each pair of neurons may or may not have a connection between them. With
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Fig. 2.34 Diagram of an artificial neuron

Fig. 2.35 A feedforward neural network can be seen as a directed acyclic graph where the inputs
are passed through different layer until it reaches to the end

this formulation, the logistic regression model can be formulated using only one
neuron where G (x) is the sigmoid function in (2.33). Depending on how neurons
are connected, a network act differently. Among various kinds of artificial neural
networks feedforward neural network (FNN) and recurrent neural network (RNN)
are commonly used in computer vision community.

The main difference between these two kinds of neural networks lies in the con-
nection between their neurons. More specifically, in a feedforward neural network
the connections between neurons do not form a cycle. In contrast, in recurrent neural
networks connection between neurons form a directed cycle. Convolutional neural
networks are a specific type of feedforward networks. For this reason, in the remain-
ing of this section we will only focus on feedforward networks. Figure2.35 shows
general architecture of feedforward neural networks.

A feedforward neural network includes one or more layers in which each layer
contains one or more neurons. Also, number of neurons in one layer can be different
from another layer. The network in the figure has one input layer and three layers
with computational neurons. Any layer between the input layer and the last layer is
called a hidden layer. The last layer is also called the output layer. In this chapter,
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the input layer is denoted by I and hidden layers are denoted by Hi where i starts
from 1. Moreover, the output layer is denoted by Z . In this figure, the first hidden
layer has d1 neurons and the second hidden layer has d2 neurons. Also, the output
layer has dz neurons.

It should be noted that every neuron in a hidden layer or the output layer is con-
nected to all the neurons in the previous layer. That said, there is d1 × d2 connections
between H1 and H2 in this figure. The connection from the i th input in the input
layer to the j th neuron in H1 is denoted by w1

i j . Likewise, the connection from the

j th neuron in H1 to the kth neuron in H2 is denoted by w2
jk . With this formulation,

the weights connecting the input layer to H1 can be represented using W1 ∈ R
d×d1

where W (i, j) shows the connection from the i th input to the j th neuron.
Finally, the activation function G of each neuron can be different from all other

neurons. However, all the neuron in the same layer usually have the same activation
function. Note that we have removed the bias connection in this figure to cut the
clutter. However, each neuron in all the layers is also have a bias term beside its
weights. The bias term in H1 is represented by b1 ∈ R

d1 . Similarly, the bias of hth

layer is represented by bh . Using this notations, the network illustrated in this figure
can be formulated as:

f (x) = G
(
G
(
G (xW1 + b1)W2 + b2

)
W3 + b3

)
. (2.81)

In terms of feature transformation, the hidden layers act as a feature transformation
function which is a composite function. Then, the output layer act as the linear
classifier. In other words, the input vector x is transformed into a d1-dimensional
space using the first hidden layer. Then, the transformed vectors are transformed
into a d2-dimensional space using the second hidden layer. Finally, the output layer
classifies the transformed d2-dimensional vectors.

Whatmakes a feedforwardneural networkvery special is the fact the a feedforward
network with one layer and finite number of neurons is a universal approximator.
In other words, a feedforward network with one hidden layer can approximate any
continuous function. This is an important property in classification problems.

Assume a multiclass classification problem where the classes are not linearly
separable. Hence, we must find a transformation function which makes the classes
linearly separable in the feature space. Suppose that Φideal(x) is a transformation
functionwhich is able to perfectly do this job. From function perspective,Φideal(x) is
a vector-valued continues function. Since a feedforward neural network is a universal
approximator, it is possible to design a feedforward neural network which is able to
accurately approximate Φideal(x). However, the beauty of feedforward networks is
that we do not need to design a function. We only need to determine the number of
hidden layers, number of neurons in each layer, and the type of activation functions.
These are called hyperparameters. Among them, the first two hyperparameters is
much more important than the third hyperparameter.

This implies that we do not need to design the equation of the feature transforma-
tion function by hand. Instead, we can just train a multilayer feedforward network
to do both feature transformation and classification. Nonetheless, as we will see
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shortly, computing the gradient of loss function on a feedforward neural network
using multivariate chain rule is not tractable. Fortunately, gradient of loss function
can be computed using a method called backpropagation.

2.6.1 Backpropagation

Assume a feedforward network with a two-dimensional input layer and two hid-
den layers. The first hidden layer consists of four neurons and the second hidden
layer consists of three neurons. Also, the output layer has three neurons. According
to number of neurons in the output layer, the network is a 3-class classifier. Like
multiclass logistic regression, the loss of the network is computed using a softmax
function.

Also, the activation functions of the hidden layers could be any nonlinear function.
But, the activation function of the output layer is the identity functionG 3

i (x) = x . The
reason is that the output layer calculates the classification scores which is obtained
by only computing wG 2. The classification score must be passed to the softmax
function without any modifications in order to compute the multiclass logistic loss.
For this reason, in practice, the activation function of the output layer is the identity
function. This means that, we can ignore the activation function in the output layer.
Similar to any compositional computation, a feedforward network can be illustrated
using a computational graph. The computational graph analogous to this network is
illustrated in Fig. 2.36.

Fig.2.36 Computational graph corresponding to a feedforward network for classification of three
classes. The network accepts two-dimensional inputs and it has two hidden layers. The hidden layers
consist of four and three neurons, respectively. Each neuron has two inputs including the weights
and inputs from previous layer. The derivative of each node with respect to each input is shown on
thee edges
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Each computational node related to function of soma (the computation before
applying the activation function) accepts two inputs including weights and output of
the previous layer. Gradient of each node with respect to its inputs is indicated on the
edges. Also note that wa

b is a vector whose length is equal to the number of outputs

from layer a − 1. Computing δL
δw3

i
is straightforward and it is explained on Fig. 2.24.

Assume, we want to compute δL
δw1

0
.

According to the multivariate chain rule, this is equal to adding all paths starting
fromw1

0 and ending atL in which the gradients along each path is multiplied. Based
on this definition, δL
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0
will be equal to:
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(2.82)

Note that this is only for computing the gradient of the loss function with respect
to the weights of one neuron in the first hidden layer. We need to repeat a similar
procedure for computing the gradient of loss with respect to every node in this graph.
However, although this computation is feasible for small feedforward networks, we
usually need feedforward network with more layers and with thousands of neurons
in each layer to classify objects in images. In this case, the simple multivariate chain
rule will not be feasible to use since a single update of parameters will take a long
time due do excessive number of multiplications.
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It is possible to make the computation of gradients more efficient. To this end, we
can factorize the above equation as follows:
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(2.83)

Compared with (2.82), the above equation requires much less multiplications which
makes it more efficient in practice. The computations starts with the most inner
parenthesizes and moves to the most outer terms. The above factorization has a very
nice property. If we carefully study the above factorization it looks like that the
direction of the edges are hypothetically reversed and instead of moving from w1

0 to
L the gradient computations moves in the reverse direction. Figure2.37 shows the
nodes analogous to each inner computation in the above equation.

Fig.2.37 Forward mode differentiation starts from the end node to the starting node. At each node,
it sums the output edges of the node where the value of each edge is computed by multiplying the
edge with the derivative of the child node. Each rectangle with different color and line style shows
which part of the partial derivative is computed until that point
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More precisely, assume the blue rectangles with dashed lines. These rectangles

denote
G 3
0

δH3
0

L
G 3
0
which corresponds to the node δZ0 on the graph. Furthermore, these

rectangles in fact are equal to L
Z0

. Likewise, the blue rectangles with dotted lines and

dashed-dotted lines denote L
Z1

= G 3
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1
and L
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2
respectively.

The rectangles with solid red lines denote
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which is analogous the derivative of the loss function with respect

to δH2
0. In other words, before computing this rectangle, we have in fact computed

L
H2
0
. Similarly, the dotted and dashed red rectangles illustrate L

H2
1
and L

H2
2
respectively.

The same argument holds true with the green and purple rectangles.
Assume we want to compute δL

δw1
1
afterwards. In that case, we do not need to

compute none of the terms inside the red and blue rectangles since they have been
computed once for δL

δw1
0
. This saves a great amount of computations especially when

the network has many layers and neurons.
The backpropagation algorithm has been developed based on this factorization.

It is a method for efficiently computing the gradient of leaf nodes with respect to
each node on the graph using only one backward pass from the leaf nodes to input
nodes. This algorithm can be applied on any computational graph. Formally, let
G =< V,E > denotes a directed acyclic graph where V = {v1, . . . , vK } is set of
nodes in the computational graph and E = (vi , v j )|vi , v j ∈ V is the set of ordered
pairs (vi , v j ) showing a directed edge from vi to v j . Number of edges going into
a node is called indegree and the number of edges coming out of a node is called
outdegree.

Formally, if in(va) = {(vi , v j )|(vi , v j ) ∈ E ∧ v j = va} returns set of input edges
to va , indegree of va will be equal to |in(va)| where |.| returns the cardinality of a
set. Likewise, out (va) = {(vi , v j )|(vi , v j ) ∈ E ∧ vi = va} shows the set of output
edges from va and |out (va)| is equal to the outdegree of va . The computational node
va is called an input if in(va) = 0 and out (va) > 0. Also, the computational node
va is called a leaf if out (va) = 0 and in(va) > 0. Note that there must be only one
leaf node in a computational graph which is typically the loss. This is due to the fact
the we are always interested in computing the derivative of one node with respect to
all other nodes in the graph. If there are more than one leaf node in the graph, the
gradient of the leaf node of interest with respect to all other leaf nodes will be equal
to zero.

Suppose that the leaf node of the graph is denoted by vlea f . In addition,
let child(va) = {v j |(vi , v j ) ∈ E ∧ vi = va} and parent (va) = {vi |(vi , v j ) ∈ E ∧
v j = va} returns the child nodes and parent nodes of va . Finally, depth of va is
equal to number of edges on the longest path from input nodes to va . We denote
the depth of va by dep(va). It is noteworthy that for any node vi in the graph that
dep(vi ) ≥ dep(vlea f ) the gradient of vlea f with respect to vi will be equal to zero.
Based on the above discussion, the backpropagation algorithm is defined as follows:
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Algorithm 1 The backpropagation algorithm
G :< V,E > is a directed graph.
V is set of vertices
E is set of edges
vlea f is the leaf node in V
dlea f ← dep(vlea f )
vlea f .d = 1
for d = dlea f − 1 to 0 do

for va ∈ {vi |vi ∈ V ∧ dep(vi ) == d} do
va .d ← 0
for vc ∈ child(va) do

va .d ← va .d + δvc
δva

× vc.d

The above algorithm can be applied on any computational graph. Generally, the
it computes gradient of a loss function (leaf node) with respect to all other nodes in
the graph using only one backward pass from the loss node to the input node. In the
above algorithm, each node is a data structure which stores information related to
the computational unit including their derivative. Specifically, the derivative of va is
stored in va .d. We execute the above algorithm on the computational graph shown
in Fig. 2.38.

Based on the above discussion, loss is the leaf node. Also, the longest path from
input nodes to the leaf node is equal to dlea f = dep(loss) = 4. According to the
algorithm, vlea f .d must be set to 1 before executing the loop. In the figure, vlea f .d
is illustrated using d8. Then, the loop start with d = dlea f − 1 = 3. The first inner
loop, iterates over all nodes in which their depth is equal to 3. This is equivalent toZ0
and Z1 on this graph. Therefore, va is set to Z0 in the first iteration. The most inner
loop also iterates over children of va . This is analogous to child(Z0) = {loss}which
only has one child. Then, the derivative of va (Z0) is set to d6 = va .d = 0 + r × 1.

Fig. 2.38 A sample computational graph with a loss function. To cut the clutter, activations func-
tions have been fused with the soma function of the neuron. Also, the derivatives on edges are

illustrated using small letters. For example, g denotes
δH2

0
δH1

1



70 2 Pattern Classification

Table 2.2 Trace of the backpropagation algorithm applied on Fig. 2.38

Depth Node Derivative

3 Z0 d6 = r × 1

3 Z1 d7 = s × 1

2 H2
0 d4 = l × d6 + o × d7

2 H2
1 d5 = n × d6 + q × d7

1 H1
0 d1 = e × d4 + i × d5

1 H1
1 d2 = g × d4 + h × d6

1 H1
1 d3 = k × d7

0 w3:0 d14 = m × d6

0 w3:1 d15 = p × d7

0 w2:0 d12 = f × d4

0 w2:1 d13 = j × d5

0 w1:0 d9 = a × d1

0 w1:1 d10 = b × d2

0 w1:2 d11 = c × d3

0 x0 d16 = t × d1 + w × d2 + x × d3

0 x1 d17 = y × d1 + z × d2 + zz × d3

After that, the inner loop goes to Z1 and the most inner loop sets derivative of Z1 to
d7 = va .d = 0 + s × 1.

At this point the inner loop finishes and the next iteration of the main loop start
by setting d to 2. Then, the inner loop iterates over H2

0 and H2
1. In the first iteration

of the inner loop, H2
0 is selected and its derivative d4 is set to 0. Next, the most

inner loop iterates over children of H2
0 which are Z0 and Z1. In the first iteration

of the most inner loop d4 is set to d4 = 0 + l × d6 and in the second iteration it
is set to d4 = l × d6 + o × d7. At this point, the most inner loop is terminated and
the algorithm proceeds with H2

1. After finishing the most inner loop, the d5 will
be equal to d5 = n × d6 + q × d7. Likewise, derivative of other nodes are updated.
Table2.2 shows how derivative of nodes in different depths are calculated using the
backpropagation algorithm.

We encourage the reader to carefully study the backpropagation algorithm since
it is a very efficient way for computing gradients in complex computational graphs.
Since we are able to compute the gradient of loss function with respect to every
parameter in a feedforward neural network, we can train a feedforward network
using the gradient descend method (Appendix A).

Given an input x, the data is forwarded throughout the network until it reaches to
the leaf node. Then, the backpropagation algorithm is executed and the gradient of
loss with respect to every node given the input x is computed. Using this gradient,
the parameters vectors are updated.
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2.6.2 Activation Functions

There are different kinds of activation functions that can be used in neural networks.
However, we are mainly interested in activation functions that are nonlinear and
continuously differentiable. A nonlinear activation function makes it possible that a
neural network learns any nonlinear functions provided that the network has enough
neurons and layers. In fact, a feedforward network with linear activations in all
neurons is just a linear function. Consequently, it is important that to have at least
one neuron with a nonlinear activation function to make a neural network nonlinear.

Differentiability property is also important since wemainly train a neural network
using gradient descend method. Although non-gradient-based optimization methods
such as genetic algorithms and particle swarm optimization are used for optimizing
simple functions, but gradient-based methods are the most commonly used meth-
ods for training neural networks. However, using non-gradient-based methods for
training a neural network is an active research area.

Beside the above factors, it is also desirable that the activation function approx-
imates the identity mapping near origin. To explain this, we should consider the
activation of a neuron. Formally, the activation of a neuron is given by G (wxT + b)
where G is the activation function. Usually, the weight vector w and bias b are
initialized with values close to zero by the gradient descend method. Conse-
quently, wxT + b will be close to zero. If G approximates the identity function
near zero, its gradient will be approximately equal to its input. In other words,
δG ≈ wxT + b ⇐⇒ wxT + b ≈ 0. In terms of the gradient descend, it is a strong
gradient which helps the training algorithm to converge faster.

2.6.2.1 Sigmoid
The sigmoid activation function and its derivative are given by the following equa-
tions. Figure2.39 shows their plots.

Gsigmoid(x) = 1

1 + e−x
(2.84)

and

G ′
sigmoid(x) = G (x)(1 − G (x)). (2.85)

The sigmoid activation Gsigmoid(x) : R → [0, 1] is smooth and it is differentiable
everywhere. In addition, it is a biologically inspired activation function. In the past,
sigmoid was very popular activation function in feedforward neural networks. How-
ever, it has two problems. First, it does not approximate the identity function near
zero. This is dues to the fact that Gsigmoid(0) is not close to zero and G ′

sigmoid(x)
is not close to 1. More importantly, sigmoid is a squashing function meaning that it
saturates as |x | increases. In other words, its gradient becomes very small if x is not
close to origin.

This causes a serious problem in backpropagation which is known as vanishing
gradients problem. The backpropagation algorithm multiplies the gradient of the
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Fig. 2.39 Sigmoid activation function and its derivative

activation function with its children in order to compute the gradient of the loss
function with respect to the current node. If x is far from origin, Gsigmoid will be
very small. When it is multiplied by its children, the gradient of the loss with respect
to that node will become smaller. If there are many layers with sigmoid activation,
the gradient starts to become approximately zero (i.e., gradient vanishes) in the first
layers. For this reason, the weight changes will be very small or even negligible.
This cause the network to stuck in the current configuration of parameters and do
not learn anymore. For these reasons, sigmoid activation function is not used in deep
architectures since training the network become nearly impossible.

2.6.2.2 Hyperbolic Tangent
The hyperbolic tangent activation function is in fact a rescaled version of the sigmoid
function. Its defined by the following equations. Figure2.40 illustrates the plot of
the function and its derivative.

Gtanh(x) = ex + e−x

ex + e−x
= 2

1 + e−2x − 1 (2.86)

G ′
tanh(x) = 1 − Gtanh(x)

2 (2.87)

The hyperbolic tangent function Gtanh(x) : R → [−1, 1] is a smooth function
which is differentiable everywhere. Its range is [−1, 1] as opposed to range of the
sigmoid function which is [0, 1]. More importantly, the hyperbolic tangent function
approximates the identity function close to origin. This is easily observable from
the plots where Gtanh(0) ≈ 0 and G ′

tanh(0) ≈ 1. This is a desirable property which
increases the convergence speed of the gradient descend algorithm. However, similar
to the sigmoid activation function, it saturates as |x | increases. Therefore, it may
suffer from vanishing gradient problems in feedforward neural networks with many
layers. Nonetheless, the hyperbolic activation function is preferred over the sigmoid
function because it approximates the identity function near origin.
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Fig. 2.40 Tangent hyperbolic activation function and its derivative

2.6.2.3 Softsign
The softsign activation function is closely related to the hyperbolic tangent function.
However, it has more desirable properties. Formally, the softsign activation function
and its derivative are defined as follows:

Gsof tsign(x) = x

1 + |x | (2.88)

G ′
sof tsign(x) = 1

(1 + |x |)2 (2.89)

Similar to the hyperbolic tangent function, the range of the softsign function is
[−1, 1]. Also, the function is equal to zero at origin and its derivative at origin is
equal to 1. Therefore, is approximates the identity function at origin. Comparing the
function and its derivative with hyperbolic tangent, we observe that it also saturates
as |x | increases. However, the saturation ratio of the softsign function is less than the
hyperbolic tangent function which is a desirable property. In addition, gradient of the
softsign function near origin drops with a greater ratio compared with the hyperbolic
tangent. In terms of computational complexity, softsign requires less computation
than the hyperbolic tangent function. The softsign activation function can be used as
an alternative to the hyperbolic tangent activation function (Fig. 2.41).

2.6.2.4 Rectified Linear Unit
Using the sigmoid, hyperbolic tangent and softsign activation functions is mainly
limited to neural networks with a few layers. When a feedforward network has few
hidden layers it is called a shallow neural network. In contrast, a network with
many hidden layers is called a deep neural network. The main reason is that in deep
neural networks, gradient of these three activation functions vanishes during the
backpropagation which causes the network to stop learning in deep networks.
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Fig. 2.41 The softsign activation function and its derivative

Fig. 2.42 The rectified linear unit activation function and its derivative

A rectified linear unit (ReLU) is an activation function which is computationally
very efficient and it is defined as follows:

Grelu(x) = max(0, x) (2.90)

G ′
relu(x) =

{
0 x < 0

1 x ≥ 0
(2.91)

ReLU is a very simple nonlinear activation function which actually works very
well in practice. Its derivative in R

+ is always 1 and it does not saturate in R
+. In

other words, the range of this function is [0,∞). However, this function does not
approximate the identity function near origin. But because it does not saturate inR+
it always produce a strong gradient in this region. Consequently, it does not suffer
from the vanishing gradient problem. For this reason, it is a good choice for deep
neural networks (Fig. 2.42).

One property of the ReLU activation is that it may produce dead neurons during
the training. A dead neuron always return 0 for every sample in the dataset. This may
happen because the weight of a dead neuron have been adjusted such that wx for the
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neuron is always negative. As the result, when it is passed to the ReLU activation
function, it always return zero. The advantage of this property is that, the output of a
layer may have entries which are always zero. This outputs can be removed from the
network to make it computationally more efficient. The negative side of this property
is that dead neuron may affect the overall accuracy of the network. So, it is always
a good practice to check the network during training for dead neurons.

2.6.2.5 Leaky Rectified Linear Unit
The basic idea behind Leaky ReLU (Maas et al. 2013) is to solve the problem of dead
neuron which is inherent in ReLU function. The leaky ReLU is defined as follows:

Grrelu(x) =
{

αx x < 0

x x ≥ 0
(2.92)

G ′
rrelu(x) =

{
α x < 0

1 x ≥ 0
(2.93)

One interesting property of leakyReLU is that its gradient does not vanish in negative
region as opposed to ReLU function. Rather, it returns the constant value α. The
hyperparameter α usually takes a value between [0, 1]. Common value is to set α

to 0.01. But, on some datasets it works better with higher values as it is proposed
in Xu et al. (2015). In practice, leaky ReLU and ReLU may produce similar results.
This might be due to the fact that the positive region of these function is identical
(Fig. 2.43).

2.6.2.6 Parameterized Rectified Linear Unit
Parameterized rectified linear unit is in fact (PReLU) the leaky ReLU (He et al.
2015). The difference is that α is treated as a parameter of the neural network so it

Fig. 2.43 The leaky rectified linear unit activation function and its derivative
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can be learned from data. The only thing that needs to be done is to compute the
gradient of the leaky ReLU function with respect to α which is given by:

δGprelu(x)

δα
=
{
x x < 0

α x ≥ 0
(2.94)

Then, the gradient of the loss function with respect to α is obtained using the back-
propagation algorithm and it is updated similar to other parameters of the neural
network.

2.6.2.7 Randomized Leaky Rectified Linear Unit
Themain idea behind randomized rectified linear unit (RReLU) is to add randomness
to the activations during training of a neural network. To achieve this goal, the
RReLU activation draws the value of α from the uniform distributionU (a, b)where
a, b ∈ [0, 1) during training of the network. Drawing the value of α can be done
once for all the network or it can be done for each layer separately. To increase the
randomness, one may draw different α from the uniform distribution for each neuron
in the network. Figure2.44 illustrates how the function and its derivative vary using
this method.

In the test time, the parameter α is set to the constant value ᾱ. This value is
obtained by computing the mean value of α for each neuron that is assigned during
training. Since the value of alpha is drawn fromU (a, b), then value of ᾱ can be easily
obtained by computing the expected value of U (a, b) which is equal to ᾱ = a+b

2 .

2.6.2.8 Exponential Linear Unit
Exponential linear units (ELU) (Clevert et al. 2015) canbe seen as a smoothedversion
of the shifted ReLU activation function. By shifted ReLU we mean to change the
original ReLU from max(0, x) to max(−1, x). Using this shift, the activation passes
a negative number near origin. The exponential linear unit approximates the shifted

Fig. 2.44 The softplus activation function and its derivative
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Fig. 2.45 The exponential linear unit activation function and its derivative

ReLU using a smooth function which is given by:

Gelu(x) =
{

α(ex − 1) x < 0

x x ≥ 0
(2.95)

G ′
elu(x) =

{
G (x) + α x < 0

1 x ≥ 0
(2.96)

The ELU activation usually speeds up the learning. Also, as it is illustrated in
the plot, its derivative does not drop immediately in the negative region. Instead, the
gradient of the negative region saturates nonlinearly (Fig. 2.45).

2.6.2.9 Softplus
The last activation function that we explain in this book is called Softplus. Broadly
speaking, we can think of the softplus activation function as a smooth version of
the ReLU function. In contrast to the ReLU which is not differentiable at origin,
the softplus function is differentiable everywhere. In addition, similar to the ReLU
activation, its range is [0,∞). The function and its derivative are defined as follows:

Gsof tplus = ln(1 + ex ) (2.97)

G ′
sof tplus = 1

1 + e−x
(2.98)

The derivative of the softplus function is the sigmoid function which means the
range of derivative is [0, 1]. The difference with ReLU is the fact that the derivative
of softplus is also a smooth function which saturates as |x | increases (Fig. 2.46).
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Fig. 2.46 The softplus activation function and its derivative

Fig. 2.47 The weights affect the magnitude of the function for a fixed value of bias and x (left).
The bias term shifts the function to left or right for a fixed value of w and x (right)

2.6.3 Role of Bias

Basically, the input to an activation function is wxT + b. The first term in this equa-
tion, computes the dot product betweenw and x. Assume that x is a one-dimensional
vector (scaler). To see the effect of w, we can set b = 0 and keep the value of x
fixed. Then, the effect of w can be illustrated by plotting the activation function for
different values of w. This is shown in left plot in Fig. 2.47.

We observe that changing the weights affects the magnitude of activation func-
tion. For example, assume a neural network without a hidden layer where the out-
put layer has only one neuron with sigmoid activation function. The output of the
neural network for inputs x1 = 6 and x2 = −6 are equal to σ(6w + b) = 0.997 and
σ(−6w + b) = 0.002 when w = 1 and b = 0. Suppose we want to find w and keep
b = 0 such that σ(6w + b) = 0.999 and σ(−6w + b) = 0.269. There is nowwhich
perfectly satisfies these two conditions. But, it is possible to findw that approximates
the above values as accurate as possible. To this end, we only need to minimize the
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squared error loss of the neuron. If we do this, the approximation error will high
indicating that it is not possible to approximate these values accurately.

However, it is possible to find b where σ(6w + b) = 0.999 and σ(−6w + b) =
0.269 when w = 1. To see the effect of b, we can keep w and x fixed and change the
value of b. The right plot in Fig. 2.47 shows the result. It is clear that the bias term
shifts the activation function to left or right. It gives a neuron more freedom to be
fitted on data.

According to the above discussion, using bias term in a neuron seems neces-
sary. However, bias term might be omitted in very deep neural networks. Assume
the final goal of a neural network is to estimated (x = 6, f (x) = 0.999) and
(x = −6, f (x) = 0.269). If we are forced to only use a single layer neural net-
work with only one neuron in the layer, the estimation error will be high without a
bias term. But, if we are allowed to use more layers and neurons, then it is possible
to design a neural network that accurately approximates these pairs of data.

In deep neural networks, even if the bias term is omitted, the networkmight be able
to shift the input across different layers if it reduces the loss. Though, it is a common
practice to keep the bias term and train it using data. Omitting the bias term may
only increase the computational efficiency of a neural network. If the computational
resources are not limited, it is not necessary to remove this term from neurons.

2.6.4 Initialization

The gradient descend algorithm starts by setting an initial value for parameters. A
feedforward neural network has mainly two kind of parameters including weights
and biases. All biases are usually initialized to zero. There are different algorithms
for initializing theweights. To common approach is to initialize them using a uniform
or a normal distribution. We will explain initialization methods in the next chapter.

The most important thing to keep in mind is that, weights of the neurons must
be different. If they all have the same value. Neurons in the same layer will have
identical gradients leading to the same update rule. For this reason, weights must be
initialized with different values. Also, they are commonly initialized very close to
zero.

2.6.5 How to Apply on Images

Assume the datasetX = {(x1, y1), . . . , (xn, yn)}where the input vector xi ∈ R
1000

is a 1000-dimensional vector and yi = [0, . . . , c] is an integer number indicating the
class of the vector. A rule of thumb in designing a neural network for classification
of these vectors is to have more neurons in the first hidden layer and start to decrease
the number of neurons in the subsequent layers. For instance, we can design a neural
network with three hidden layers where the first hidden layer has 5000 neurons, the
second hidden layer has 2000 neurons and the third hidden layer hast 500 neurons.
Finally, the output layer also will contain c neurons.
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One important step in designing a neural network is to count the total number of
parameters in the network. For example, there are 5000 × 1000 = 5,000,000weights
between the input layer and the first hidden layer. Also, the first hidden layer has 5000
biases. Similarly, the number of parameters between the first hidden layer and second
hidden layer is equal to 5000 × 2000 = 10,000,000 plus 2000 biases. The number of
parameters between the second hidden layer and the third hidden layer is also equal to
2000 × 500 = 1,000,000 plus 500 biases. Finally, the number of weights and biases
between the third hidden layer and the output layer is equal to 500 × c + c. Overall,
this neural network is formulated using 16,007,200 + 500c + c parameters. Even
for this shallow neural network, the number of parameters is very high. Training this
neural network requires a dataset with many training samples. Collecting this dataset
might not be practical.

Now, suppose our aim is to classify traffic signs. The input of the classifier might
be 50 × 50 × 3 images. Our aim is to classify 100 classes of traffic signs. We men-
tioned before that training a classifier directly on pixel intensities does not produce
accurate results. Better results were obtained by extracting features using the his-
togram of oriented gradients. We also mentioned that neural networks learn the
feature transformation function automatically from data.

Consequently, we can design a neural network where the input of the network
is raw images and its output is the classification scores of the image per each class
of traffic sign. The neural network learns to extract features from the image so that
they become linearly separable in the last hidden layer. A 50 × 50 × 3 image can be
stored in a three-dimensional matrix. If we flatten this matrix, the results will be a
7500-dimensional vector.

Suppose a neural network containing three hidden layers with 10000-8000-3000
neurons in these layers. This network is parameterized using 179,312,100 parame-
ters. A dramatically smaller neural network with three hidden layers such as 500-
300-250 will also have 4,001,150 parameters. Although the number of parameters
in the latter neural network is still hight, it may not produce accurate results. In addi-
tion, the number of parameters in the former network is very high which makes it
impossible to train this network with the current algorithms, hardware and datasets.

Besides, classification of objects is a complex problem. The reason is that some of
traffic signs differ only slightly. Also, their illumination changes during day. There
are also other factors that we will discuss in the later chapters. For these reasons,
accurately learning a feature transformation function that traffic signs linearly sep-
arable in the feature space requires a deeper architecture. As the depth of neural
network increases, the number of parameters may also increase. The reason that a
deeper model is preferable over a shallower model is described on Fig. 2.48.

The wide black line on this figure shows the function that must be approximated
using a neural network. The red line illustrates the output of a neural network includ-
ing four hidden layers with 10-10-9-6 architecture using the hyperbolic tangent acti-
vation functions. In addition, the white line shows the output of a neural network
consisting of five layers with 8-6-4-3-2 architecture using the hyperbolic tangent
activation function. Comparing the number of parameters in these two networks, the
shallower network has 296 parameters and the deeper network has 124 parameters. In



2.6 Artificial Neural Networks 81

Fig. 2.48 A deeper network requires less neurons to approximate a function

general, deeper models require less parameters for modeling a complex function. It
is obvious from figure that the deeper model is approximated the function accurately
despite the fact that it has much less parameters.

Feedforward neural networks that we have explained in this section are called
fully connected feedforward neural networks. The reason is that every neuron in
one layer is connected to all neurons in the previous layer. As we explained above,
modeling complex functions such as extracting features from an image may require
deep neural networks. Training deep fully connected networks on dataset of images
is not tractable due to very high number of parameters. In the next chapter, we will
explain a way to dramatically reduce the number of parameters in a neural network
and train them on images.

2.7 Summary

In this chapter, we first explained what are classification problems and what is a
decision boundary. Then, we showed how to model a decision boundary using linear
models. In order to better understand the intuition behind a linear model, they were
also studied from geometrical perspective. A linear model needs to be trained on
a training dataset. To this end, there must be a way to assess how good is a linear
model in classification of training samples. For this purpose,we thoroughly explained
different loss functions including 0/1 loss, squared loss, hinge loss, and logistic loss,
Then, methods for extending binary models to multiclass models including one-
versus-one and one-versus-rest were reviewed. It is possible to generalize a binary
linear model directly into a multiclass model. This requires loss functions that can
be applied on multiclass dataset. We showed how to extend hinge loss and logistic
loss into multiclass datasets.

The big issue with linear models is that they perform poorly on datasets in which
classes are not linearly separable. To overcome this problem, we introduced the
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idea of feature transformation function and applied it on a toy example. Designing
a feature transformation function by hand could be a tedious task especially when
they have to be applied on high-dimensional datasets. A better solution is to learn
a feature transformation function directly from training data and training a linear
classifier on top of it.

We developed the idea of feature transformation from simple functions to compo-
sitional functions and explained how neural networks can be used for simultaneously
learning a feature transformation function together with a linear classifier. Training a
complex model such as neural network requires computing gradient of loss function
with respect to every parameter in the model. Computing gradients using conven-
tional chain rule might not be tractable. We explained how to factorize a multivariate
chain rule and reduce the number of arithmetic operations. Using this formulation,
we explained the backpropagation algorithm for computing gradients on any com-
putational graph.

Next, we explained different activation functions that can be used in designing
neural networks.WementionedwhyReLU activations are preferable over traditional
activations such as hyperbolic tangent. Role of bias in neural networks is also dis-
cussed in detail. Finally, we finished the chapter by mentioning how an image can
be used as the input of a neural network.

2.8 Exercises

2.1 Find an equation to compute the distance of point p from a line.

2.2 Given the convex set X ⊂ R
d , we know that function f (x) : X → R is convex

if:

∀x1,x2∈X,α∈[0,1] f (αx1 + (1 − α)x2) ≤ α f (x1) + (1 − α) f (x2). (2.99)

Using the above definition, show why 0/1 loss function is nonconvex?

2.3 Prove that square loss is a convex function.

2.4 Why setting a in the hinge loss to different values does not affect the classifica-
tion accuracy of the learn model?

2.5 Compute the partial derivative of the squared hinge loss and modified Huber
loss functions.

2.6 Apply log(A × B) = log(A) log(B) on (2.39) to obtain (2.39).
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2.7 Show that:
δσ (a)

a
= σ(a)(1 − σ(a)). (2.100)

2.8 Find the partial derivative of (2.41) with respect to wi using the chain rule of
derivatives.

2.9 Show how we obtained (2.46).

2.10 Compute the partial derivatives of (2.46) and use them in the gradient descend
method for minimizing the loss represented by this equation.

2.11 Compute the partial derivatives of (2.56) and obtain (2.57).

2.12 Draw an arbitrary computation graph with three leaf nodes and call them A,
B and C . Show that δC/δA = 0 and δC/δB = 0

2.13 Show that a feedforward neural network with linear activation functions in all
layers is in fact just a linear function.

2.14 Show that it is impossible to find a w such that:

σ(6w) = 1

1 + e−6w = 0.999

σ(−6w) = 1

1 + e6w
= 0.269

(2.101)
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